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Abstract: Accurate semantic editing of the generated images is extremely important for machine
learning and sample enhancement of big data. Aiming at the problem of semantic entanglement in
generated image latent space of the StyleGAN2 network, we proposed a generated image editing
method based on global-local Jacobi disentanglement. In terms of global disentanglement, we extract
the weight matrix of the style layer in the pre-trained StyleGAN2 network; obtain the semantic
attribute direction vector by using the weight matrix eigen decomposition method; finally, utilize this
direction vector as the initialization vector for the Jacobi orthogonal regularization search algorithm.
Our method improves the speed of the Jacobi orthogonal regularization search algorithm with the
proportion of effective semantic attribute editing directions. In terms of local disentanglement, we
design a local contrast regularized loss function to relax the semantic association local area and
non-local area and utilize the Jacobi orthogonal regularization search algorithm to obtain a more
accurate semantic attribute editing direction based on the local area prior MASK. The experimental
results show that the proposed method achieves SOTA in semantic attribute disentangled metrics
and can discover more accurate editing directions compared with the mainstream unsupervised
generated image editing methods.

Keywords: StyleGAN2; unsupervised methods; image editing; weight matrix eigen decomposition;
Jacobi orthogonal regularization

1. Introduction

Machine learning [1], big data [2,3], and the Internet of Things (IoT) [4] have infiltrated
every aspect of people's lives. Generative adversarial networks (GANs) [5] have been
viewed as the most interesting ideas of artificial intelligence in the last decade. Being
the most promising generative models, GANs are widely used in areas, such as image
generation, text synthesis, and style transformation. In the field of image generation, GAN
networks, e.g., StyleGAN [6], PGGAN [7], StyleGAN2 [8], and BigGAN [9], have been able
to generate realistic images with high resolution as the network layers deepen and the scale
increases. However, in many practical applications, the problem faced by GAN networks is
the uncontrollability of generation, i.e., the randomness of sampling of latent space, and
their generated results cannot follow human wishes. For example, it can generate realistic
face images, but we cannot control the generated characters, e.g., male or female, long or
short hair, etc. In application scenarios, e.g., portrait editing, modeling, animation character
design, criminal investigation, and big data generation and enhancement, not only the
quality of the generated images should be ensured, but also editability is required. Figure 1
shows an example of hairstyle, age, pose, and gender editing on the face image generated
by the StyleGAN2 network. The controllable editing of faces makes it possible to apply to
GAN for portrait depiction and movie art production. Applications such as the generation
and editing of portraits of anime characters and criminal suspects in criminal investigation
no longer require a painter to draw images manually, saving labor and material resources.
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Regeneration and re-editing of the image data acquired by the sensors can greatly expand
the learning sample.
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Figure 1. Generated human face image editing on semantic attributes of hairstyle, age, pose, and
gender respectively.

With further research on the mechanism of GAN, editing methods to control GAN-
generated images have emerged, and these methods can be mainly divided into supervised
and unsupervised methods.

Supervised methods require semantic labels for training dataset images. CGAN [10]
trains GAN networks to generate images by the training set with given semantic labels; it
could generate images according to the established semantic information of the labels, but
cannot realize the continuous editing of images in certain semantics. GAN-Control [11]
solves the problem by quantifying the semantic properties of the labels with a large number
of semantic labels. InterFaceGAN [12] samples the latent space Z; employs a support
vector machine (SVM) classifier to determine the semantic direction of the latent space;
realizes precise image editing along the semantic attribute direction, however, its training
classifier requires a large number of binary classification samples. In the field of super-
vised local image editing, Spatially Control GAN [13] achieves local area feature blending
of two images by blending the latent spaces corresponding to each semantic attribute,
but the method suffers from the incongruence of the generated images after blending.
SemanticStyleGAN [14] achieves local image editing by assigning specific masks to the
generated images and corresponding the masks to the latent spaces, however, the addition
of the semantic segmentation model makes the model too large and bloated, which is not
conducive to lightweight deployment. Spatial Attention GAN [15] achieves local editing of
images by introducing a spatial attention mechanism and classifying each attribute.

Supervised methods can edit images accurately but it is difficult to obtain semantic
labels, so unsupervised methods have gradually become a new research trend. The un-
supervised methods do not require external semantic attribute labels; they mainly utilize
the potential semantic directions in the latent space of the GAN [16]; the parameters are
trained in the generator network [17]. PCAGAN [18] utilizes principal component analysis
(PCA) [19] to determine the main feature direction of controlled editing in the latent space
of the GAN; find the main direction of image semantic attribute; however, its result depends
on the number of sampled points in the latent space and the entanglement between each
semantic attribute is serious. SefaGAN [20] proposed that the main semantic attribute
directions of the generated images are the eigenvectors of the fully connected layer weight
matrix in the pre-trained model of the StyleGAN2 network. It can obtain interpretable
image semantic attribute directions, but its equivalent model is not complete. It equates
the mapping function in the generator network with the fully connected layer of the style
layer; while omitting the mapping function of other layers in the network, which results in
the actual editing process that still has semantic attribute entanglement [21]. As shown in
Figure 2, when editing along with the gender semantic attribute direction, the faces in red
boxes 1 and 2 have added glasses, and the hair color has changed. STGAN-WO [22] controls
image generation at two scales separately in the latent space and achieves disentanglement
of image structure from texture semantic attribute using weight orthogonal regularization,
but its regularization method limits the weight space in the network; consequently, reduces
the quality of the generated images. Chen et al. [23,24]. achieves good results using spatial
features of deep convolutional neural networks for image feature detection. The multi-scale
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hierarchical disentangled image editing method [25] achieves more accurate image editing
on the multi-scale feature space, in which the weight matrix at different resolution layers
of the StyleGAN2 generator network is decomposed and the semantic attributes between
different resolution layers are disentangled by using Schmitt orthogonal decomposition,
however, it does not fundamentally change the limitations of the weight matrix eigen de-
composition method, but only alleviates the semantic entangled phenomenon at multiple
scales. LowRankGAN [26] obtains the Jacobi matrix by calculating the partial derivatives
of the generated feature map of the GAN with each vector element of the input latent space;
obtain the image editing directions by employing low-rank approximation and SVD decom-
position to the Jacobi matrix. It achieves better editing results than the previous methods,
but the calculation of the Jacobi matrix is time-consuming and memory-intensive. Hessian
Penalty GAN [27] adopts the idea of the Jacobian matrix to restrict each dimension of the
input latent space by orthogonal regularization, the method achieves different semantic
attributes of the generated image controlled by different dimensions of the latent space,
but the restriction of different dimensions to control a single semantics is too strict, and
the editing does not work well on models with large hidden space dimensions such as
StyleGAN. OroJaRGAN [28] relaxes the orthogonal regularization constraints on the basis
of Hessian Penalty GAN, the method achieves good results on large GAN models.
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Although a good disentangled result is achieved in the generated image editing, the
Jacobi matrix is highly complex because of the image’s high resolution and the latent
space’s numerous dimensions. Currently, there is little research on how to accelerate
algorithms related to Jacobi computing. However, there are still some methods to optimize
the semantic direction search process for Jacobi disentanglement, such as LowRankGAN
and OroJaRGAN. LowRankGAN reduces the complexity of the Jacobi matrix using low-
rank approximation, which reduces the difficulty of semantic direction decomposition,
however, low-rank approximation increases the overhead of the algorithm and still requires
the direct computation of the Jacobi matrix. OroJaRGAN utilizes Hutchinson’s estimator
and Rademacher vectors to avoid the direct computation of Jacobi matrices and uses the
difference derivative method to reduce the complexity of the computation, however, the
search with random initialization makes the time cost is still high and there are a large
number of semantic directions for ineffective search.

The unsupervised image editing method based on the StyleGAN2 network can obtain
interpretable semantic attribute direction, but there are the following problems: (1). For
high-resolution and semantically complex generated images, serious semantic attribute
entangled phenomenon still remains. (2). The weight matrix eigendecomposition method
only extracts the style layer weights in the StyleGAN2 network and ignores the mapping
function of other layers, which is difficult to obtain accurate semantic directions. (3). Jacobi
orthogonal regularization search algorithm can obtain the global accurate image editing
directions, but the search process is time-consuming besides ineffective editing directions.
(4). Local semantic attributes that are highly entangled with global features cannot be
disentangled from the global image, and it is difficult for ordinary methods to discover
more accurate local semantic directions.

To address the above issues, we proposed a generated image editing method based on
global-local Jacobi disentanglement. The main contributions of the work are as follows.
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• A new global Jacobi orthogonal regularization search semantic direction set initial-
ization method is designed, using the semantic direction vector of the weight matrix
eigendecomposition as the initial vector, which improves the search speed and reduces
the proportion of ineffective search directions.

• A local Jacobi disentangled method is proposed to discover more accurate image
editing directions by limiting the search area and designing a contrast regularized
loss function.

• Experiments on the datasets FFHQ and LSUNCat show that our method achieves op-
timality in semantic attribute disentangled metrics compared to existing unsupervised
generated image editing methods, and is also able to discover more accurate image
editing directions.

The rest of this paper is organized as follows. In Section 2, we expound on the
principles and implementation of the generated image editing method proposed in this
paper. Section 3 provides experimental evaluations and analysis. Finally, we conclude our
work in Section 4.

2. Materials and Methods

The proposed method in this paper, shown in Figure 3, is mainly composed of the
global Jacobian disentangled method and the local Jacobian disentangled method. In
the global Jacobian disentangled method, the generator network uses the pre-trained
StyleGAN2 model, our method first utilizes the weight matrix eigen decomposition method
in the pre-trained network to obtain the original semantic attribute directions that are used
as the initial direction set of the Jacobian orthogonal regularization; subsequently utilizes
the loss function to train and update to obtain the final image editing direction. Compared
with the common Jacobi orthogonal regularization method OroJaRGAN, we optimize the
way of initialization during semantic direction search to improve the time efficiency and
the proportion of effective semantic directions. The local Jacobi method, compared with
OroJaRGAN, limits the search area of the image feature space, which utilizes a local contrast
regularized loss function to relax the semantic association local area and non-local area
and enables the local Jacobi disentangled method to obtain the local accurate semantic
direction that cannot be searched by traditional methods and improve the editing effect of
the generated image.

2.1. Global Jacobian Disentangled Method

The global Jacobi disentangled method firstly extracts the style layer weights of the
generator network of the pre-trained StyleGAN2; secondly utilizes the eigen decomposition
of the weight matrix and extracts the first k feature vectors as the initial set of semantic
directions; finally, completes the Jacobi orthogonal regularization search and trains to
update the set of semantic directions.

2.1.1. Motivation of the Method

The weight matrix eigendecomposition method SefaGAN [20] first proposed that the
parameters of the pre-trained GAN generator network are associated with the direction
of image editing. The associated experiments show that the eigendecomposition of the
tensor matrix can be performed in real-time, which has an advantage in time efficiency
compared to the Jacobi orthogonal regularization search method. However, the method
only utilizes the fully connected layer of the style layer, ignoring the mapping function
of the other layers of the StyleGAN2 generator network. Therefore, when calculating the
control variables of the latent space input to the output feature map, the semantic attribute
direction is not accurate enough and there is still an entangled phenomenon [21].
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Jacobi orthogonal regularization search algorithm [28] exploits the gradient relation-
ship between the input and output feature maps of the generator network rather than the
parameter information of a particular layer, which ensures the integrity of the method
on the model. Jacobian Decomposition GAN [29] discovered and demonstrated that the
eigenvectors obtained by the Jacobian matrix decomposition of the feature maps generated
by the GAN generator network correspond to the semantic attribute direction of the image.
OroJaRGAN introduced the concept of the Jacobi matrix in unsupervised image editing,
expected that the biased derivatives of the output to the elements of each dimension of
the input are mutually orthogonal, and proposed a training method of Jacobi orthogonal
regularization to find the semantic attribute direction. The Jacobian orthogonal regular-
ization search method utilizes the global mapping function of the GAN network from
input to output, so the accuracy of the semantic attribute direction obtained is better than
that of the weight matrix eigendecomposition method [30]. However, due to the random
initialization of the search direction vector, the training Loss function converges slowly and
the proportion of ineffective semantic directions is high.

To verify the effectiveness of the vector initialization by the Jacobi orthogonal regular-
ization method, we counted the loss function curves and effective search vector statistics
curves for the initialization direction of the OroJaRGAN method. As shown in Figure 4a,
the Loss function curves are trained by the random initialization methods of Eyematrix_Init
and Kaiming_normal_Init [31], respectively. We utilize a pre-trained StyGAN2 network
on the FFHQ dataset, the images are down-sampled to 512 × 512 resolution, training
parameters by default, and two GeForce RTX 2080Ti graphics cards are used for training
in parallel. It can be seen that when the Loss function converges, the training time is not
less than five hours. Figure 4b is the search effective direction statistics, the total number of
vectors preset for each search is 40, where the vertical coordinate is the number of effective
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directions, the horizontal coordinate is the number of experiments, a total of ten sets of
experiments, it can be seen that the highest proportion of the third and tenth experiments
9/40 = 21.5%, the search efficiency is low while wasting a lot of time resources.
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2.1.2. Method Feasibility Validation

Rather than optimizing the semantic direction search process from the perspective of
accelerating the Jacobi matrix computation, we are exploring the impact of the initialization
method on the time efficiency of the search process from another perspective, which is
similar to pre-training in deep learning. In a single dataset, the direction vectors govern-
ing similar semantic attributes should be the same. Considering the consistency of the
objectives of the weight matrix eigen decomposition method and the Jacobian orthogonal
regularization search method in obtaining semantic directions and the complementarity
in the efficiency and accuracy of the search, we utilize the direction vector set quickly ob-
tained by the weight matrix eigen decomposition method as the initial Jacobian orthogonal
regularization search vector set, and build a hybrid global disentangled method structure.

This structure is feasible when the direction vectors of the two methods are similar. We
utilize cosine similarity to measure the correlation of the same semantic attribute direction
of the two methods [32] as

Similarity = cos θ(
→
n 1,
→
n 2) =

→
n 1 ·

→
n 2

‖→n 1‖‖
→
n 2‖

=

n
∑

i=1
(xi ∗ yi)√

n
∑

i=1
(xi)

2 ∗
√

n
∑

i=1
(yi)

2

, (1)

where
→
n 1 = [x1, x2, x3, . . . , xn],

→
n 2 = [y1, y2, y3, . . . , yn] represent the same semantic at-

tribute direction vector obtained by the weight eigen decomposition method and the Jacobi
orthogonal regularization method, respectively. On the human face dataset FFHQ, the
degree of similarity between the two methods on the direction vectors of the pose, age,
hairstyle, and face color is counted for a total of ten sets of experiments, and the results are
taken as the mean values, as shown in Table 1.
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Table 1. Semantic attribute editing direction cosine similarity.

Pose Age Gender Hairstyle Face Color

Cosine
Similarity 0.91 0.89 0.86 0.87 0.84

Table 1 suggests that on the five semantic attributes in the FFHQ dataset, the cosine
similarity of the direction vectors obtained by both methods is greater than 0.80, which
indicates that they have similar effectiveness, meanwhile, it is completely feasible to use the
semantic direction of the weight matrix eigen decomposition as the initialization direction
of the Jacobi orthogonal regularization method.

2.1.3. Principle of Global Jacobi Disentangled Method

The semantic attribute directions are initialized by SefaGAN [20] by using the weight
matrix eigendecomposition method as

N∗ = argmax
N∈Rd×k

k

∑
i=1
‖A
→
n i‖

2
2 −

k

∑
i=1

λi

(
→
n

T
i
→
n i − 1

)
, (2)

where N =
[→

n 1,
→
n 2, · · · ,

→
n k

]
is the set of the first k semantic attribute directions at each

scale;
→
n is the unit direction vector of semantic attributes; A is the matrix of all style layer

weights stitched together; λ is the eigenvalue. The optimal solution as

2AT Anj − 2λjnj = 0. (3)

Each semantic attribute direction nj is an eigenvector of the weight matrix AT A, and
we extract the first k eigenvectors to build the matrix Q and assign it to the initial matrix
DInit ∈ Rm×N as

DInit = [Q1,m, Q2,m, · · · , Qk,m], (4)

where m is the dimensionality of the latent space, and the column vector of DInit corre-
sponds to a certain semantic attribute direction.

The set of optimal semantic attribute directions D∗ is finally obtained by iterative
optimization by minimizing the expectation of the loss function as

D∗ = argminDEz,ωi

[
LJ(G(z + ηDInitωi))

]
, (5)

where G is the generator network; η represents the step size for moving along the semantic
attribute direction; ωi ∈ {0, 1}N as the column vector of a one-hot vector [33] index D. As
with OroJaRGAN, the Jacobi orthogonal regularized loss function as

LJ(G) =
K

∑
d=1
‖JT

d Jd
◦(1− I)‖ =

K

∑
d=1

m

∑
i=1

∑
j 6=i

∣∣∣∣∣
[

∂Gd
∂zi

]T ∂Gd
∂zj

∣∣∣∣∣
2

, (6)

where Gd represents the feature map output by the d-th layer in the GAN network;
z = [z1, z2, z3,···, zm] represents the original latent space; zi represents the i-th dimension;
Jd = [jd,1, · · · , jd,i, jd,m] represents the Jacobian matrix of Gd relative to z. The operator ◦
represents the Hadamard product; I represents the identity matrix; 1 represents a matrix
whose elements are all 1; jd,i =

∂Gd
∂zi

represents the Jacobian vector.
The objective of the LJ(G) loss function is to train this loss function so that each

dimension of the latent space z of the GAN network input controls each feature change of
the image. The changes are caused by two different latent dimensions zi and zj should be
independent. A prototype of this loss function is obtained by imposing this regularization
restriction on all dimensions of z, zi, i ∈ [1, m] and all layer outputs of the GAN network, Gd,
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d ∈ [1, k]. For a pre-trained GAN network, we are actually looking for a direction vector to
move along z, perturbing one or more dimensions to change a particular semantic property.

Figure 5 compares random initialization and the initialization by the eigenvectors
in this paper in terms of the convergence time of the loss function and the proportion of
effective vectors. In Figure 5a, the Jacobi orthogonal regularization search algorithm based
on the weight matrix eigendecomposition improves the search efficiency by reducing the
training time from 5.5 h to 2.5 h than the Jacobi orthogonal regularization search algorithm.
In Figure 5b, the eigenvector initialized Jacobi search algorithm has an average effective
direction of 18 and a maximum value of 20 among 40 initialization direction vectors, which
is double the proportion of effective directions of random initialization. The experiments
demonstrate the effectiveness of the global Jacobi disentangled method.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 17 
 

 

2

1 1 1
( ) ( )

Tm
T d d

J d d
d d i j i i

K

j

K G GG
z z= = = ≠

 ∂ ∂= ° − =  ∂ ∂ 
 J J 1 I , (6) 

where 𝐺  represents the feature map output by the d-th layer in the GAN network; 𝑧 =𝑧 , 𝑧 , 𝑧 ,⋯, 𝑧  represents the original latent space; 𝑧  represents the i-th dimension; 𝐽𝑑 = 𝑗 , ,⋯ , 𝑗 , , 𝑗 ,  represents the Jacobian matrix of 𝐺  relative to 𝑧. The operator ∘ 
represents the Hadamard product; 𝐼 represents the identity matrix; 1 represents a matrix 
whose elements are all 1; 𝑗 , =  represents the Jacobian vector. 

The objective of the ℒ 𝐺  loss function is to train this loss function so that each di-
mension of the latent space 𝑧 of the GAN network input controls each feature change of 
the image. The changes are caused by two different latent dimensions 𝑧  and 𝑧  should 
be independent. A prototype of this loss function is obtained by imposing this regulariza-
tion restriction on all dimensions of 𝑧, 𝑧 , i ∈ 1,𝑚  and all layer outputs of the GAN net-
work, 𝐺 , 𝑑 ∈ 1, 𝑘 . For a pre-trained GAN network, we are actually looking for a direc-
tion vector to move along 𝑧, perturbing one or more dimensions to change a particular 
semantic property. 

Figure 5 compares random initialization and the initialization by the eigenvectors in 
this paper in terms of the convergence time of the loss function and the proportion of 
effective vectors. In Figure 5a, the Jacobi orthogonal regularization search algorithm based 
on the weight matrix eigendecomposition improves the search efficiency by reducing the 
training time from 5.5 h to 2.5 h than the Jacobi orthogonal regularization search algo-
rithm. In Figure 5b, the eigenvector initialized Jacobi search algorithm has an average ef-
fective direction of 18 and a maximum value of 20 among 40 initialization direction vec-
tors, which is double the proportion of effective directions of random initialization. The 
experiments demonstrate the effectiveness of the global Jacobi disentangled method. 

  
(a) (b) 

Figure 5. (a) Comparison of training time for loss convergence. (b) Comparison of the proportion of 
effective semantic editing directions. 

2.2. Local Jacobian Disentangled Method 
2.2.1. Local Jacobi Orthogonal Regularization Search Algorithm 

The global Jacobi disentangled method has good performance on the global image 
generated by the StyleGAN2 network, but it is difficult to search the semantic attribute 
direction in local areas such as glasses, mouth, nose, hair, etc., and there is still serious 
entanglement with other semantic attributes when editing images. As shown in Figure 6, 

Figure 5. (a) Comparison of training time for loss convergence. (b) Comparison of the proportion of
effective semantic editing directions.

2.2. Local Jacobian Disentangled Method
2.2.1. Local Jacobi Orthogonal Regularization Search Algorithm

The global Jacobi disentangled method has good performance on the global image
generated by the StyleGAN2 network, but it is difficult to search the semantic attribute
direction in local areas such as glasses, mouth, nose, hair, etc., and there is still serious
entanglement with other semantic attributes when editing images. As shown in Figure 6,
when the reference image in the red box changes along the semantic direction of the face
glasses, the semantic attributes such as age also change. This is because the spatial distribu-
tion of local semantic features is concentrated and mainly distributed in high-resolution
images when there is a more complex entangled relationship between global and local
semantics, and the global Jacobi method is difficult to realize a complete decoupling [34].
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We observe that the semantic attributes of most images in the FFHQ dataset trained
by the StyleGAN2 network are relatively fixed in position on the feature space. Inspired by
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the local area mask idea of MaskGAN [35], Editing in Style [36], we proposed a local Jacobi
orthogonal regularization search method based on a priori rectangular mask. Compared
with the global Jacobi disentangled algorithm, the local Jacobi disentangled algorithm
limits the feature map area searched at each resolution layer; divides the feature map of
each resolution layer of the generator into two parts: local In-area and non-local Out-area;
finally completes the local semantic disentanglement for the local feature map according to
the Jacobi disentangled method in Equations (2)–(6). Figure 7 shows the mouth, eye, and
hair areas of a human face. We define the red box as the local area of relevant semantic
attributes and the non-local area outside the red box.
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To verify the effectiveness of the local Jacobi disentangled method proposed in this
paper, for the FFHQ dataset, the eye area is mainly selected for experiments, and the area
of Jacobi orthogonal regularization search is limited. The final obtained example of the
image editing direction of the semantic attributes of glasses is shown in Figure 8, where
the semantic attributes of the eyes are significantly changed within the limited search area.
However, after using the local area search method, the hair color and character ID outside
the local area changed significantly during the semantic editing of glasses. This is because
local Jacobi search obtains local semantics, while image editing moves along the direction
of global semantics and does not limit the semantic editing area.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 17 
 

 

when the reference image in the red box changes along the semantic direction of the face 
glasses, the semantic attributes such as age also change. This is because the spatial distri-
bution of local semantic features is concentrated and mainly distributed in high-resolution 
images when there is a more complex entangled relationship between global and local 
semantics, and the global Jacobi method is difficult to realize a complete decoupling [34]. 

 
Figure 6. Entanglement of glasses attributes and age attributes in face editing. 

We observe that the semantic attributes of most images in the FFHQ dataset trained 
by the StyleGAN2 network are relatively fixed in position on the feature space. Inspired 
by the local area mask idea of MaskGAN [35], Editing in Style [36], we proposed a local 
Jacobi orthogonal regularization search method based on a priori rectangular mask. Com-
pared with the global Jacobi disentangled algorithm, the local Jacobi disentangled algo-
rithm limits the feature map area searched at each resolution layer; divides the feature 
map of each resolution layer of the generator into two parts: local In-area and non-local 
Out-area; finally completes the local semantic disentanglement for the local feature map 
according to the Jacobi disentangled method in Equations (2)–(6). Figure 7 shows the 
mouth, eye, and hair areas of a human face. We define the red box as the local area of 
relevant semantic attributes and the non-local area outside the red box. 

 
Figure 7. Semantic attribute local and non-local area examples of face mouth, eye, and hair areas. 

To verify the effectiveness of the local Jacobi disentangled method proposed in this 
paper, for the FFHQ dataset, the eye area is mainly selected for experiments, and the area 
of Jacobi orthogonal regularization search is limited. The final obtained example of the 
image editing direction of the semantic attributes of glasses is shown in Figure 8, where 
the semantic attributes of the eyes are significantly changed within the limited search area. 
However, after using the local area search method, the hair color and character ID outside 
the local area changed significantly during the semantic editing of glasses. This is because 
local Jacobi search obtains local semantics, while image editing moves along the direction 
of global semantics and does not limit the semantic editing area. 

 

Figure 8. The result of editing the semantic attribute of glasses without local contrast regularization.

2.2.2. Local Contrast Regularized Loss Function

To solve the problem of semantic attribute entanglement of local Jacobi image editing,
we refer to LELSD [37], IndomainGAN [38], and optimization strategies [39] to propose a
local contrast regularized loss function to relax the semantic tight entangled relationship
local and non-local area. Local contrast regularization means that the semantic direction
should satisfy both constraints of maximum variation of image features inside the area and
minimum variation of image features outside the area, as

Di f fIn−area = maxDG(z + ηDωi)− G(z), (7)

Di f fOut−area = minDG(z + ηDωi)− G(z), (8)

where G(z) represents the original generated image, and G(z + ηDωi) represents the image
after editing along the semantic attribute direction.
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We fused the two constraints to propose a local contrast regularized loss function as

LIn−Out = T(GOut−area (z + ηDωi)− G(z))− K(GIn−area (z + ηDωi)− G(z)), (9)

where K and T are the balance parameters during training, which are used to stabilize the
training process. The final loss function is as

Loss = LJ + LIn−Out. (10)

The optimal semantic attribute vector matrix D∗ is

D∗ = argminD Ez,ωi

[
LJ(GIn−area (z + ηDInitωi)) + LIn−Out(G(z + ηDInitωi))

]
. (11)

The results of semantic editing after re-training by applying the new optimization
function are shown in Figure 9. The semantics inside the eye area is obviously changed,
and the outside of the eye area is almost unchanged, which is a significant improvement
compared with Figure 8 and achieves a better local semantic disentanglement.
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3. Results
3.1. Experimental Details

• Datasets. In this paper, we use the mainstream face dataset FFHQ and the cat dataset
LSUNCat, both of which are the primary evaluation dataset for most generated image
attribute edits methods. Among them, the FFHQ dataset has a large number of images
and a pure background of face images. Due to the performance limitation of the
computing platform, the FFHQ face dataset is down-sampled from 1024 × 1024 reso-
lution to 512 × 512 resolution with 70 K images. the LSUNCat dataset has 256 × 256
resolution with the same 70 K images.

• Parameter setting. The total number of iterations for Jacobi orthogonal regularization
training is 5 × 104 for the FFHQ dataset and 4 × 104 for the LSUNCat dataset. The
number of column vectors of the initialization matrix D in the direction of semantic
attributes is 40, and the local and non-local regularization training balance parameters
K, T are taken as 0.6 and 0.4, respectively.

• Experimental environment. The code is executed on Ubuntu 18.04 with Intel(R)
Core(TM) i7-7820X CPU @ 3.60GHz and GeForce RTX 2080Ti×2. The deep learning
framework is Pytorch.

• Evaluation Metrics. The perceptual path distance (PPL) [40] is used as a metric to
measure the performance of semantic attribute disentanglement. This metric describes
how drastically the image changes when the intermediate latent space w is interpolated
along a certain direction, and its small value represents a relatively smooth latent
space and low entanglement. Referring to STIA-WO [22] the PPL value is calculated
for the intermediate latent space w with a certain range of a sampling point along
its orthogonal semantic attribute direction, instead of randomly sampling two latent
spaces w for calculating the PPL value as

PPL = E
[

1
ε2 d(G(w), G(w + ε · n))

]
, (12)
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• where ε = 10−4 represents the range moved during editing, d(·, ·) is the perceptual
distance between the two generated images [41], and G represents the generator. The
two sampling points corresponding to the images are the intermediate latent space w
and its points along the unit attribute direction

→
n shift ε.

3.2. Experimental Results Comparison

We utilize PPL to evaluate the performance of the global Jacobi disentangled method
compared with the three mainstream unsupervised generated image editing methods,
SefaGAN, PCAGAN, and OroJaRGAN, on the FFHQ dataset. The comparison results
shown in Table 2 suggest that the performance of our method and the OroJaRGAN method
is close and slightly better than the other two methods, but the training efficiency and
search efficiency of our method are significantly improved compared with OroJaRGAN.
Figures 10 and 11 show the comparison of the four editing methods for two semantic
attributes, gender, and age, on the FFHQ face dataset. In two examples, the PCAGAN
method has entanglement with age attribute on gender attribute editing and more serious
entanglement with hair attribute on age attribute editing; SefaGAN has an insignificant
effect on gender attribute editing and more serious entanglement with pose occurs on age
attribute editing. In contrast, the OroJaRGAN method and the proposed method obtained
more reasonable results.

Table 2. PPL Scores of FFHQ dataset semantic attribute directions (↓).

Model Pose Age Gender Hairstyle Face Color

SefaGAN 0.84 1.01 0.98 0.94 0.90
PCAGAN 0.76 0.96 0.92 0.87 0.89

OroJaRGAN 0.70 0.85 0.84 0.80 0.84
Our Method 0.69 0.87 0.82 0.76 0.77
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We evaluated four methods on the LSUNCat dataset in the same way, and the results
are shown in Table 3. The disentangled performance of this method is similar to Oro-
JaRGAN and better than PCAGAN and SefaGAN. We compared the results of semantic
attribute editing for rotation and cat coat color, and the results are shown in Figures 12
and 13. In both examples, PCAGAN and SefaGAN are more severely entangled with the
cat poses in rotation semantic attributes, and more severely entangled with the global color
in cat coat color, compared with these two methods in this paper. The editing effect of our
method is significantly improved.

Table 3. PPL scores of LSUNCat dataset semantic attribute directions (↓).

Model Rotate Scale Coat Color

SefaGAN 0.82 0.73 0.71
PCAGAN 0.76 0.68 0.65

OroJaRGAN 0.57 0.49 0.41
Our Method 0.56 0.47 0.40
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Our method is similar to OroJaRGAN in terms of PPL metrics because the search
method is the same, only the semantic direction is initialized in a different way. Referring
to papers [42,43], the equivalent model of SefaGAN considered only that the role of the
mapping function in the network is limited to the style layer, ignoring the role of other
layers. the effect of PCAGAN depends heavily on the number of sampling points. In
contrast, our method resembles an end-to-end form when computing the Jacobi matrix
without the problems of the two methods above. So, our method has an improvement in
the PPL metric.

To verify the effectiveness of the local Jacobian disentangled method, we compared
the performance of the local contrast regularization method with the non-regularization
method in local semantic attribute disentanglement, and the PPL score is still used as the
evaluation metric. Four representative local semantic attributes, glasses, mouth, hairstyle,
and hair color, were selected for the FFHQ dataset, and three local semantic attributes, i.e.,
head posture, head color, and abdominal color, were selected for the LSUNCat dataset. The
results are shown in Tables 4 and 5.

Table 4. PPL scores of FFHQ dataset local Jacobi disentangled method attribute directions (↓).

Model Glasses Mouth Hairstyle Hair Color Average

Non-regularization 8.92 12.56 3.12 4.89 7.37
Local contrast
regularization 0.83 0.72 0.76 0.69 0.75

Table 5. PPL scores of LSUNCat dataset local Jacobi disentangled method attribute directions (↓).

Model Head Pose Head Color Abdominal
Color Average

Non-regularization 6.46 8.56 9.12 8.05
Local contrast regularization 0.43 0.52 0.46 0.52

As can be seen from Tables 4 and 5, in both datasets, the semantic attributes obtained
by the non-regularization disentangled method are more severely entangled, because the
other semantics change when the semantics is edited, and the controllability is poor. After
imposing the contrast regularization constraint, the association of the four semantics in the
FFHQ dataset was significantly reduced, and the average PPL decreased by 90%, among
which the mouth semantics and the glasses semantics achieved 94% and 91% association
reduction, respectively. In the LSUNCat dataset, the average PPL decreased by 93%, among
which the abdominal color semantics achieved a 95% association decrease, indicating
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that the local contrast regularization achieved effective disentanglement of local semantic
attributes and found accurate semantic directions, which could not be achieved by the
other methods.

Figures 14 and 15 show the image editing results with local contrast regularization in
the two datasets. It can be seen that the semantics of glasses and mouth shape are basically
decoupled in the face dataset, and the person ID maintains a good consistency. However,
there is still a certain degree of coupling when editing the semantics of hair and gender,
because gender is a global semantics and hair is a local semantics, and the entanglement
between global and local semantics is complicated. The local contrast regularization can
relax the relatively independent local semantics, but its effect on decoupling global and local
semantics is not obvious. Additionally, the accurate direction of the semantic properties
of hair color is more meaningful. Similarly, the accurate head poses semantic attribute
direction can be found in the LSUNCat dataset, and the head color and abdominal color
are essentially disentangled from the color of the non-local area.
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4. Conclusions

In this paper, we proposed a generated image editing method based on global-local
Jacobi disentanglement. Our global Jacobi disentangled method can improve the time
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efficiency of searching semantic directions with the proportion of valid directions, which
makes the method deployable on platforms with less computational power. The local
Jacobi disentangled method can obtain more and more accurate semantic directions locally,
improving the accuracy and reliability of image editing. However, the method in this
paper still has limitations to improve the training efficiency by improving the initialization
method, it is required to research an algorithm to speed up the computation of the Jacobi
matrix, and our method should be applied to other GAN models in addition to the Style-
GAN2 model. The next step will be to carry out more extensive research to enhance the
applicability of our approach.
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