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Abstract: LoRaWAN networks rely heavily on the adaptive data rate algorithm to achieve good link
reliability and to support the required density of end devices. However, to be effective the adaptive
data rate algorithm needs to be tuned according to the level of mobility of each end device. For
that purpose, different adaptive data rate algorithms have been developed for the different levels of
mobility of end devices, e.g., for static or mobile end devices. In this paper, we describe and evaluate
a new and effective method for determining the level of mobility of end devices based on machine
learning techniques and specifically on the support vector machine supervised learning method. The
proposed method does not rely on the location capability of LoRaWAN networks; instead, it relies
only on data always available at the LoRaWAN network server. Moreover, the performance of this
method in a real LoRaWAN network is assessed; the results give clear evidence of the effectiveness
and reliability of the proposed machine learning approach.
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1. Introduction

The low power wide area networks (LPWAN) paradigm is gaining a lot of momentum
in the field of massive Internet of things (IoT) for its peculiarity of providing wide-area
coverage while having low power requirements for transmission [1].

In this paper, we focus on LoRaWAN, the most prominent LPWAN technology work-
ing in the unlicensed spectrum. LoRaWAN Chapter 3 in Ref. [1] is characterized by a star
topology, whereby the LoRa end devices (EDs) are connected to gateways (GWs) that act in
principle as simple forwarders toward the network server (NS). The wireless communi-
cation between the EDs and the GWs takes place in the sub-GHz part of the unlicensed
spectrum, which is quite limited. Efficient management of the very limited radio resources
is thus essential to connect the very large amount of EDs that the LoRaWAN networks are
expected to deal with in the massive IoT paradigm.

The LoRaWAN networks are often deployed in challenging radio environments in
which the variability of the link quality is high due to various factors: obstacles, an urban
scenario [2], ED mobility, and deep indoor environments [3].

A key point of the LoRaWAN technology is its ability to trade the data rate for
coverage and vice versa, i.e., long-range communication can be established at the cost of a
low data rate. The data rate and the power of the EDs are finely tuned by the adaptive data
rate (ADR) algorithm running on LoRaWAN NS. In particular, the canonical LoRaWAN
ADR [4] is not very efficient in the case of mobile nodes [5], and if the link conditions change
or the network size increases too much, the convergence time of the ADR mechanism is
quite high [6]. We quote the following from [4]:
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For mobile EDs, the network-based ADR strategy does not work because of the
unpredictable channel attenuation which occurs as the ED moves. Rather, with
mobile EDs, ADR is performed “blindly” by the end device. This is referred to as
“Blind ADR” [7].

In addition to [7], some strategies to solve this problem rely on a sort of network slicing
method that appears in the literature, such as in [8,9], wherein the nodes’ transmission’s 40
parameters are tuned with respect to their mobility. The effectiveness of these approaches
comes from their taking a proactive approach to the mobility of the EDs, in particular by
monitoring the degree of mobility of an ED in which it is possible to update the transmis-
sion parameters to make possible a more reliable communication [9]. Other approaches
appeared from specific vertical applications such as in [10], where cattle monitoring is
considered, where “ADR techniques to most efficiently find the optimal data rate for a
firmware update” can be found. The importance of ADR is highlighted in [11], where a
“study of environmental parameters impact in LoRaWAN” is carried out, concluding that
“snowing leads to high fluctuations in SNR and RSS when Adaptive Data Rate (ADR) is
disabled”. Finally, recently in [12], the authors extend their previous work [8] applying
a variable-order hidden Markov model to predict the ED mobility pattern in the case of
“unknown or undefined trajectories”. Eventually, the recent paper [13] in Table 1 presents a
survey of different ADR algorithms that appeared in the literature.

It must be highlighted that it is possible to achieve a quite precise location of the ED in
the LoRaWAN networks, just relying on the LoRa signal received from the gateways. For
example, in [14] the authors report the results of two measurements’ campaigns by using a
machine learning approach and conclude that “LoRaWAN-based localization with relatively
dense gateways (GWs) deployment allows for achieving a meter-level accuracy, which may
be suitable for the localization of workers”. Furthermore, in [15] it is reported that the LoRa
Cloud ™, a tool from Semtech providing “geolocation services based on TOA and/or RSSI
observations”, has been made available worldwide. However, the location capability is still
not widely implemented in LoRaWAN networks, due to its technical complexity and, more
importantly, the cost related to its implementation, especially on a large scale.

The main contribution of our paper is to propose a technique, based on machine
learning, to classify the level of mobility of an ED relying purely on the data available on
the NS, without the need to resort precise location techniques, based on the processing of
physical signals, e.g., by making use of the time of arrival (ToA) used in [15]. Based on
this classification, a tuning of the ADR can be made reliably, having, for example, different
possible ADR algorithms for different levels of mobility. As a matter of fact, what is actually
important for optimizing the ADR is not the specific trajectory a node is taking but the
mobility level, i.e., if it is fixed or mobile. Furthermore, specific optimizations can be
performed in the ADR in the case of ED which are in “deep indoor” installations, such
as energy or water meters. These nodes transmit their packets infrequently, but good
reliability is needed so they need an ADR algorithm privileging the reliability of the data
rate. We would like to remark that our work is quite peculiar and specific and—to our
knowledge—it is the first of its kind. As a matter of fact, we are not aiming at localizing the
LoRaWAN node, a problem addressed by many papers such as the recent one [16]. Our aim
is to detect the level of mobility. Of course, the level of mobility can be derived from the
positions of the node in subsequent time instants, but our method is much simpler and does
not require precise localization, working only on the data present at the network server.

The remainder of the paper is organized as follows. Section 2 gives an overview of
the involved technologies. Section 3 introduces the machine learning algorithm to classify
the node. In Section 4, we present the experimental environment. Finally, in Section 5 we
analyze the results from our experiments and we draw the conclusions.
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2. An Overview on LoRa and LoRaWAN

A LoRaWAN network is based on two protocols: LoRa, which regulates the physical
layer communication between the EDs, and LoRaWAN, the medium access control protocol
used on top of LoRa. In the following section, we will investigate more deeply the protocols.

2.1. LoRa

LoRa is a proprietary physical layer technology patented by Semtech [17], based
on chirp spread spectrum (CSS) modulation techniques that enable long-distance and
low-power communications. It operates in the sub-GHz ISM band, and it is an M-ary
digital modulation [18,19], whose waveforms are not perfectly orthogonal [20]. Each LoRa
transmission is characterized by four parameters: spreading factor (SF), transmission power,
bandwidth, and coding rate. All these variables are managed and controlled by an adaptive
data rate mechanism, which is part of the MAC protocol.

2.2. LoRaWAN

In contrast to the proprietary PHY layer LoRa, the remaining part of the stack protocol,
known as LoRaWAN, is open, and it is developed and maintained by the LoRa Alliance.
The LoRaWAN network is typically deployed in a star-of-stars topology, where the EDs are
connected through a single-hop link to one or many gateways, which, in turn, forward the
packet traffic toward a common network server via standard IP protocols. The gateways act
as a simple bridge between the end nodes and the network server; in fact, after decoding
and adding some information regarding the quality of reception to the packets, they
forward every message to their network server.

The MAC of the LoRaWAN networks is essentially an ALOHA protocol controlled by
the network server, which is in charge of assigning the transmission parameters to the end
node by means of an adaptive data rate (ADR) mechanism.

It must be highlighted that although the architecture of LoRaWAN resembles that of a
cellular network, the LoRaWAN networks are “cell-free”. An ED is not belonging to any
“cell” identified by a GW, and there is no such a concept as “handover”. Any packet sent
by an ED is picked up by any GW that is able to decode it and all of the GW decoding the
packet are sending it to the NS, which deduplicates the packets, selecting the one received
with the best quality.

A final remark on this Section is in order: the LoRa modulation and the LoRaWAN
system are quite active areas of research and development, in academia and the industry.
We would like to mention the paper [21] for a recent survey and the paper [22], which
testifies to the increasing interest for LoRa modulation and LoRaWAN system for satellite
communications in low Earth orbit, something hardly predictable a few years ago.

3. Machine Learning Algorithm

The aim of this work is to find a technique to classify the EDs in a LoRaWAN network
into the following three categories: fixed, mobile, and deep indoor. The main idea is to
use a machine learning approach and find a function that is able to predict the category of
the EDs, starting from the information collected by the received packets at the GWs. We
suppose to have a very small set of EDs that are already labeled, whose reception data,
collected at the gateway, can be used as the training set for our algorithm. This set will
be our ground truth. It is important to clarify that the resultant function of the algorithm
for the categorization of nodes will be specific to the LoRaWAN deployment where it
was computed.

To reach our goal, we will use a supervised learning algorithm, the support vector
machine (SVM). SVM is a very useful machine learning tool for learning linear predictors
in high-dimensional feature spaces. The main idea behind SVM is to find the best boundary
(or hyperplane) that separates the different classes in a dataset by maximizing the margin,
which is the distance between the hyperplane and the closest data points from each class.
These points are the so-called support vectors; in fact, because they are the closest points to
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the decision boundary, they have the most impact on the position of the hyperplane. SVM
is particularly useful when the data have many features, or when the classes are highly
nonlinear. The algorithm’s ability to handle nonlinearly separable data is obtained with the
kernel method technique, which transforms the data into a higher-dimensional space where
the data points become linearly separable. This enables SVM to model complex, nonlinear
decision boundaries that cannot be classified by other linear methods. Furthermore, SVM
is a robust algorithm that is not affected by the presence of noise or outliers in the data.
With the regularization parameter C it can be possible to balance the tradeoff between
maximizing the margin and minimizing the classification error. In this paper, we use the
soft version of the SVM and the kernel method, which enables us to enrich the expressive
power of halfspaces by first mapping the data into a high-dimensional feature space, and
then learning a linear predictor in that space [23]. The proposed algorithm running on a
computer with a ninth generation i7 CPU and an RTX 2060 GPU takes around one minute
for the training phase, and it is almost immediate for the testing phase.

The creation of the features to represent the nodes is done by collecting the reception
information of the packets from every device; in particular, we will use: the packet received
signal strength indication (RSSI), the packet signal-to-noise ratio (SNR), the number of
gateways receiving the packet from the same ED and the number of packet transmissions
for every successful packet reception. After the reception of some packets from the same
ED we can compute the node features described in Table 1. We remark that we do not use
all these features in the table to represent a node, but select only the ones that are most
representative for the EDs of the specific LoRaWAN network. In fact, the more feature we
use, the bigger the dimensionality of the problem becomes, with the risk of overfitting the
dataset. The main reason behind this is that the employed dataset is too small for the use of
a too-high dimensional feature space. So from repeated tests, we have found that the most
representative features are: std RSSI, std SNR, mean RSSI and mean SNR.

Table 1. Features computed to classify the end nodes in the LoRaWAN network.

Node Feature Description

Max RSSI maximum RSSI among all the packets transmitted by the ED
Min RSSI minimum RSSI among all the packets transmitted by the ED
Mean RSSI mean RSSI for all the packets transmitted by the ED

Std RSSI standard deviation of the RSSI for all the packets transmitted by the
device

Max SNR maximum SNR among all the packets transmitted by the ED
Min SNR minimum SNR among all the packets transmitted by the ED
Mean SNR mean SNR for all the packets transmitted by the ED

Std SNR standard deviation of the SNR for all the packets transmitted by the
device

Distinct GWs number of distinct gateways that have received at least one packet
from the device

Mean GWs mean number of distinct gateways that receive each packet from the
device

Var GWs variance of the number of distinct gateways that receive each packet
from the device

Mean PCKs mean number of packet transmissions for every packet from the
device

Var PCKs variance of the number of packet transmissions for every packet from
the device

Max TXs maximum among all the total number of transmissions needed to
correctly deliver every packet by the device

After selecting the features, the training set of EDs (typically around a few hundreds
of EDs) to get the classification function takes place. By using the training set we can select
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the minimum number of packets before computing the node features; it is clear that the
more packets we use the more precise will be the classification, but this comes at the cost of
a slower procedure to profile the EDs. Consequently, there is a tradeoff between speed and
precision. At the same time, the larger the set of EDs used to train the algorithm the more
accurate will be the final classification.

In the following section, we will apply this method to a real LoRaWAN deployment [24].

4. Experimental Setup

In this section, we apply the method described above to a real LoRaWAN network
deployment, whose node distribution is reported in Table 2. In particular, we started our
analysis from a dataset containing all the packets sent in the network during one month.
Then we grouped the packets with respect to the transmitting ED, and we kept only the EDs
that have sent more than 20 packets. At this point, we were able to compute the features of
each device.

Table 2. Node types inside the LoRaWAN network.

Class Type Number

fixed
waste bin 1506

parking meter 16

ground humidity sensor 14

mobile tracker 221

deep indoor
water meter 29

environmental sensor 7

These decisions lead us to a dataset composed of 1763 EDs, or samples, distributed
between the three classes as shown in Table 3. As we can see from the Table 3, our
dataset contains too few EDs in the class “deep indoor”, so in the remainder, we focus our
considerations on the classes “mobile” and “fixed”. We expect similar results for the “deep
indoor" class, should we have had a dataset including more EDs belonging to this class.

Table 3. Distribution of the filtered EDs between the three classes.

Class EDs Percentage

mobile 153 8.68%
fixed 1601 90.81%

deep indoor 9 0.51%

In Figure 1, we have plotted the most interesting feature combinations, where the
three classes are more distinguishable. As we can notice, the most representative features
are std RSSI, std SNR, mean RSSI, and mean SNR, which will be used as descriptors for
our samples.

To enhance the flexibility of the soft SVM, we have also adopted the kernel method
with the following kernel functions: linear kernel, polynomial kernel, and radial basis
function kernel, which are usually used to introduce our prior knowledge in the learning
algorithm for the classification problem. To select the best model to represent our samples
we will use a validation set, which is a part of the dataset not used to train the algorithm.
In our specific case, because the data is scarce and we do not want to “waste” precious
samples on validation, we will use k-fold cross-validation. In k-fold cross validation, the
original training set is partitioned into k subsets (or folds) of size m/k. For each fold, the
algorithm is trained on the union of the other folds and then the error of its output is
estimated by using the fold. The average of these errors is the estimate of the validation
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error, which will be used to determine which is the best model. Then the algorithm is
retrained using this model on the entire training set.

(a) (b)

(c) (d)

Figure 1. Plots of the most representative features of the EDs in the LoRaWAN network: (a) std RSSI,
(b) std SNR, (c) mean RSSI, and (d) mean SNR.

To develop the SVM tool in Python we have used the package scikit-learn [24], which
has implemented the SVM in the class sklearn.svm.SVC.

Before the real part of machine learning, we performed a normalization process with
the aim to normalize all the data inside the interval [0, 1], which is a fundamental step
for the SVM techniques. To find out the best model to perform the predictions on our
dataset we use the class sklearn.model_selection.GridSearchCV, which implements
the SVM for all the possible parameter combinations in Table 4 and by means of k-fold
cross-validation finds the best model for our data.

Table 4. Parameters used for the grid search of the SVM.

Parameter Values

C {10−2, 10−1, 1, 10, 102, 103, 104, 105}
kernel linear, poly, rbf

gamma {0.1, 1}
degree {2, 3, 4}

The parameters required by the SVM implemented in scikit-learn are as follows.

• C, which controls the precision in the classification. In other words, a high value of
C aims at correctly classifying all the samples during the training phase, whereas a
smaller value aims at a softer classification. It is related to the weights associated with
the slack variables that we have introduced in the previous section.

• Kernel, which is the transformation applied to the data samples before the SVM
method. It can be linear (linear function), poly- (polynomial function), or rbf (radial
basis function).
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• Gamma, which tunes the shape of the kernel functions.
• Degree, which is the degree of the polynomial kernel. It is meaningful only if the

kernel is equal to poly-.

As we have already anticipated, the classification is performed between the mobile
and fixed EDs, because the class of deep indoor EDs has very few nodes.

We remark that, for the learning task, we will not use all the features that we have
previously extracted, because the more feature we use the bigger the dimensionality of
the problem, and then the higher the risk of overfitting the dataset. The reason is that the
dataset is too small for the use of complex learning methods. Moreover, not all features are
meaningful to extract some patterns from the data, as we can see from Figure 2.

(a) (b)

(c) (d)

Figure 2. Plots of the worst samples’ features. (a) RSSI max vs. Var PCKs; see Table 1; (b) SNR max
vs. Var GW; see Table 1; (c) Distinct GW vs. mean GW; see Table 1; (d) Var GW vs. Var PCKs; see
Table 1.

From repeated tests, we have found that the most representative features for the
examples are: mean RSSI, standard deviation of the RSSI, mean SNR, standard deviation of
the SNR and mean number of packet transmissions per ED (Figure 3).

As a consequence, our samples will have a dimension d = 5, which leads to a VC-
dimension (see [23]) equal to d + 1 = 6 for the hypothesis set of halfspaces. We remember
that the VC-dimension is an important parameter for the learning algorithm, which, if
equal to a finite number, guarantees the probably approximately correct (PAC) learnability
of the hypothesis class (for more details on this topic please refer to [23]).

Because the total number of mobile EDs is small with respect to the number of fixed
EDs, we have decided to train the SVM with a special dataset with 120 EDs from each of
the two classes. The results are very good and we reach a validation error, equal to 98.05%,
and a test error, calculated in the remaining part of the dataset not used for the training
part, equal to 99.67%. The best model selected through the grid search is the one with a
Gaussian kernel, γ = 1 and C = 100. To get a more precise insight into the precision of the
algorithm, we have also created a confusion matrix, which is a specific table layout that
allows the visualization of the performance of an algorithm. Each column of the matrix
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represents the instances in a predicted class whereas each row represents the instances
in an actual class. The name stems from the fact that it makes it easy to see if the system
is confusing two classes. From the confusion matrices in Tables 5 and 6, we can see that
the algorithm is quite precise in classifying the nodes, even though it sometimes tends to
misclassify some nodes.

Figure 3. Example of 3D plot of the most relevant features.

Table 5. Confusion matrix.

Predicted Class

Actual Class

Fixed Mobile

Fixed 1479 2

Mobile 4 29

Table 6. Confusion matrix normalized with respect to the predicted class.

Predicted Class

Actual Class

Fixed Mobile

Fixed 1.00 0.06

Mobile 0.00 0.94

5. Conclusions

In conclusion, the proposed SVM algorithms can learn a very good model to solve our
classification problem, i.e., determining if an ED is mobile or fixed, even though the dataset
is not so rich. Our algorithm, validated in with a real-world dataset, can then be a solid
foundation for selecting the best ADR algorithm depending on the mobility of an ED.
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