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Abstract: Climate change and the COVID-19 pandemic have disrupted the food supply chain across
the globe and adversely affected food security. Early estimation of staple crops can assist relevant
government agencies to take timely actions for ensuring food security. Reliable crop type maps
can play an essential role in monitoring crops, estimating yields, and maintaining smooth food
supplies. However, these maps are not available for developing countries until crops have matured
and are about to be harvested. The use of remote sensing for accurate crop-type mapping in the
first few weeks of sowing remains challenging. Smallholder farming systems and diverse crop types
further complicate the challenge. For this study, a ground-based survey is carried out to map fields
by recording the coordinates and planted crops in respective fields. The time-series images of the
mapped fields are acquired from the Sentinel-2 satellite. A deep learning-based long short-term
memory network is used for the accurate mapping of crops at an early growth stage. Results show
that staple crops, including rice, wheat, and sugarcane, are classified with 93.77% accuracy as early as
the first four weeks of sowing. The proposed method can be applied on a large scale to effectively
map crop types for smallholder farms at an early stage, allowing the authorities to plan a seamless
availability of food.

Keywords: crop-type mapping; Sentinel-2; deep learning; crop classification

1. Introduction

According to the United Nations estimates, the world population is expected to
reach 8.5 billion by 2030, thus escalating pressure on food security (https://population.
un.org/wpp/publications/files/key_findings_wpp_2015.pdf, (accessed on 20 December
2022)). Shrinking arable land, climate change, and natural disasters are also hampering the
agricultural sector and threatening food security at the global level [1–4]. The widening
gap between food production and its demands is adversely affecting the food supply chain.
However, timely and accurate information about cultivated crops and their estimated yields
can be incorporated into decision-making to ensure food security. To maintain a seamless
food supply chain, remote sensing (RS) data and deep learning (DL) algorithms are crucial
in deriving high-quality information on crop-type maps, crop health, and their yields [5,6].
RS is widely used in precision agricultural (PA) applications as it is considered a reliable
source for extracting phenological information about crops [7–10]. The availability of high
spectral, spatial, and temporal RS data, including multi-spectral [11,12], hyperspectral [13],
and synthetic aperture radar (SAR) [6,14–17] have opened new possibilities in crop-type
mapping [3,18–21], crop health [22] and yield estimation [4,23–25]. In the early 21st century,
Landsat and moderate resolution imaging spectroradiometer (MODIS) multi-spectral data
were relied on for crop types [26]. However, their capability was limited due to lower spatial
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and temporal resolution, especially for small fragmented crop fields [27,28]. Nowadays,
high-resolution satellite data from the European Union’s Earth Observation Programme
and commercially available platforms have unlocked numerous opportunities for crops
analysis and monitoring strategies. Table 1 presents some satellite platforms along with
their specifications and applications in the agricultural sector. Intelligent algorithms in
conjunction with the high-quality remotely sensed data can accurately identify/map the
crops and estimate yields. Recently, DL algorithms have proved their significance in
remote sensing applications as these algorithms are made to learn from multi-spectral
and multi-temporal data of the crops and have outperformed classical machine learning
algorithms [29].

Table 1. Commonly used satellite platforms in agricultural applications along with their specifications.

Satellite Revisit Time (Days) Spectral Resolution Agricultural Applications

Landsat 1 [30] 18 80 m Crop Growth
Landsat 7 [30–32] 16 60 m Crop Growth, Crop Yield, and Biomass
Landsat 8 [30–32] 16 60 m Crop Growth, Crop Yield, and Biomass

Aqua and Terra MODIS [33,34] 1–2 250–1000 m Crop Growth and Crop Yield
Rapid Eye [35–37] 1–5 6.5 m Chlorophyll and Water Management

Sentinel-1 [38] 1–3 5–40 m Crop Growth and Crop Yield
Sentinel-2 [39] 5 10–60 m Crop Identification and Change Detection

Crop identification and mapping using RS-based approaches are more accurate than
traditional ground-based methods, which are resource-extensive as the crop information
is incorporated at multiple growing stages due to the temporal nature of RS data [40,41].
Optical and microwave remote sensing have both been employed as data sources for PA.
Optical RS is based on vegetation indices that are extracted from multi-spectral images.
Some of the most often used indices are normalized difference vegetation index, green
normalized difference vegetation index, enhanced vegetation index, and land surface
water Index [18]. The direct use of time-series vegetation indicators is advantageous for
crops with certain temporal characteristics [42]. On the other hand, there has been a
considerable rise in using DL algorithms in agriculture applications [43]. The use of deep
CNN with multi-spectral and temporal satellite images was pioneered by [44] for rice
-crop mapping. Later, many studies used variations of CNN for PA tasks [45–52]. In these
patch-based studies, a large area of the land is extracted as a patch and thus requires further
processing to extract relevant map of the crops. Additionally, actual field boundaries are
not considered in mapping crops as they may have irregular shapes, thus incorporating
neighboring fields with different crop types. In Asia, particularly South Asia and China,
a smallholder agricultural landscape is prevalent [27,53] where the size of the fields is
smaller than 5 ha [54] and crops are diverse. The heterogeneous landscape of small but
diverse crops makes it challenging to accurately classify the crops [55–57] at an early growth
stage. Existing studies on crop mapping and identification approaches mainly focus on
large-scale plantation fields (10 hectares on average) and require an entire plant cycle for
crop identification [2,9,11]. This study proposes an approach that serves two purposes.
Firstly, it focuses on small farm holding (1 to 4 acres on average) and secondly, detects
crops at the early stage, by overcoming challenges of overlapping readings due to the
plantation of diverse crops in a small region. To the best of our knowledge, no existing
study focuses on small farm holding for early crop classification. The objective of this study
is to (1) map fields using GPS-based devices to draw field boundaries and acquire crop data,
(2) acquire multi-spectral time-series RS data of the mapped fields from Sentinel-2 mission
satellites at regular intervals, (3) extract and evaluate basic Sentinel-2 sensors and generate
vegetation indices at pixel-level by combinations of bands to find an optimal combination,
and (4) apply deep learning model to propose a method to accurately identify staple crops
(rice, sugarcane, and wheat) in first 4 weeks of their sowing in smallhold farming, which
will allow the government agencies to manage food security effectively.
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2. Materials and Methods
2.1. Study Area

The research is conducted on different districts located in the province of Punjab, Pak-
istan, the map of which is shown in Figure 1. As per the 2017 census, the total population
of Punjab is estimated to be 110 million [58] and it has an area of 20.63 million hectares [59].
Punjab is mostly comprised of flat land and has four seasons which enable suitable condi-
tions to grow staple foods throughout the province. Smallholder agriculture is predominant
in the region to provide a livelihood to the residents. Eighty percent of Punjab’s total area
is cropped and thus contributes the largest share of the country’s agricultural production.
The major crops are wheat, cotton, rice, fodder, maize, and sugarcane.

Figure 1. Map of the Province Punjab, Pakistan. The images of the fields of interest are acquired at a
resolution ranging from 10m to 60m depending on the bands of Sentinel-2 satellites.

A ground-based survey was carried out to determine the GPS coordinates of target
fields, and other important attributes such as crop history, yields, and sowing dates. During
the survey, the coordinates of the field boundaries were recorded using GPS devices, thus
giving us the actual field boundaries to acquire satellite data. Fields of varying sizes were
mapped at three different sites in the province. The objective of mapping land parcels
at three separate sites was to make the dataset diverse and generalized. In total, around
2600 fields were mapped with an average size of 1.2 acres per field. The total mapped
area was roughly 4160 acres. To make the dataset relevant and accurate, only the fields
were mapped that had been planted with rice, wheat, and sugarcane crops repeatedly for
the past three years. The geometry of some of the mapped fields is shown in Figure 1
highlighting the diversity in sizes and shapes of the fields.

The locations of the fields were selected from the Punjab province because it is the
agriculture hub of Pakistan and is further divided into three regions. Due to the large size
of the province, there is diversity in water patterns, rainfall, and climate. These staple
crops are cultivated in all of these three regions, thus, making our dataset represent the
entire region.

2.2. Sentinel-2 Data Acquisition

The Sentinel-2 mission is a constellation of two satellites named Sentinel-2A and
Sentinel-2B [60]. The two satellites are phased at an angle of 180 degrees to one another
and are placed in a sun-synchronous orbit around the Earth [61]. These satellites remain
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stationary in their orbits with respect to the sun (sun-synchronous). The constellation of
Sentinel-2 satellites is passive, which means they do not have their own energy source.
This is why they are placed in a sun-synchronous orbit to take advantage of the sunlight to
capture the earth’s images. To revisit an area of the earth with a single Sentinel-2 satellite, it
takes the satellite ten days to return to the same location. However, with the constellation
of two satellites, phased at an angle of 180 degrees, it takes them five days to return to the
same area of the earth and capture it, thus providing higher temporal resolution [62–64].

The Sentinel-2 images are captured with a multi-spectral instrument (MSI) in 13
spectral bands. The multi-spectral instrument takes rows of images as it moves along its
orbital path. The light that reaches the multi-spectral sensor of Sentinel-2 is collected by two
focal plane assemblies which in turn sample 13 spectral bands. These bands are sampled in
visible, near-infrared, and shortwave infrared regions of the electromagnetic spectrum. The
13 bands vary in spatial resolution as four bands are at a 10 meter resolution per pixel, six
bands are at 20 meters, and three bands are at a 60 meter spatial resolution.

The Sentinel-2 tiles can be acquired as Level-1C or Level-2A imagery [65]. Level-1C
Imagery provides “Top of Atmosphere (TOA)” reflectance, which results in a blur image
due to the atmospheric reflectance. Level-2A images are atmospherically corrected and
named “Bottom of Atmosphere Reflectance (BOA)”. In Level-2A images, the effect of
atmospheric reflectance is removed with the help of a band contained in the multi-spectral
image. Subsequently, for each of the three sites considered for this study, their respective
fields’ area of interest (AOI) was extracted from tiles of the Sentinel-2 satellites of Level-2A,
over rice, wheat, and sugarcane crops, throughout the season.

The period of the acquisition of Sentinel-2 tiles was determined depending on the rice,
wheat, and sugarcane crop seasons. In Punjab, the rice crop season begins in June and lasts
until October, whereas the wheat crop season begins in December and is harvested in April.
However, the sugarcane crop season spans the entire year, with its plantation starting in
March. The duration and number of tiles acquired for each crop are detailed in Table 2.

Table 2. Testbed Sentinel-2 data.

Crop No. of
Fields

Max Area
(Acres)

Mean Area
(Acres)

Min Area
(Acres)

Total Area
(Acres) Date Range No. of Tiles

Rice 1200 3 1.2 0.8 1830 1 June–30 October
Wheat 1200 3 1.2 0.8 1830 1 December–30 April 30

Sugarcane 200 3 1.5 0.7 500 1 March–31 July

For each map field, 30 multi-spectral images were captured, at five-day intervals, for
all three crops. Consequently, the dataset has 30 images of each field for the entire rice and
wheat season. However, for the sugarcane crop, the data over five months was acquired
to match the temporal length of the other two crops which proved to be sufficient for the
sugarcane field classification. During the crop growth cycle, weather conditions have a
significant impact on the pattern of crop growth and its yield. To account for the effect
of weather conditions, and make the proposed strategy more generalized, the data was
acquired for the years 2019, 2020 and 2021. As discussed in Section 2.1, only those land
parcels were mapped for the study where the target crops are repeatedly planted for the
past three years. This led us to inculcate the impact of soil, weather, and atmospheric
conditions in the dataset.

2.3. Fields Stripping and Preprocessing

During the crop cycle, we acquired Sentinel-2 tiles for three mapped areas at regular
intervals, where each tile contained all mapped fields at the corresponding site. As a single
tile covers a large area of the earth’s surface, areas outside the mapped fields were discarded
by filtering out the pixels of the tiles that lie outside the boundaries of the mapped fields.
This was achieved by creating a mask over mapped fields using fields coordinates and
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iteratively applying it to the tile. A true color tile of a site and stripped fields are represented
in Figure 2.

Figure 2. (A) A Sentinel-2 tile specimen of sugarcane fields illustrated in RGB bands. (B) Depiction of
mapped fields obtained by stripping the large tile and visualizing in NDVI values.

Cloudy weather causes the multi-spectral instrument of Sentinel-2 to capture the
reflectance of clouds. As a result, the true reflectance of the land’s surface is not captured,
and the tile is characterized by foggy pixels [66]. Foggy pixels have very high reflectance
relative to the land’s surface reflectance. This alters the true reflectance of the surface
and causes noise in the data. The reflectivity of the land’s surface is also affected by the
shadows of the clouds on the ground. To cope with this problem, spectral band 10 contains
information about cloudy pixels. By using band 10, a cloud mask was applied on all tiles to
filter out cloudy pixels and replaced them with the average of the adjacent pixels. Further,
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to make all the Sentinel-2 bands spatially uniform, these were resampled to 10m spatial
resolution using “Geospatial Data Abstraction Library (GDAL)” [67].

2.4. Selection of Spectral Bands and Vegetation Indices
2.4.1. Spectral Bands

Based on the literature and considering the relevance of the Sentinel-2 bands for
agricultural applications, ten bands were chosen for the crop identification task [68,69].
Band 1, band 9 and band 10 were ignored as they do not capture the reflectance of the
land surface. Instead, they are used for atmospheric correction, water vapour measure,
and cloud masking, respectively [70]. The bands selected for the study are listed in Table 3
along with their bandwidths and central wavelengths.

Table 3. Description of targeted spectral bands of Sentinel-2 used in experimental assessment.

Band Bandwidth (nm) Central Wavelength (nm)

Band 2 (Blue) 65 490
Band 3 (Green) 35 560
Band 4 (Red) 30 665

Band 5 (Red Edge 1) 15 705
Band 6 (Red Edge 2) 15 740
Band 7 (Red Edge 3) 20 783

Band 8 (Near-Infrared) 115 842
Band 8A (Vegetation Red Edge) 20 865
Band 11 (Shortwave Infrared 1) 90 1610
Band 12 (Shortwave Infrared 2) 180 2190

2.4.2. Vegetation Indices

Vegetation indices are calculated by combining the surface reflectance of two or more
spectral bands to obtain a single value [71,72]. These indices serve as indicators of the
many properties of the vegetation under consideration [73]. Some indices are beneficial
in identifying the vegetated areas, while others are good at determining the health of
the plants. There are many vegetation indices proposed in the literature, however, for
this study, “Normalized Difference Vegetation Index”, “Green Normalized Difference
Vegetation Index”, “Modified Chlorophyll Absorption Reflectance Index”, “Enhanced
Vegetation Index” and “Land Surface Water Index” are selected based on their importance
in crop identification.

Normalized Difference Vegetation Index (NDVI)

NDVI is employed to assess the extent of vegetation [74,75] and its value ranges
from −1 to 1. Densely vegetated areas have NDVI values close to 1, whereas for sparsely
vegetated areas the values are near −1. This value is determined from band 4 (red) and
band 8 (near-infrared). They operate on the premise that plants require sunlight for
photosynthesis to occur. Plant leaves have a pigment known as chlorophyll that absorbs
red light, which is required for photosynthesis and reflects near-infrared light. A healthy
plant or a densely vegetated region will absorb more red light and reflect less of it. On the
contrary, unhealthy plants reflect more red and less near-infrared light.

The NDVI index was chosen because it is a trait that can be used to distinguish between
crops. For example, when compared to wheat, the rice crop turns thickly green after only a
few weeks of growth after planting. The trend of the NDVI values during crop growing
seasons can be quite useful for crop identification. Equation (1) is used to calculate NDVI.

NDVI = (B8 − B4)/B8 + B4) (1)
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Green Normalized Difference Vegetation Index (GNDVI)

The GNDVI is identical to the NDVI except that it uses green light instead of red
light [76]. Although the normalized difference vegetation index is typically employed to
quantify the area of vegetation, the green-normalized difference vegetation index (GNDVI)
is an indicator of photosynthetic activity and is, therefore, more useful in yield forecast-
ing [77]. Equation (2) is used to calculate GNDVI.

GNDVI = (B8 − B3)/B8 + B3) (2)

Enhanced Vegetation Index (EVI)

The EVI [72] index is also used to quantify the amount of vegetation on a given piece
of land [78]. Nevertheless, it differs from the NDVI and the GNDVI as it corrects certain
atmospheric reflectance that is not considered by the NDVI and GNDVI. It can also identify
and eliminate noise in dense plant canopies, allowing for a more accurate estimation of
the greenness as a result of the reduced reflectance from noise [79]. Equation (3) is used to
calculate EVI.

EVI = 2.5 ∗ (B8 − B4)/((B8 + 6.0 ∗ B4 − 7.5 ∗ B2) + 1.0) (3)

Modified Chlorophyll Absorption Reflectance Index (MCARI)

This index measures the concentration of chlorophyll in plants [80]. Low chlorophyll
level indicates the weak health of the vegetation. At different crop growth stages, the
pattern of the values of MCARI helps to classify the crops [81]. Equation (4) is used to
calculate MCARI.

MCARI = ((B5 − B4)− 0.2 ∗ (B5 − B3)) ∗ (B5/B4) (4)

Land Surface Water Index (LSWI)

LSWI [82] can distinguish if there is stagnant water on land by observing the reflectance
of the near-infrared and shortwave infrared bands [83]. For the plantation of rice crops, the
water remains stagnant in the fields for an extended period. By analyzing the time-series
data of rice fields, the model can learn the pattern for rice crops and distinguish it from the
wheat and sugarcane crop. Equation (5) calculates LSWI.

LSWI = ((B8 − B11)/(B8 + B11) (5)

2.5. Data Shape

For each pixel of the mapped fields, the values of spectral bands and vegetation indices,
listed in Sections 2.4.1 and 2.4.2, respectively, were computed. In the next step, the values of
spectral bands and indices were averaged over all the pixels that belong to a particular field.
This process was iterated for all the timestamps of all fields separately. This resulted in
one numeric value for each band and vegetation index, for a given field at each timestamp
image. Consequently, against each field, we have 15 features (10 values for spectral bands
and 5 values for indices). Hence, for a single field, an average shape of the data matrix had
the dimensions 30 * 15. The complete flow of data acquisition and preprocessing is shown
in Figure 3.
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Figure 3. Pipeline for preparation of training and testing datasets used in experimental evaluation.

2.6. DL Network

LSTM is a deep learning network that is considered as one of the best choices for time-
series data and data with long-range dependencies [84]. Feedback connections in LSTM
distinguish it from the feedforward network. These feedback connections help the model
understand the context and long-range dependencies within data. Feedback connections
in LSTM enable it to process the whole sequence of data, instead of considering each data
point individually. In this way, the information from the previous data points is retained,
which is used with the new data points to learn the pattern or data. These characteristics
make LSTM a preferred choice over other networks for sequenced and time-series data.
LSTM networks make use of gates that control the incoming information, information that
needs to be retained for the future, and the information that leaves out of the network. The
input gate, forget gates, and output gates are used to control the flow of information [85,86].
Figure 4 shows the architecture of the LSTM DL network, where xt represents the input
vector, and ht−1 and Ct−1 are the output and memory from the previous LSTM block,
respectively. Ct is the memory from the current block that is passed to the next block and
ht is the output from the current block. The non-linearities within a single LSTM block are
added through sigmoid (σ) and hyperbolic tangent (tanh) functions.

Figure 4. Architecture of the stacked LSTM network.
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Three stacked LSTM layers each with 256 blocks and a recurrent dropout of 0.3 were
used with the data. The LSTM layers were followed by the linear SoftMax layer with
three units, which is equal to the number of classes that needs to be predicted. All the
experiments were performed using a learning rate of 0.001 with a batch size of 128. The
model was trained using cross-entropy loss and an Adam optimizer. The model was trained
for 100 epochs with early stopping and a patience counter of 10 epochs. Of the dataset, 80%
was used for training while the remaining 20% was used for testing purposes.

2.7. Experimental Design

Initial studies were conducted in a set of three experiments on the entire plant cycle
of wheat and rice, and the first 5 months of sugarcane cultivation, to identify the best
combination of features for crop classification. Experiment 1 focused on the only visible
spectrum (RGB bands), experiment 2 includes additional near-infrared and shortwave along
with visible spectrum, and lastly, experiment 3 included vegetative indexes in addition
to features used in experiment 2. Finally, in experiment 4, features of experiment 3 were
utilized by limiting to 1 month of data from sowing instead of the entire plant life cycle for
early crop detection.

3. Experimental Results

The LSTM model was used to investigate temporal (timestamp) Sentinel-2 data to
identify staple crops for small-sized fields at the early stages of the plant life cycle. Opti-
mizing of structure and hyperparameters of LSTM allowed the detection of staple crops
within 1 month of sowing with high accuracy.

3.1. Model Training

The PyTorch framework is commonly used in academic research to train machine
learning and deep learning models. The LSTM architecture was trained and optimized
using the PyTorch framework using the different temporal lengths of data ranging from
1 month to the entire plant life cycle. The Colab pro server with 32 GB of RAM was used
for training. The LSTM model was trained on our custom dataset in two phases. In the
first stage, temporal information of entire plant cycle, at equal intervals, were fed into the
network to evaluate the accuracy and significance of different spectral bands. In the second
phase, after identifying important spectral bands combinations, the model was further
tuned on those selected bands to enable the classification of staple crops within a month
of sowing.

3.2. Results

The primary objective of the study was to use Sentinel-2 data to identify staple crops
for small-sized fields at the early stages of the plant life cycle. In this regard, various
experiments were designed to assess the significance of spectral bands, vegetation indices,
and temporal length of the input data to classify agriculture fields. The significance of
different combinations of Sentinel-2 spectral bands was investigated to identify the best
combination of bands in crop classification for small-sized fields. During these experiments,
five months from the plantation, timestamped data of the crops were used as input. After
determining the best combination of bands in crop classification from five month plantation,
additional experiment was performed with one month’s data from plantation, for the early
identification of crop type. Table 4 lists the experiments which were performed along with
the classification accuracy of the LSTM model on these experiments.

The training accuracy and loss of the optimized model are shown in Figure 5 and their
performance on the entire temporal length of a plant cycle and within 1 month of sowing is
shown in Table 4.
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Figure 5. (A) Training accuracy. (B) Training loss.

Table 4. Experiments with different combinations of spectral bands and vegetation indices and their
classification accuracy.

Experiment Bands Vegetation Indices Temporal Length Accuracy (%)

Experiment 1
Red

87.55Green
Blue

Experiment 2

Red

98.08

Green NDVI, GNDVI, EVI, 5 Months
Blue MCARI, LSWI

Near-Infrared
Shortwave Infrared 1
Shortwave Infrared 2

Experiment 3 All 10 Bands 99.76

Experiment 4 All 10 Bands 1 Month 93.77

The accuracy for experiment 1 was 87.55%, which was the worst amongst the three
experiments. This was due to the absence of near-infrared bands and vegetative indexes
used in other experiments, as the near-infrared bands are crucial to determining the health
of the plant and other important features. The reflectance of the near-infrared band greatly
varies for crops. For example, in contrast to the wheat crop, the rice crops become dense
and dark green after a few weeks of planting and reflect the maximum near-infrared band
whose reflectance pattern then determines the crop. The result suggests that the visible
spectrum (red, green, and blue bands) alone is not sufficient for crop type prediction.

For experiment 2, the classification accuracy of 98.08% was achieved. The significant
increase in the accuracy was achieved by bands in the infrared region as they play a
vital role due to reflectance patterns emitted in different plant cycles. In addition to the
visible spectrum, the vegetation indices NDVI, GNDVI, EVI, MCARI, and LSWI were
generated from near the infrared spectrum. As the harvesting weeks approach, the rice
crop stays relatively green compared to wheat and sugarcane. This results in maximum
variability in infrared and other bands’ reflectance, and the model was able to generalize
and improve accuracy.

In Experiment 3, all ten bands of Sentinal-2 along with the five vegetation indices
were utilized. The accuracy of this experiment stood at 99.76 %, the highest accuracy in
all experiments conducted. Although some bands play a more crucial role than others,
each band captured information differently from the other band, hence the model learned
distinguished features in all bands which resulted in better performance than all other
combinations. The confusion metrics for all three experiments are shown in Figure 6A–C.
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Figure 6. Confusion matrices of (A) Experiment 1, (B) Experiment 2, (C) Experiment 3, and
(D) Experiment 4.

For early identification of the crops, the same parameters from experiment 3 were
used in experiment 4, except only using the first month’s data to check the efficiency of our
model for early crop-type classification. As the estimated area of the Punjab province is
very large (20.63 million hectares), the sowing dates and patterns can vary up to two weeks.
Figure 6D shows the confusion metric of this experiment, showing crop type classification
accuracy of 93.77%. The results indicate that similar spectral properties of the crops were
distinguishable using timestamp multi-spectral features for the entire crop cycle with high
accuracy. These features were also useful for detection at an early stage of the crop cycle
with reasonable accuracy.

The outcome of the study is a robust model that can classify crops in small fields
and which is tolerant to crop diversity in a small region, and is able to predict crops
at early stages. The model may fail in some circumstances due to the unavailability of
satellite imagery because of bad weather, which may result in fewer readings in each
month. Another challenge is the sowing time variation which can hinder accuracy if the
sowing time is delayed for more than three weeks from the standard sowing date, for a
given region.

4. Discussion

The research demonstrates the efficiency of remote sensing imagery, by using different
spectral bands of Sentinel-2 and vegetative indices on crop classification for small-sized
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farms system in Asian countries, at the early stages of the crop. Existing studies focus
primarily on large-scale farms for crop classification, whereas in smallholder farming sys-
tems, multiple crops are sowed parallel to each other in the same area, thus making crop
classification more challenging. Utilizing the multi-spectral sensor to capture distinguish-
able features from the crops, Sentinel-2 enables observation of fields at regular intervals
using 20 m spatial resolution imagery. Our proposed model was able to use distinguishable
features from spectral bands and vegetation indices to detect specific crops as early as the
first month, with an acceptable accuracy. Furthermore, the study has revealed that the
freely available Sentinel-2 data can be utilized in South Asian countries for early crop type
mapping for smallholder farms.

In developed countries with large areas, a single crop is cultivated in larger fields
covering an area of many hectares and advanced agricultural practices are adopted to
monitor crops growth and health. Secondly, a specific region is allocated to the certain crop
to be cultivated in the entire region, thus reducing variance in crop types in a particular
region. As a result, the precision agricultural tasks such as crop mapping, identification,
and monitoring are much easier. However, for this study, considerably small fields were
mapped in the state of Punjab, Pakistan, as the smallholder farming system is prevalent
in the region. Further, multiple crops are cultivated within a small region in adjacent
fields and traditional agricultural practices are used. Conventional farming techniques, the
unavailability of data at early stages, and high variance in crop types make it a harder task
to automatically identify the crops for yield forecasting and strategic planning.

Similar studies have focused on large-scale farming systems that have employed hyper-
spectral imaging, thermal imaging, soil moisture, rainfall estimates, etc. [3,4,6,13,16,17,21,25,87].
These studies are required to fuse data from multiple satellite sources to identify similar crops
in a given region. The aim of these studies is to find a large contiguous chunk of similar crop
cover, and use additional satellite data for calibration. In contrast, we utilize the multi-spectral
data from a single Sentinel 2 satellite by only using 10 bands and additional features (NDVI,
GNDVI, EVI, MCARI, and LSWI) that enables us to classify crops with high accuracy in small
farm systems.

The approach used in this study yielded considerable results for crop identification at
an early stage of crop growth despite the small-sized fields. However, some false positives
resulted due to the reflectance of the adjacent fields of crops that were not covered in the
scope of the study. Limited by the ground truth data availability, only three years of crop
type data was assessed in this study. We expect that future long-term field surveys and
advanced agricultural practices will result in many other precision agricultural applications
for smallholder farming systems to improve crops health and increase yields to ensure
food security.

5. Conclusions

Existing studies mostly focus on large-scale farming systems comprising of individual
fields of an average size of 5 to 10 hectares, resulting in reasonable-sized satellite images
to employ CNN-based feature extraction, leading to higher crop-classification accuracy.
However, for small-scale fields, these methods cannot be applied, as the average spectral
band resolution is 20 m per pixel. Additionally, the regions are dedicated to a single crop in
a large farm system and crop diversity does not affect the spectral band readings for a given
field, due to the same crops being located in the neighboring fields. In small farm systems,
crop diversity is very common, and due to the small size of fields, the effect of neighboring
crops is significant. In this study, we propose a robust LSTM-based model the counters
the classification challenges of small field-size with high crop diversity, and can classify
staple crops in early stages with high accuracy. We verify the effectiveness of our proposed
model and demonstrate that our model performs satisfactorily on smallholder farms. In
the future, we plan to reduce the detection time further, and incorporate additional satellite
data to utilize soil moisture, rainfall estimates, and hyperspectral data to expand this model
for more crops.
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16. Usowicz, B.; Lipiec, J.; Łukowski, M.; Słomiński, J. Improvement of spatial interpolation of precipitation distribution using
cokriging incorporating rain-gauge and satellite (SMOS) soil moisture data. Remote Sens. 2021, 13, 1039. [CrossRef]

17. Usowicz, B.; Lukowski, M.; Lipiec, J. The SMOS-Derived Soil Water EXtent and equivalent layer thickness facilitate determination
of soil water resources. Sci. Rep. 2020, 10, 18330. [CrossRef]

http://doi.org/10.3390/su12031216
http://dx.doi.org/10.1016/j.scitotenv.2020.141147
http://dx.doi.org/10.1016/j.agwat.2019.105698
http://dx.doi.org/10.1016/j.eja.2014.08.004
http://dx.doi.org/10.3390/rs12213561
http://dx.doi.org/10.3390/rs10010099
http://dx.doi.org/10.1016/j.asr.2020.01.028
http://dx.doi.org/10.1016/j.compag.2020.105618
http://dx.doi.org/10.31545/intagr/147227
http://dx.doi.org/10.1016/j.jag.2020.102059
http://dx.doi.org/10.3390/rs13050846
http://dx.doi.org/10.3390/rs13051039
http://dx.doi.org/10.1038/s41598-020-75475-x


Sensors 2023, 23, 1779 14 of 16

18. Cai, Y.; Guan, K.; Peng, J.; Wang, S.; Seifert, C.; Wardlow, B.; Li, Z. A high-performance and in-season classification system of
field-level crop types using time-series Landsat data and a machine learning approach. Remote Sens. Environ. 2018, 210, 35–47.
[CrossRef]

19. Johnson, D.M.; Mueller, R. Pre- and within-season crop type classification trained with archival land cover information. Remote
Sens. Environ. 2021, 264, 112576. [CrossRef]

20. Kenduiywo, B.K.; Bargiel, D.; Soergel, U. Crop-type mapping from a sequence of Sentinel 1 images. Int. J. Remote Sens. 2018,
39, 6383–6404. [CrossRef]

21. Wu, H.; Adler, R.F.; Tian, Y.; Huffman, G.J.; Li, H.; Wang, J. Real-time global flood estimation using satellite-based precipitation
and a coupled land surface and routing model. Water Resour. Res. 2014, 50, 2693–2717. [CrossRef]

22. Mutanga, O.; Dube, T.; Galal, O. Remote sensing of crop health for food security in Africa: Potentials and constraints. Remote
Sens. Appl. Soc. Environ. 2017, 8, 231–239. [CrossRef]

23. Donohue, R.J.; Lawes, R.A.; Mata, G.; Gobbett, D.; Ouzman, J. Towards a national, remote-sensing-based model for predicting
field-scale crop yield. Field Crops Res. 2018, 227, 79–90. [CrossRef]
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