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Abstract: Efficient navigation in a socially compliant manner is an important and challenging task for
robots working in dynamic dense crowd environments. With the development of artificial intelligence,
deep reinforcement learning techniques have been widely used in the robot navigation. Previous
model-free reinforcement learning methods only considered the interactions between robot and
humans, not the interactions between humans and humans. To improve this, we propose a decentral-
ized structured RNN network with coarse-grained local maps (LM-SRNN). It is capable of modeling
not only Robot–Human interactions through spatio-temporal graphs, but also Human–Human
interactions through coarse-grained local maps. Our model captures current crowd interactions
and also records past interactions, which enables robots to plan safer paths. Experimental results
show that our model is able to navigate efficiently in dense crowd environments, outperforming
state-of-the-art methods.

Keywords: robot navigation; deep reinforcement learning; RNN; spatio-temporal graphs; coarse-grained
local maps

1. Introduction

With the development of artificial intelligence, mobile robots can be seen everywhere
in daily life, and how to efficiently navigate in the unstructured environment of human
life will become more and more important. Traditional methods generally only consider
static obstacles, which often lead to unsafe and unnatural behaviors in dynamic crowd
environments [1,2]. To solve this problem, we should make robots obey the cooperation
rules of humans [3]. For example, the robot should move smoothly and not cut through
the crowd.

Navigation with social etiquette is a challenging task. Since there is generally no
explicit communication between the robot and other agents, it is necessary for the robot
to understand and predict the behavior of other agents. However, there are both moving
agents and temporarily static agents in a crowded environment. There are various explicit
and implicit interactions among agents, which are usually difficult to model [4].

There are two main types of methods to solve this problem in early research. The first
type is the model-based method, which selects the best action through one-step interaction
rules, such as optimal reciprocal collision avoidance (ORCA) [5] and social force model
(SFM) [6]. The second type is based on prediction methods, by predicting the future
trajectories of other agents, and then planning a best path for the robot, such as [7,8].
However, in dynamic dense scenes, these methods will cause the problem of robot freezing.
Usually, feasible paths still exist in this scenario [9,10], but the difficulty of planning will be
greatly increased.

In recent years, with the rapid development of machine learning, deep reinforce-
ment learning methods have been widely used in crowd navigation [11–16]. Since the
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deep reinforcement learning strategy can implicitly encode the interaction and cooper-
ation among agents, the navigation performance has been greatly improved. Although
recent studies have made significant progress, these strategies still have two shortcomings:
(1) Initialized by ORCA through imitation learning, the strategy inherits the drawbacks
of ORCA [13,14]; (2) Only the interactions between robot and humans is considered, and
the interactions between humans and humans is not considered [17]; (3) Only low-density
dynamic environments are considered, and the performance will drop in high-density
dynamic environments [13,14,17]. Due to these deficiencies, these methods become less
effective in more challenging settings.

In this work, we propose to build more comprehensive interactions rather than just
first-order Robot–Human interactions. We model Robot–Human interactions through
spatio-temporal graphs, and Human–Human interactions through local coarse-grained
maps. These interactions are processed through an attention mechanism to learn the relative
importance of surrounding humans, as well as the relative importance of Human–Human
interactions. Our method is trained via model-free reinforcement learning, does not require
imitation learning with an expert policy, and thus does not converge to a locally optimal
policy. We conduct extensive experiments in dynamic dense crowd environments, and the
experimental results show that our model performs better than previous methods in terms
of navigation success rate and time efficiency.

2. Related Works
2.1. Model-Based Methods

Early works have accomplished navigation in dynamic environments by designing
specific interaction models. One is a reaction-based method, such as RVO [18] and ORCA [5].
This type of method is based on the speed obstacle area method [19], and can obtain the
joint collision avoidance speed under the assumption of reciprocity. The other is the social
force model [6], which simulates the interactions among agents through goal driving
force, repulsive force, and attractive force. These model-based methods rely heavily on
hand-crafted functions, which may require different parameters in different scenarios, and
finding a suitable parameter for dynamic-dense scenes is difficult [20].

2.2. Learning-Based Methods

With the rapid development of machine learning, learning-based methods have been
extensively studied, which combine supervised learning and reinforcement learning, and
have shown promising results in crowd navigation [11–14]. These works use simulated
environments to collect robot navigation experiences, and then use these experiences to
update value policies. These strategies are given the state transition probabilities of all
agents, then calculate the value of all possible next states, and finally choose the action
that maximizes the value. When training the value network, imitation learning is first
performed, that is, the trajectory generated by ORCA is used to initialize the network
parameters. The network parameters are then tuned using reinforcement learning. These
methods must know the state transition probabilities of all humans, but state transitions of
humans are usually difficult to model. Furthermore, since such methods employ imitation
learning for initialization, they often inherit the shortcomings of the demonstration strategy.

2.3. Spatio-Temporal Graph Methods

In recent years, some works have represented the problem into components and their
spatio-temporal interactions through spatio-temporal graphs, which have achieved good
results in fields such as trajectory prediction and human tracking [21–23]. Jain et al. [24]
converted arbitrary spatio-temporal graphs into RNN networks, proposing a method
called structured RNN. Liu et al. [17] proposed a decentralized RNN network, which
simulates the spatio-temporal interactions between the robot and other agents through
the nodes and edges of the spatio-temporal graph, and achieved good results in crowd
navigation. However, this method only focuses on the interactions between the robot and
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other agents, ignoring the interactions among other agents. Based on these models, we
design a new neural network that considers not only Robot–Human interactions, but also
Human–Human interactions.

3. Approach

In this section, we first introduce how to represent the problem of crowd navigation
with deep reinforcement learning. Then, the spatio-temporal graph is used to model the
Robot–Human interaction, and the local coarse-grained map is used to model the Human–
Human interaction. Finally, our LM-SRNN neural network structure is derived according
to the previous interactive method.

3.1. Problem Formulation

In this work, we view crowd navigation as a partial Markov decision process. st and
at represent the state and action of the agent (robot or human) at time t, respectively. The
state representation of the agent is similar to [13,25], each agent has an observable state
that can be observed by other agents, including position (p x, py), velocity (v x, vy), and
radius r; each agent also has a hidden state that can only be observed by itself, including
the target position (gx, gy), maximum speed vmax, and heading angle θ. Our task is to deal
with the problem of a robot navigating in a scene with n people. The input state of the robot
is defined as St =

{
st

0, st
1, . . . , st

n
}

, st
0 is the entire state of the robot, st

i (i = 1, 2, . . . , n) is
the observable human state. The action of the agent consists of the speed of the x-axis and
the speed of the y-axis, at = (vx, vy).

In each episode, the robot starts from the initial state S0. At time t, the robot chooses
an action at according to the policy π(at|St) , and then moves to the next state St+1. In
return, the robot gets a reward rt. At the same time, humans also choose their own actions
according to their own strategies and move to the next state. The whole process may last the
maximum length of an episode, or it may end early due to a collision or reaching the goal.

We follow the reward function formulation in [17], rewarding the robot for task
achievement while penalizing the robot for collisions with humans or getting too close to
humans. Additionally, in order to guide the robot, the behavior of approaching the goal
is rewarded: 

−20, if dt
min < 0

2.5(dt
min − 0.25), if 0 < dt

min < 0.25
10, if dt

goal < rrobot

2(d t−1
goal−dt

goal), otherwise

, (1)

where dt
min is the minimum distance between the robot and the human at time t, and dt

goal
is the Euclidean distance between the robot position and the target position at time t. The
total return at time t is defined as:

Rt =
∞

∑
k=0

γ(k)rt+k, (2)

where γ ∈ (0, 1) is the discount factor. The value function is defined as V(St) = E(Rt|St = S) .

3.2. Modeling of Robot–Human Interactions

We model the spatio-temporal interactions between robot and humans through a decen-
tralized spatio-temporal graph. Our spatio-temporal graph is expressed as G = (V , ES, ET),
where V represents the node of the agent’s own state information, ES represents the spatial
relationship edges of different agents at the same time step, and ET represents the temporal
relationship edges of the same agent at adjacent times step. Figure 1a shows an example
spatio-temporal graph of a robot interacting with n humans in a complex scene. Since each
individual’s behavior is only influenced by nearby humans, rather than all humans, we
prune the spatiotemporal edges between humans and model them in a more concise and
effective way in Section 3.3. Figure 1b shows the same spatio-temporal graph unfolded in
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two steps. In the unfolded spatio-temporal graph, robot nodes at a given time t are con-
nected with other human nodes to form undirected spatial edges; robot nodes at adjacent
time steps are connected to form undirected temporal edges.
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Figure 1. Spatio-temporal graph of robot interaction with humans during navigation. (a) A spatio-
temporal graph capturing Robot–Human interactions. We use w to denote the robot node, and ui to
denote the i-th human node. (b) The spatio-temporal graph unfolded in two steps. At time step t, the
spatial interaction feature between the robot and the i-th human is xt

wui
. The time feature of the robot

is xt
ww. The robot node feature is xt

w. (c) The factor graph corresponding to the spatio-temporal graph.

In the interactions between robot and humans, node features can represent the state
information of robot and humans, such as position, velocity, radius, target position, etc.
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Edge features represent their relative direction and distance. The state of a node is affected
by its own interactions with other nodes, forming a complex system. The interactions
are usually parameterized by factor graphs, which can decompose complex problems in
spatio-temporal graphs into simpler ones. As shown in Figure 1c, the one-way interactive
robot navigation strategy is expressed as robot node factors, spatial edge factors, and
temporal edge factors through a factor graph. The black rectangles in the figure represent
factors with parameters that need to be learned.

More specifically, the xt
w is the robot state [px, py, vx, vy, r, gx, gy, vmax, θ], the feature

xt
ww is the robot speed (v x, vy), and the feature xt

wui
is represented by the relative posi-

tional relationship vector between the robot and the human (pi
x − px, pi

y − py). Since all
Robot–Human spatial edges are semantically similar, we let them share a factor, thereby
reducing parameters.

3.3. Modeling of Human–Human Interactions

Everyone will have an impact on the robot’s decision-making, but human behavior will
be affected by other people. Therefore, it is extremely important to model the interaction
among humans. If all the interactions among human are modeled in detail, the time
complexity and space complexity of the algorithm will be very high, which is difficult to
run in real-time in large-scale and complex scenes [26]. Inspired by study [14], we model
interactions among humans through a local coarse-grained map.

As shown in Figure 2, for each human, we only consider other humans in the neigh-
borhood of size N, and build an N * N * 3 local map Li centered on each human i to encode
the presence and speed of neighbors:

Li(a, b) = ∑
j∈Ni

δAB[xj − xi, yj − yi][vxj, vyj, 1]

=

 ∑
j∈Ni

[vxj, vyj, 1], i f − A < xj − xi < A and− B < yj − yi < B,

−∞, otherwise

(3)

where [vxj, vyj, 1] is the local state vector of human j, δAB[xj − xi, yj − yi] is an indicator
function, only when the relative position (∆x, ∆y) is in the cell (A, B), the indicator function
is equal to 1, and Ni is a group of adjacent humans around the i-th human.
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Figure 2. Local map representation of human i being influenced by other humans. where ui represents
a human, and (xi, yi) represents the position of human i.

3.4. Neural Network

According to study [24], the RNN network structure of Robot–Human interactions
can be derived through the factor graph of the spatio-temporal graph. We process the
interactions among human through an RNN network, so as to remember the previous
interaction information. Our overall neural network structure is shown in Figure 3, RN
represents the robot node, RS represents the spatial edge between the robot and the human,
RT represents the temporal edge of the robot trajectory change, and RL is the node of
Human–Human interactions around the robot.
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Before the spatial features are provided to the spatial interaction RNN RS, they will first
be processed nonlinearly through a fully connected layer (FC3) to obtain the Robot–Human
spatial interaction features at the current moment:

ESt = ψS(Xt
wu; WS), (4)

where ψS(.) is a fully connected layer with ReLU activation and WS is the network weight.
Xt

wu is the feature of spatial interaction between the robot and all other humans at time t,
Xt

wu= [xt
wu1

, xt
wu2

, . . . , xt
wun

]T , where n is the total number of humans. Then the embed-
ding vector ESt is provided to the RNN unit to obtain the spatial interaction information
with memory:

Ht
wu = RNNS(Ht−1

wu , ESt), (5)

where Ht
wu= [h t

wu1
, ht

wu2
, . . . , ht

wun

]
is the hidden state of the RNN at time t for the

spatial interaction between the robot and all humans.
Similar to RS, the temporal features will also be processed nonlinearly (FC2) before

being provided to the temporal interaction RNN RT , and then processed by the RNN unit
to obtain the robot’s own trajectory variation:

ht
ww = RNNT(ht−1

ww , ETt), ETt = ψT(xt
ww; WT), (6)

where ht
ww is the hidden state of temporal interaction RNN at time t.

Compared with RS and RT , the Human–Human interaction RNN RL contains infor-
mation of all Human–Human interactions, which is very informative. First, we input the
local coarse-grained map in Section 3.3 into a fully-connected layer (FC1), and then provide
the results to RNN units to obtain Human–Human interaction information with memory:

Ht
L = RNNL(Ht−1

L , LMt), LMt = ψL(Lt; WL), (7)

where Lt = [Lt
1, Lt

2, . . . , Lt
n]

T is the local coarse-grained map of all humans at time t, LMt

is the interaction data after nonlinear processing, and Ht
L is the hidden state of the RNN of

Human–Human interaction features at time t.
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To learn the relative importance of each human, we feed the output of the spatial
interaction RNN and the temporal interaction RNN into an attention module. This module
assigns attention weights to each spatial edge:

αt
S = so f tmax(

n√
d

Ht
wuW1(ht

wwW2)
T
), (8)

where d is the hyperparameter of attention size and W1 and W2 are the weight matrices of
the linear transformation. The attention mechanism here is similar to the one in [27]. This
attention module outputs a weighted sum of spatial edges:

HSt
attention = (Ht

wu)
T

αt
S, (9)

To learn the relative importance of interactions among surrounding humans, we feed
the output of the Human–Human interaction RNN and the temporal interaction RNN
into another attention module. This module assigns attentional weights to each set of
interaction features:

HLt
attention = (Ht

L)
T

αt
L, (10)

The role of the robot node RNN RN is to process all the previous information and de-
termine the action and value of the robot at time t. First, HSt

attention and ht
ww are embedded

and connected (FC6), and the same processing is performed on HLt
attention and ht

ww(FC5):

TSt = ΦS(HSt
attention, ht

ww), TLt = ΦL(HLt
attention, ht

ww), (11)

where ΦS(.) and ΦL(.) are the embedding function with ReLU activation. The result of the
embedding is then connected to the robot node state, and the connection result is input
to RN :

ht
w = RNNN(ht−1

w , [Nt, TSt, TLt]), Nt = ψN(xt
w; WN), (12)

where ψN(.) is a fully connected layer with ReLU activation (FC4), and Nt is the result of a
nonlinear transformation of the robot state.

Finally, ht
w is fed into a fully connected layer (FC7) to obtain the value V(St) and the

policy π(at|St) . We train the entire model using the proximal policy optimization (PPO)
algorithm proposed in [28], and the policy and value functions are continuously updated
during the training process.

4. Experiments
4.1. Implementation Details

The local map of Human–Human interactions is a 4 × 4 grid centered on each human,
and each cell has a side length of 1 m. The output dimensions of ψL, ψS, and ψT are (5, 64),
(1, 64), and (5, 64), respectively. The dimensions of the hidden units of RL, RS, and RT are
(5, 256), (1, 256), and (5, 256). The output dimensions of ΦS, ΦL, and ψN are all (1, 64). The
dimension of the final RN hidden unit is (1, 192). Our strategy is implemented in PyTorch.
The learning rate of reinforcement learning is 0.9, and the discount factor γ is set to 0.99.
We train our policy on an NVIDIA GeForce RTX3080 for approximately 27,700 episodes.

We assume that after the robot takes an action at time t, it can always reach the target
position at the next time t + 1, so the robot’s position update is set to:

px[t + 1] = px[t] + vx[t]∆t
py[t + 1] = py[t] + vy[t]∆t

, (13)

4.2. Simulation Setup

Our simulation environment is similar to [14,17], where the robot navigates a scene
with a radius of 6 m. Since there are too few dynamic humans in [14] and the static human
group in [17] is indistinguishable from static obstacles, their experimental results cannot



Sensors 2023, 23, 1810 8 of 13

reflect the performance of the algorithm in complex environments. In order to verify the
performance of the algorithm in more complex environments, we increase the difficulty
of the experiment. We added more dynamic humans in the environments. The simulated
humans in the environment are controlled by ORCA, and the speed and radius of humans
are random. The initial positions of all humans are randomly distributed on the circle,
and their target position is on the other side of the circle. However, humans occasionally
change their goals. In addition, we also added random perturbations to the start position
and target position. Finally, when humans reach their goal, they do not remain stationary,
but immediately proceed to a new target. These processes are to simulate the environment
closer to the real environment.

We chose ORCA [5], SARL [14] and DSRNN [17] as the baseline methods, and our
method is called LM-SRNN. When training was performed for SARL and DSRNN, we only
modified the simulation environment, and other parameters are the same as in the original
paper. In order to eliminate the performance gain brought by other factors, we remove
the Human–Human interaction module in our model and implement an ablation model
called ST-RNN.

To comprehensively evaluate our model, we set up three sets of simulation experi-
ments: the first set is an experiment in which the robot is invisible, that is, the simulated
human only responds to other humans and does not respond to the robot, and there are
10 dynamic humans in the environment. The second set is an experiment where the robot
is visible, in which the robot and humans interact with each other, closer to reality. As in
the first set of experiments, there are 10 dynamic humans in the environment. The third set
is a high-density environment. There are 20 humans in the environment, including both
dynamic humans and static humans. The ratio of dynamic humans to static humans is
randomly determined, and all humans will not respond to the robot. In all three sets of
experiments, each method is tested using 500 random examples.

4.3. Quantitative Comparison
4.3.1. Robot Invisibility

Navigation in an invisible environment is difficult because the robot needs to predict
human behavioral trajectories in order to plan a safe path. In order to comprehensively
evaluate the performance of the model, the test indicators include not only navigation
success rate, navigation collision rate, and navigation time, but also discomfort frequency
and minimum danger distance. Discomfort frequency refers to the percentage of the
duration when the robot is too close to other humans to the total navigation time, which
can reflect the frequency of the robot violating the comfort zone of other humans. The
minimum distance refers to the minimum distance between the outer edge of the robot
and the outer edge of other humans, which can reflect the degree of danger of the planned
behavior. These two metrics can further evaluate the performance of navigation strategies
in crowd navigation. Table 1 reports the experimental results in the invisible environment.

Table 1. Experimental results in an environment where the robot is invisible. “Success” is the success
rate of robot navigation. “Collision” is the collision rate for robot navigation. “Time” is the time the
robot navigates. “Discomfort” is the discomfort frequency (the percentage of the duration when the
robot is too close to other humans to the total navigation time). “Min Distance” is the minimum
danger distance between the robot and other humans. Bold indicates the best performing model on
that metric.

Method Success Collision Time Discomfort Min Distance

ORCA [5] 0.34 0.66 15.29 0.25 0.08
SARL [14] 0.89 0.11 16.65 0.05 0.14

DSRNN [17] 0.96 0.04 18.75 0.06 0.19
ST-RNN 0.95 0.05 18.95 0.06 0.18

LM-SRNN (Ours) 0.99 0.01 16.43 0.02 0.20
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From the experimental results, it can be found that the model-based ORCA fails badly.
The reason is that in an invisible environment, humans will not avoid robots, which does
not meet ORCA’s reciprocity assumption. In addition, ORCAs often violate the comfort
zone of other humans, and the level of danger in planning behavior is high. The reason is
that ORCA only considers the current state and makes short-sighted decisions. In contrast,
our LM-SRNN is trained by reinforcement learning method, and the previous series of
trajectories are memorized by RNN, so the decisions made are far-sighted.

Compared with learning-based SARL, our method has a significantly higher success
rate and plans a less dangerous behavior. The reason is that although SARL considers the
interaction among agents, it is initialized through ORCA, which inherits the shortcomings
of ORCA, and its value network is not enough to provide a good state value estimate.
In contrast, our LM-SRNN is trained from scratch and does not converge to a locally
optimal policy. Furthermore, our model derives Robot–Human interactions through spatio-
temporal graphs and models Human–Human interactions through local coarse-grained
maps, which is more efficient than simple joint modeling in SARL.

Compared with DSRNN, our method has a higher success rate, significantly shorter
navigation time, and significantly lower discomfort frequency. The reason is that our
method considers the impact of Human–Human interactions on robot navigation, thereby
planning a more reasonable path. For the difference in path planning, we will conduct a
qualitative analysis in Section 4.4.

4.3.2. Robot Visible

To further validate the performance of our model, we compared it with the baseline
approach in the robot visible setting. This is because the robot not only needs to understand
human behavior, but also to plan a reasonable trajectory when interacting with humans.
Table 2 reports the experimental results in the visible environment.

Table 2. Experimental results in the visible environment of the robot. Bold indicates the best
performing model on that metric.

Method Success Collision Time Discomfort Min Distance

ORCA [5] 0.87 0.13 14.32 0.26 0.07
SARL [14] 0.98 0.02 14.31 0.02 0.15

DSRNN [17] 0.99 0.01 12.01 0.01 0.21
ST-RNN (Ours) 0.99 0.01 12.87 0.02 0.19

LM-SRNN (Ours) 1.00 0.00 11.97 0.00 0.23

Unlike the invisible environment, the navigation success rate is greatly improved
when ORCA is employed for navigation in the visible environment, which is due to the
fact that this environment conforms to the reciprocity assumption of ORCA. However,
since ORCA plans trajectories that are short-sighted and conservative, it still performs
significantly worse than the reinforcement learning-based approach.

The performance of the reinforcement learning-based methods has been improved in
the visible environment. The reason is that humans will also avoid the robot in the visible
environment, and the difficulty of navigation is reduced. As with the invisible environment,
our LM-SRNN still outperforms the other baseline methods.

4.3.3. High-Density Environment

To further verify the performance of our model in high-density crowd environments,
we increase the number of humans from 10 to 20. Since there is a timeout in navigation
in such a complex environment, we introduce the indicator “Timeout”, which indicates
the timeout rate of robot navigation. Table 3 shows the experimental results in a high-
density environment.
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Table 3. Experimental results in a high-density environment. “Timeout” is the timeout rate for robot
navigation. Bold indicates the best performing model on that metric.

Method Success Collision Timeout Time Min Distance

ORCA [5] 0.45 0.01 0.54 19.66 0.05
SARL [14] 0.35 0.05 0.60 29.24 0.12

DSRNN [17] 0.94 0.02 0.04 17.71 0.18
ST-RNN (Ours) 0.93 0.03 0.04 18.01 0.19

LM-SRNN (Ours) 0.98 0.01 0.01 16.65 0.20

As shown in Table 3, ORCA and SARL have higher timeout rates and longer navigation
times in high-density environments. The reason is that the strategies adopted by ORCA
and SARL initialized through ORCA are too conservative, and they will often fall into
the state of robot freezing, resulting in long navigation time. Same as the robot-invisible
environment and robot-visible environment, our LM-SRNN still outperforms DSRNN.

4.3.4. Model Effectiveness Analysis

Furthermore, we demonstrate the effectiveness of our LM-SRNN by comparing with
the ablation model ST-RNN. As shown in Tables 1–3, compared with ST-RNN, our model
shows higher success rate and shorter navigation time in all environments. This is because
our LM-SRNN not only considers the influence of each person’s behavior on the robot’s
decision-making, but also further considers the influence of each person’s behavior by
other people, so as to plan a more reasonable path.

4.4. Qualitative Comparison

To further study the performance of the model, we conduct a qualitative analysis. We
compare the navigation paths of different methods in the invisible environment, as shown
in Figure 4. For the convenience of observation, we visualize the radius of all agents as
0.3 m. ORCA will choose the shortest path, directly into the central congested area, and
eventually collide with humans. Although SARL can avoid other humans in time and
successfully reach the target, it inherits the shortcomings of ORCA and will also enter the
central congested area. This can lead to planning dangerous behaviors that easily violate
human comfort zones. Unlike SARL, DSRNN is able to avoid centrally congested areas, but
when it encounters humans, it swerves violently to pass them. Due to the inappropriate
timing of avoidance and the unreasonable path chosen, the final navigation time of DSRNN
is very long. In contrast, our LM-SRNN is not only able to avoid centrally congested
regions, but also plans a smooth intelligent path.

To take a closer look at our strategy, we analyzed how the robot was making a decision
at a certain moment. As shown in Figure 5, due to the influence of human #2 and human
#6, human #7 will suddenly move to the upper right. In this case, our LM-SRNN does not
continue to move towards the target (the black dotted line in the figure). Instead, it moves
upwards, so it does not violate the comfort zone of the human #7 and complies with social
etiquette navigation norms.
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5. Conclusions

In this work, we propose a novel LM-SRNN neural network that combines spatio-
temporal maps and crowd local interaction maps in robot navigation. We build Robot–
Human interactions through spatio-temporal graphs, and Human–Human interactions
through local coarse-grained maps. Experimental results show that our method performs
better in terms of navigation success rate and time efficiency in denser environments than
the baseline method.

Author Contributions: Conceptualization, Y.Z. and Z.F.; methodology, Y.Z.; software, Y.Z.; validation,
Y.Z. and Z.F.; formal analysis, Y.Z.; investigation, Y.Z.; resources, Z.F.; data curation, Y.Z.; writing—
original draft preparation, Y.Z.; writing—review and editing, Z.F.; visualization, Y.Z.; supervision,
Z.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the China West Normal University Talent Fund (no. 17YC046).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Borenstein, J.; Koren, Y. Real-Time Obstacle Avoidance for Fast Mobile Robots in Cluttered Environments. In Proceedings of

the IEEE International Conference on Robotics and Automation, Cincinnati, OH, USA, 13–18 May 1990; IEEE Computer Society
Press: Washington, DC, USA, 1990; pp. 572–577.

2. Fox, D.; Burgard, W.; Thrun, S. The Dynamic Window Approach to Collision Avoidance. IEEE Robot. Autom. Mag. 1997, 4, 23–33.
[CrossRef]

3. Kruse, T.; Pandey, A.K.; Alami, R.; Kirsch, A. Human-Aware Robot Navigation: A Survey. Robot. Auton. Syst. 2013, 61, 1726–1743.
[CrossRef]

4. Gupta, A.; Johnson, J.; Fei-Fei, L.; Savarese, S.; Alahi, A. Social GAN: Socially Acceptable Trajectories with Generative Adversarial
Networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Salt Lake City,
UT, USA, 18–22 June 2018; pp. 2255–2264.

5. van den Berg, J.; Guy, S.J.; Lin, M.; Manocha, D. Reciprocal N-Body Collision Avoidance. In Robotics Research; Pradalier, C.,
Siegwart, R., Hirzinger, G., Eds.; Springer Tracts in Advanced Robotics; Springer: Berlin, Heidelberg, 2011; Volume 70, pp. 3–19.
ISBN 978-3-642-19456-6.

6. Helbing, D.; Molnár, P. Social Force Model for Pedestrian Dynamics. Phys. Rev. E 1995, 51, 4282–4286. [CrossRef] [PubMed]
7. Kuderer, M.; Kretzschmar, H.; Sprunk, C.; Burgard, W. Feature-Based Prediction of Trajectories for Socially Compliant Navigation.

In Robotics: Science and Systems VIII; MIT Press: Cambridge, MA, USA, 2013; pp. 193–200.
8. Kretzschmar, H.; Spies, M.; Sprunk, C.; Burgard, W. Socially Compliant Mobile Robot Navigation via Inverse Reinforcement

Learning. Int. J. Robot. Res. 2016, 35, 1289–1307. [CrossRef]
9. Trautman, P.; Krause, A. Unfreezing the Robot: Navigation in Dense, Interacting Crowds. In Proceedings of the 2010 IEEE/RSJ

International Conference on Intelligent Robots and Systems, IEEE, Taipei, Taiwan, 18–22 October 2010; pp. 797–803.
10. Fan, T.; Cheng, X.; Pan, J.; Long, P.; Liu, W.; Yang, R.; Manocha, D. Getting Robots Unfrozen and Unlost in Dense Pedestrian

Crowds. IEEE Robot. Autom. Lett. 2019, 4, 1178–1185. [CrossRef]
11. Chen, Y.F.; Liu, M.; Everett, M.; How, J.P. Decentralized Non-Communicating Multiagent Collision Avoidance with Deep

Rein-forcement Learning. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), IEEE,
Singapore, 29 May–3 June 2017; pp. 285–292.

12. Chen, Y.F.; Everett, M.; Liu, M.; How, J.P. Socially Aware Motion Planning with Deep Reinforcement Learning. In Proceedings
of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, Vancouver, BC, Canada, 24–28
September 2017; pp. 1343–1350.

13. Chen, C.; Hu, S.; Nikdel, P.; Mori, G.; Savva, M. Relational Graph Learning for Crowd Navigation. In Proceedings of the 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, Las Vegas, NV, USA, 24 October–24 January
2020; pp. 10007–10013.

14. Chen, C.; Liu, Y.; Kreiss, S.; Alahi, A. Crowd-Robot Interaction: Crowd-Aware Robot Navigation With Attention-Based Deep
Reinforcement Learning. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), IEEE,
Montreal, QC, Canada, 20–24 May 2019; pp. 6015–6022.

http://doi.org/10.1109/100.580977
http://doi.org/10.1016/j.robot.2013.05.007
http://doi.org/10.1103/PhysRevE.51.4282
http://www.ncbi.nlm.nih.gov/pubmed/9963139
http://doi.org/10.1177/0278364915619772
http://doi.org/10.1109/LRA.2019.2891491


Sensors 2023, 23, 1810 13 of 13

15. Everett, M.; Chen, Y.F.; How, J.P. Motion Planning Among Dynamic, Decision-Making Agents with Deep Reinforcement Learning.
In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, Madrid, Spain,
1–5 October 2018; pp. 3052–3059.

16. Chen, Y.; Liu, C.; Shi, B.E.; Liu, M. Robot Navigation in Crowds by Graph Convolutional Networks With Attention Learned From
Human Gaze. IEEE Robot. Autom. Lett. 2020, 5, 2754–2761. [CrossRef]

17. Liu, S.; Chang, P.; Liang, W.; Chakraborty, N.; Driggs-Campbell, K. Decentralized Structural-RNN for Robot Crowd Navigation
with Deep Reinforcement Learning. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation
(ICRA), Xi’an, China, 30 May 2021–5 June 2021; pp. 3517–3524.

18. van den Berg, J.; Lin, M.; Manocha, D. Reciprocal Velocity Obstacles for Real-Time Multi-Agent Navigation. In Proceedings of the
2008 IEEE International Conference on Robotics and Automation, IEEE, Pasadena, CA, USA, 19–23 May 2008; pp. 1928–1935.

19. Fiorini, P.; Shiller, Z. Motion Planning in Dynamic Environments Using Velocity Obstacles. Int. J. Robot. Res. 1998, 17, 760–772.
[CrossRef]

20. Long, P.; Liu, W.; Pan, J. Deep-Learned Collision Avoidance Policy for Distributed Multi-Agent Navigation. IEEE Robot. Autom.
Lett. 2017, 2, 656–663. [CrossRef]

21. Sadeghian, A.; Alahi, A.; Savarese, S. Tracking the Untrackable: Learning to Track Multiple Cues with Long-Term Dependencies.
In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), IEEE, Venice, Italy, 22–29 October 2017;
pp. 300–311.

22. Khodayar, M.; Wang, J. Spatio-Temporal Graph Deep Neural Network for Short-Term Wind Speed Forecasting. IEEE Trans.
Sustain. Energy 2019, 10, 670–681. [CrossRef]

23. Yu, B.; Yin, H.; Zhu, Z. Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting. In
Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018;
pp. 3634–3640.

24. Jain, A.; Zamir, A.R.; Savarese, S.; Saxena, A. Structural-RNN: Deep Learning on Spatio-Temporal Graphs. In Proceedings of
the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Las Vegas, NV, USA, 27–30 June 2016;
pp. 5308–5317.

25. Matsuzaki, S.; Hasegawa, Y. Learning Crowd-Aware Robot Navigation from Challenging Environments via Distributed Deep
Reinforcement Learning. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), IEEE,
Phila-delphia, PA, USA, 23–27 May 2022; pp. 4730–4736.

26. Vemula, A.; Muelling, K.; Oh, J. Social Attention: Modeling Attention in Human Crowds. In Proceedings of the 2018 IEEE
In-ternational Conference on Robotics and Automation (ICRA), IEEE, Brisbane, QLD, Australia, 21–25 May 2018; pp. 4601–4607.

27. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need.
In Proceedings of the Advances in Neural Information Processing Systems (NIPS), Long Beach, CA, USA, 4–9 December 2017;
pp. 5998–6008.

28. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal Policy Optimization Algorithms. arXiv 2017,
arXiv:1707.06347.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/LRA.2020.2972868
http://doi.org/10.1177/027836499801700706
http://doi.org/10.1109/LRA.2017.2651371
http://doi.org/10.1109/TSTE.2018.2844102

	Introduction 
	Related Works 
	Model-Based Methods 
	Learning-Based Methods 
	Spatio-Temporal Graph Methods 

	Approach 
	Problem Formulation 
	Modeling of Robot–Human Interactions 
	Modeling of Human–Human Interactions 
	Neural Network 

	Experiments 
	Implementation Details 
	Simulation Setup 
	Quantitative Comparison 
	Robot Invisibility 
	Robot Visible 
	High-Density Environment 
	Model Effectiveness Analysis 

	Qualitative Comparison 

	Conclusions 
	References

