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Abstract: Laser displacement sensors are widely used in the aviation industry for the purpose of
surface normal measurements. The measurement of a surface normal depends on prior knowledge of
the poses and positions of the sensors, which are obtained through calibration. This paper introduces
a new parameter to the traditional calibration procedure, to reduce the calibration error, and explores
the factors affecting calibration using the Monte Carlo method. In the experiment, the normal
measurement error of the probe consisted of four sensors after calibration was less than 0.1◦, which
satisfied the established requirements. This paper indicates the boundary conditions for a successful
calibration and validates the proposed method, which provides a new method for the pose and
position calibration of laser displacement sensors and other similar sensors.
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1. Introduction

In the aircraft manufacturing industry, drilling holes in freeform surfaces is a widespread
requirement. The verticality of the hole, respective to the surface around it, is related to the
strength of the connection and its safety to ensure long-term service. This derives the need for
surface normal measurements, which are usually achieved by using laser displacement sensors,
for their agility, accuracy, and ease of integration [1]. The laser displacement sensor (LDS)
is an optical sensor that works under the triangulation measurement principle and returns
the displacement value of the measured point relative to the origin [2]. The measurement is
achieved through visual identification of the projection point of a laser beam on the surface
of the measured object (i.e., the measured point) and the origin refers to the point at which
the laser beam is emitted. As a sensor for one-dimensional measurements, LDSs are widely
used in situations in which only the relative linear distance is needed [3–5]. In these scenarios,
the origin of the sensor need not be known. However, in some other situations [6–8], LDSs
work as a probe attached to a measurement system and the 3D position of the laser projection
point needs to be defined, which requires prior knowledge of the direction and origin of the
laser beam in an external coordinate system (usually the measurement system). Methods
have been developed and can be divided into two main categories: the so-called sphere
calibration [9–11] and the so-called plane calibration [12,13]. The main idea of the above
methods is to establish an expression of the laser projection point on a specific target, such as
by substituting the point into the equation of a sphere or plane.

In practice, the sphere calibration method is mainly used for single-sensor calibration,
whereas the plane calibration method is mainly used for multi-sensor calibration. In the
former case, the sensor is mounted to coordinate systems, such as measuring machines or
machine tools, and the calibration is based on the original coordinates of the coordinate
systems. The sensor approaches the sphere from different directions and obtains distance
values, and the different measurements are constrained by a common static sphere. The
raw coordinates of the coordinate system are the basis for building the equations. In
the latter case, the sensors are formed into a diamond array and mounted to a robot, or
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machine-tool-drilling system, for surface normal measurements. When the 3D coordinates
of the four measured points of the LDS are obtained, the surface normal can be calculated
via vector fork multiplication, plane fitting, or curved surface fitting. Thus, the sensors
are expected to be calibrated under a unified coordinate system. A sketch of the surface
normal measurement scene is shown in Figure 1. As shown, four LDSs labeled with LDS1
to LDS4 are combined. O1 to O4 are the origin points of the LDSs, and P1 to P4 are the laser
projection points. Only if the coordinates of P1 to P4 are obtained under a unified coordinate
system O-XYZ, can the surface normal of the surface to be measured be calculated. The
calculation method depends on whether the area being measured should be treated as a
plane or a surface with curvature. Therefore, our goal was to calibrate the three-dimensional
coordinates of O1 to O4 in the O-XYZ coordinate system, as well as the orientation vector
of each laser beam.

P1

P2

P4

P3

O1

O2

O3

O4

O Z

Y

X

LDS1
LDS2

LDS3

LDS4

Laser Beam

Surface to be measured

Figure 1. A sketch of the surface normal measurement scene.

In the plane calibration method, the sensor measures the same flat plate at different
attitudes, and the attitude of the flat plate is simultaneously acquired by using other
measuring devices. The most used measuring device is a laser tracker. Yu [12] calibrated
the LDSs to work as a surface normal sensor of a machine tool drilling system with the
traditional plane calibration. In this work, planar equations were established using the
unknown laser beam vector and laser beam origin. Then, the system of equations was
solved with the least squares method. The maximum angular deviation in drilling was 0.44◦

under the guidance of the calibrated sensor. The method was simple and clear, but also
sensitive to measurement errors in calibration. In a similar scenario, Chen [13] constructed
a nonlinear target expression, based on a planar equation and used an extended Kalman
filter for the solution. It had a maximum angular deviation of 0.1780◦ after calibration and
reduced the angle error in drilling, but required a relatively precise estimate of the initial
values of LDS parameters. Furthermore, Kuester [14] calibrated a series of LDSs around
a blade in the wind tunnel by using prior knowledge of the blade shape and its rotation
angle; the uncertainty in the rotation measurement was 0.032◦, but the scenario was limited
to the attack angle measurement of the model in the wind tunnel.

For surface normal measurements, there are three reasons to use plane calibration
instead of sphere calibration:
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1. The surface normal needs to be additionally measured, which usually means that
the raw positioning of the platform is not capable of handling a large working space
range, limiting the utilization of original data of the coordinate systems;

2. The simultaneous calibration of four sensors requires a large standard sphere (in
order to be “seen” by four sensors at the same time), which is difficult to manufacture,
whereas plates with a datum plane of the corresponding size are much less difficult
to manufacture;

3. The relative position and attitude of the sensor and target need to be changed and
measured during calibration, and the plane is easier to measure than a sphere when
the original coordinate data cannot be relied upon.

The plane calibration method establishes equations of the datum plane both from
the sensors and other measuring devices, such as laser trackers. Each plane position and
attitude generates an equation, of which a certain amount is solvable for the laser beam
direction vector and origin coordinates of each laser displacement sensor.

Although the plane calibration method is simple and easy to implement, it still has
some problems:

1. Since both the sensors and the other measuring devices observe the same side of the
plate, an additional area is required to avoid occlusion, which increases the difficulty
of manufacturing and guaranteeing the accuracy of the plate;

2. Since some parameters in the calibration equation are coupled (this is shown in
Section 2), the calibration process is more sensitive to measurement errors and requires
more equations to suppress;

3. Since the laser beam direction vector and sensor origin coordinates are difficult to
physically contact (they just exist algorithmically), it is difficult to evaluate the calibra-
tion results objectively, such as through verification by a three-coordinate machine.

In an attempt to calibrate a probe that measures the surface normal (the probe is
described in detail in Section 4), we found that the existing method did not allow us to
achieve a measurement error of less than 0.1◦. The measurement error here is defined as
the angle between the measured surface normal and the actual surface normal, the latter of
which is obtained by a structured light [15] probe.

In this paper, a novel method for the pose and position calibration of laser displacement
sensors is proposed, with the aim of solving the three problems. This method realizes the
calibration of the laser beam direction vector and sensor origin coordinates based on a
double-side-grinded monocrystalline silicon wafer, and evaluates the calibration results
with high accuracy. The basic idea is that a double-side-grinded monocrystalline silicon
wafer is placed between the LDSs and a structured light probe (SLP). When the pose
of the wafer is changed, the SLP measures its pose and position by scanning the wafer,
and then a group of linear equations is constructed. Each time the wafer is moved, a group
of equations is established, and, once there are enough equations, they can be solved by
using the least squares method. For systems of super-determined linear equations with
errors, the least squares method is a major method of flattening the error, and a sufficient
number of equations can suppress the error to an ideal degree [16]. The exact number
of equations for which the desired result is obtained are later indicated in subsequent
simulations. The thickness of the wafer is measured and used to remove unsuitable
equations. The remaining equations are used to solve the calibration parameters. The main
merits include the following:

1. This method simplifies the calibration scene. For manual scenarios, only sensors,
wafers, and probes capable of measuring planes are required, and there are no require-
ments for the movement of the wafers. Additionally, the size of the wafer is limited to
only cover the range of sensors to be calibrated, which further reduces the cost.

2. The computational overhead is small, requiring only a linear solution to achieve
sufficient accuracy, and, thus, it can be easily integrated into embedded systems.



Sensors 2023, 23, 1762 4 of 24

3. The error of calibration can be indicated by the difference between the wafer thickness
obtained by calibration and the actual high-accuracy thickness measurement, which
is easy to derive.

The remainder of this paper is organized as follows: In Section 2, the calibration
method is modeled. In Section 3, the calibration method is examined through simulations
to explore the boundary conditions for a successful calibration and to validate its superiority
to the traditional plane method. In Section 4, the calibration and evaluation experiment is
carried out. The conclusion is given in Section 5.

2. LDS Calibration Model

In the existing plane calibration methods, representation of the datum plane is the
key to establishing an equation. If the sensor origin coordinates and laser beam direction
vector are assumed to be (x0, y0, z0) and (l, m, n), and the voltage value proportional to the
distance is v, then the laser projection point can be represented as (x0 + lv, y0 + mv, z0 + nv).
It should be pointed out that when the return value of the LDS is measured in voltages,
the direction vector here coupled the conversion coefficient of voltage to physical distance.
Therefore, it would no longer be a unit vector and the length of the vector (l, m, n) is the
voltage–physical distance conversion coefficient. When the laser projection point falls on a
plane, it should satisfy the plane equation obtained by other measuring devices:

A(x0 + lv) + B(y0 + mv) + C(z0 + nv) + D = 0 (1)

In which A, B, C and D are the parameters of planar equation measured by other
devices. It can be seen here that the six coefficients A, Av, B, Bv, C, and Cv in the equation
were obtained by coupling four known quantities A, B, C, and v, which meant that the
measurement error of A, B, C, and v would have a greater impact on the solution of the
system of equations than if the coefficients were independent. In our method, the addition-
ally measured plane and the laser-projected plane were not the same. They were planes
of opposite sides of the wafer. Thus, if we assumed that the thickness of the wafer was d,
Equation (1) could be rewritten as:

A(x0 + lv) + B(y0 + mv) + C(z0 + nv) +
√

A2 + B2 + C2d = −D (2)

Here, d was treated as an unknown variable rather than a known constant, which
made subsequent optimization and validation possible.

After changing the wafer position and attitude several times, sufficient equations were
established and the system of linear equations was obtained, in which Ar, Br, Cr, and Dr
were the measured plane parameters in operation r, and vr was the voltage read from any
of the sensors being calibrated, as follows:

A1 A1v1 B1 B1v1 C1 C1v1

√
A2

1 + B2
1 + C2

1

A2 A2v2 B2 B2v2 C2 C2v2

√
A2

2 + B2
2 + C2

2
. . . . . . . . . . . . . . . . . . . . .
Ar Arvr Br Brvr Cr Crvr

√
A2

r + B2
r + C2

r
. . . . . . . . . . . . . . . . . . . . .

As−1 As−1vs−1 Bs−1 Bs−1vs−1 Cs−1 Cs−1vs−1

√
A2

s−1 + B2
s−1 + C2

s−1

As Asvs Bs Bsvs Cs Csvs
√

A2
s + B2

s + C2
s


•



x0
l

y0
m
z0
n
d


=



−D1
−D2
. . .
−Dr
. . .
−Ds−1
−Ds


(3)

The calibration calculations are independent for each sensor, and thus, each wafer
position and attitude can be used by multiple sensors simultaneously. The minimum value
of s was 7 to solve equation system (3). However, for more accurate results, s should be
as large as possible and solved using the linear over-determined system of the equations’
solution. Note that if As, Bs, and Cs were unitized (i.e.,

√
A2

s + B2
s + C2

s = 1) in the method
(e.g., if you obtained A, B, C, and D by using a monocular camera and a checkerboard
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pattern), then they should be multiplied by a random number to guarantee that the equation
would be solvable. If we represent the coefficient matrix in terms of Q, i.e.:

Q =



A1 A1v1 B1 B1v1 C1 C1v1

√
A2

1 + B2
1 + C2

1

A2 A2v2 B2 B2v2 C2 C2v2

√
A2

2 + B2
2 + C2

2

. . . . . . . . . . . . . . . . . . . . .
Ar Arvr Br Brvr Cr Crvr

√
A2

r + B2
r + C2

r
. . . . . . . . . . . . . . . . . . . . .

As−1 As−1vs−1 Bs−1 Bs−1vs−1 Cs−1 Cs−1vs−1

√
A2

s−1 + B2
s−1 + C2

s−1

As Asvs Bs Bsvs Cs Csvs
√

A2
s + B2

s + C2
s


(4)

We have 

x0
l

y0
m
z0
n
d


= (QTQ)−1QT



−D1
−D2
. . .
−Dr
. . .
−Ds−1
−Ds



T

(5)

Since each of the equations comes from a separate random attitude of the plane, they
are arithmetically equivalent. After the system of equations is constructed, d can be solved,
and then, we try to delete the r row of Q (r = 1, . . . , s) and the corresponding Dr in order
from 1 to s, and re-solve d. If the absolute difference between d and its measured value
decreases, the deletion is retained; otherwise, the operation is rolled back and redone in the
next (r + 1) row.

When the number of deletions reaches a certain threshold M or the difference between
the solved d and its measured value is less than a certain threshold Thresh, the above
operation is terminated and all unknown variables are solved with the remaining equations.
Although we cannot know the error of (x0, y0, z0, l, m, n) from the solution result, the differ-
ence between d and its measurement can be used for the evaluation of the accuracy of the
entire solution. The whole procedure is shown in Figure 2.

The above model is different from the traditional plane calibration in two ways:

1. The plate thickness d is newly introduced as an unknown variable;
2. The solution error of the plate thickness d is used as the basis for equation screening,

which is also the main means of our method to ensure accuracy.
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Start

Collect data and construct 

the system of equations

Measure the thickness of the 

plate used for calibration, 

and get d0

Solve the system of 
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squares and get d

Delete the ith row of the 

system of equations and re-

solve it, then get d’

If

(0 < Ratio < 1)
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No
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of valid deletions 
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Yes

Roll back 

deletion

Retain 

deletion

End

Yes

Re-solve the system of 

equations and output results

If
Threshdd − 0'No

No

Yes

Figure 2. Whole procedure of the proposed calibration algorithm.

3. Algorithm Simulation
3.1. Simulation Preparation

To evaluate the proposed calibration model, an algorithmic simulation was conducted,
in which simulated data for calibration calculations were generated and fed into the
calibration model.
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For laser displacement sensors using the trigonometric principle, the maximum value
α of the angle between the laser beam and the normal vector of the surface to be measured is
limited [17], and is usually less than 10◦. At the same time, in order to avoid the strangeness
of the equations, there should be a minimum β limit of an angle between any two postures
in the process of changing the attitude of the wafer. The above constitutes the first two
constraints. Then, the LDS usually has a linearity value, indicating the difference between
its indication and the ideal curve (a straight line with a slope), which can serve as an error
in its results.

In order to find out the factors that affect the calibration, we modeled the calibration
process, in which we had an LDS and a thick plate with two sides that were parallel. The
LDS was abstracted as a unit with a coordinate origin (representing the laser beam origin
or sensor origin), a measurement vector (representing the laser beam), and a measurement
voltage (representing the actual voltage value and which determined the length of the
measurement vector). The measured voltage was added with a random error of 0.1%
to simulate a real LDS. The visualization of the simulation is shown in Figure 3. In the
visualization, the laser beam, the laser beam origin, the laser projection point, the laser-
projected plane, and the additionally measured plane from two random generations are
shown. The laser beam origin and the laser beam remained unchanged, whereas the
laser-projected plane and the additionally measured plane were different. Thus, the laser
projection point was also different. The data required for calibration came from this model,
and all data were subject to the necessary random errors.

X(mm)
Y(mm)

Z(mm)

X(mm)
Y(mm)

Z(mm)

（a） （b）

Figure 3. Visualization of the random generations (a,b) in a Cartesian coordinate system (axes are
measured in millimeters).

In our simulation, we preset the sensor’s laser beam vector and origin coordinates,
as well as the thickness of the plate. To avoid the influence of special values, a random
change was attached to the preset values during each individual simulation. To generate
the parameters of each plate’s pose and position, a set of As, Bs, and Cs was randomly
generated, and, then, the measurement of voltage vs was obtained. Ds was calculated by
using As, Bs, Cs, and vs with preset values. Thus far, we could obtain the ideal parameters
of the LDS and plate under the current plate pose and position. Then, we applied random
errors to the planar parameters and voltages, where the voltage error was set according
to the physical parameter of the LDS, which was 0.1%, and the planar parameter error δ
was the variable factor we were concerned with. The error level was constant in the same
simulation. The generation of random As, Bs, Cs and vs was repeated until the number
of equations reached a specific value K, which was another concerning factor. During
the generation process, As, Bs, and Cs underwent screening, which was based on the
maximum and minimum angles mentioned earlier. Among them, the maximum angle
limited the angle between the normal vector of the plane (i.e., (As, Bs, and Cs)) and the
preset sensor measurement vector (i.e., the laser beam vector in the real LDS), and the
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minimum angle limited the minimum angle value of angles between the normal vector
of the newly generated plane and that of all planes that already existed. Only the As,
Bs, and Cs that passed the maximum and minimum angle screening could be used in
the subsequent procedure. The whole procedure is shown in Figure 4. The intermediate
variables a, b, c, and r were used to generate the plane parameters.

Start

Randomly generate a, b

(-1 < a < 1, -1 < b < 1 

and  a∙b ≠ 0 )

Preset x0, y0, z0, l, m, n, d

Randomly generate r

(0 < r < tanα )

Normalize (a, b, c) 

If λ < β 

End

No

Randomly generate sensor 

measurement voltage v 

0 < v < 5

n

ml •+•
−=

ba
c










++••+=

++••+=

++••+=

222

222

222

rcC

rbB

raA

nmln

nmlm

nmll

Calculate angles between the 

newly generated  (A, B, C) 

and each existing (A, B, C), 

output the smallest one 

among them as λ 

Yes

)CCBBAA(D 000 dnvxmvxlvx +••+•+••+•+••+•−=

Normalize  (A, B, C)

A, B, C, D multiply by a 

random number (not zero)

Add random error on A, B, 

C, D and v

Output A, B, C, D and v

If data volume < K 

No

Yes

Figure 4. Whole procedure of the simulation algorithm.



Sensors 2023, 23, 1762 9 of 24

Once enough data were obtained, they were substituted into the calibration program,
the solved variables of x0, y0, z0, l, m, n, and d compared with the preset ones, and the ratio
of the error and the preset value (i.e. the relative error) recorded. With the same set of α,
β, δ, and K, this process was repeated 100,000 times, resulting in a normal distribution of
errors. An example of x0 is shown in Figure 5.

Figure 5. Normal distribution of the relative error of x0, with α = 9.0◦, β = 1.0◦, δ = 0.05%,
and K = 50.

The purpose of the simulation experiment was as follows:

• Find out if, and how, variables of interest affected calibration errors;
• Explore the influence of the change of plate thickness d on the calibration errors;
• Compare calibration error distributions with and without equation screening via the

error of d.

3.2. Simulation Results

As a simulation of a real-world scenario (which is shown in Section 4), we set the
initial parameters of the sensor to (x0 = 15.0 mm, y0 = 15.0 mm, z0 = 80.0 mm, l = 0.6,
m = 0.6, n = 1.8, d = 0.6 mm). As mentioned earlier, these presets were applied with a
random variation for each simulation experiment to avoid being specific to certain data. It
was clear that x0 and y0 were arithmetically equivalent, as were l and m; thus, they were
put together when the results were presented.

3.2.1. Error Distribution under Different Factors of α, β, δ, and K

For simplicity, we only changed one factor at a time. Additionally, as a phenomenon
that we observed by chance in the experiments, the value of d + z0 had good resistance to
various interfering factors, and thus, we also listed d + z0 as an observation object. Figure 6
shows the error distribution of the calibration results under different values of maximum
angle limits α, where the value of α increased from 7.0◦ to 9.0◦ in equal steps of 0.5◦. In this
set of experiments, β = 1.0◦, δ = 0.05%, and K = 50. It is worth noting that with the
increase in the maximum angle limit α, the calibration error tended to decrease. As the
maximum angle limit increased, the coefficient difference between equations also increased,
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and, therefore, the probability of obtaining a unique solution also increased. In the least
squares method, this meant a reduction in the solution error.
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Figure 6. The standard deviations of relative errors of (x0, y0, z0, l, m, n, d, d + z0) with the increase
in α; the horizontal axis was measured in degrees.

Figure 7 shows the error distribution of the calibration results under different values
of minimum angle limits β, where the value of β increased from 0.1◦ to 0.9◦ in equal
steps of 0.1◦. In this set of experiments, α = 9.0◦, δ = 0.05%, and K = 50. Similar
to the maximum angle limit α, the increase in the minimum angle limit β also led to a
decrease in the calibration error. At the same time, under the condition that the maximum
angle limit α was unchanged, the increase in the minimum angle limit β compressed the
feasible attitude space, thus reducing the average difference between the various calibration
postures. Therefore, the error did not decrease significantly for z0 and d.
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Figure 7. The standard deviations of relative errors of (x0, y0, z0, l, m, n, d, d + z0) with the increase
in β; the horizontal axis was measured in degrees.

Figure 8 shows the error distribution of the calibration results under different values
of plane parameter error percentages δ, where the value of δ increased from 0.05% to
0.23% in equal steps of 0.02%. In this set of experiments, α = 9.0◦, β = 1.0◦, and K = 50.
Obviously, the more accurate the plane parameter obtained, the smaller the calibration
error. Therefore, for better calibration results, flatter planes and higher precision planar
measurements are needed.

Figure 9 shows the error distribution of the calibration results under different values
of equation volumes K, where the value of K increased from 35 to 125 in equal steps of 15.
In this set of experiments, α = 9.0◦, β = 1.0◦, and δ = 0.05%. As the number of equations
increased, the calibration error decreased, but for z and d, we saw a phenomenon similar to
when the minimum angle limit increased. The reason was similar to that of Figure 6: the
maximum and minimum angle limits did not change, and the increase in the amount of
data led to a decrease in the average difference between the calibration attitudes.
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Figure 8. The standard deviations of relative errors of (x0, y0, z0, l, m, n, d, d + z0) with the increase
in δ; the horizontal axis was measured as percentages.

3.2.2. Error Distribution under Different d

Figure 10 shows the error distribution of the calibration results under different values
of plate thicknesses d, where the value of d increased from 0.2 mm to 1.8 mm in equal steps
of 0.2 mm. In this set of experiments, K = 50, α = 9.0◦, β = 1.0◦, and δ = 0.05%. As a
newly introduced parameter, the size of d did not have a significant effect on the solution
accuracy, except for its own accuracy. Since the error was normalized, it could be inferred
that the error value of d did not change with the change in d.
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Figure 9. The standard deviations of relative errors of (x0, y0, z0, l, m, n, d, d + z0) with the increase
in K; the horizontal axis was measured in equation volume.

3.2.3. Error Distribution with and without Equation Screening

Figure 11 shows the error distribution of the calibration results under different equa-
tion volumes of K without (tagged with origin) and with (tagged with ours) equation
screening, where the value of K increased from 35 to 125 in equal steps of 15. In this set of
experiments, α = 9.0◦, β = 1.0◦, and δ = 0.05%.

It is clear that the solution accuracy of x0, y0, z0, d, and d + z0 was significantly
improved by using equation screening. There was a slight drop in the solution accuracy for
l, m, and n, which came from a decline in the number of valid equations. In the case of a
large enough number of equations, the difference brought by screening was small enough
to be negligible.
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Figure 10. The standard deviations of relative errors of (x0, y0, z0, l, m, n, d, d + z0) with the increase
in d; the horizontal axis is measured in millimeters.

Overall, it could be concluded that our screening method was very effective, and could
significantly improve the accuracy of the LDS’s position and pose calibration, even when
using only the linear least squares method. Therefore, this method was implemented
in a real system. According to the simulation, we needed a calibration plate that was
flat enough and parallel on both sides. To achieve this, we investigated a variety of
possible objects, including metal machined parts, float glass, and wafers. The flatness
and parallelism of machined parts were difficult to guarantee, and transparent float glass
was difficult to measure. On the other hand, wafers had a sufficiently high flatness and
parallelism, and, at the same time, were easy to obtainm due to being a raw material of the
semiconductor industry.
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Figure 11. The standard deviations of relative errors of (x0, y0, z0, l, m, n, d, d + z0) with the increase
in K with and without equation screening; the horizontal axis was measured in equation volume.

The general conclusion we could draw from the simulation was that, in order to obtain
better calibration results, we should increase α, as much as possible (without exceeding
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the LDS’s technical requirements), and reduce δ as much as possible (if it can be achieved),
whereas the optimal value of β was 0.6◦, and K should be greater than, or equal to, 100 to
have significant advantages over the original method in every parameter.

After obtaining the law of the influence of different parameters on the calibration error,
we explored the measurement accuracy of the surface normal at different LDS calibration
error levels through a simple calculation program. Simply put, the parameters with errors
were substituted into the normal calculation equation and compared with the calculated
result without errors.

After a series of attempts, a conclusion was drawn. To achieve a surface normal
measurement accuracy of 0.1◦, the parameters required for calibration were as follows:
δ ≤ 0.05%, K ≥ 100, β ≥ 0.6◦, and α ≤ 9.0◦. The requirement for α was to consider the
situation of multiple sensors, in which there were angles between the sensors, and each
sensor had to maintain an angle of 10◦, or less, with regard to the plane normal. Thus, there
should be a safe gap between α and the technical requirements of LDS on the maximum
angle (which was usually 10◦).

4. Experiment

The object of the actual calibration experiment was a hand-held instrument aimed at
measuring the verticality of the hole, as shown in Figure 12. At the end of the instrument
were four LDSs distributed equidistantly around the circumference, and on the axis of the
circumference was a rod with three protruding claws to accommodate holes of different
diameters. When measuring, the rod probed into the hole and the three claws extended
out; thus, the rod and the hole were coaxial. At this time, the four LDSs measured the
distances from themselves to the surface around the hole and calculated the 3D coordinates
of the four measured points, according to the origin coordinates and laser beam direction
vector obtained by calibration. Then, the surface normal was obtained by plane fitting,
and its angle with the axial direction of the rod was calculated. The axial direction of
the rod was measured prior and recorded with the instrument software. The four LDSs
were the Panasonic HG-C1030 model, where the measurement center was 30 mm away
from each sensor’s origin. The measurement range of the sensors was 30 ± 5 mm, and the
distance value from −5 mm to 5 mm was represented by a 0–5 V analog voltage with a
nonlinearity of ±0.1% in the whole range. The circuit board in the handle read, digitized,
and output the voltage values of the four sensors. The goal of calibration was to obtain
the origin coordinates and laser beam direction vectors of the four LDSs. As can be
seen, this instrument worked independently and was not attached to a coordinate system.
Therefore, its calibration had to be exogenous. This was why we developed the proposed
calibration method.

The flat plate used for calibration was a 650 µm thick double-side-grinded monocrys-
talline silicon wafer, with a global flatness, thickness non-uniformity, and surface roughness
less than 3 µm. The wafer was chosen for its easy access and high planarization perfor-
mance, which met the requirements of planar parameter errors. In the calibration method
being performed from both sides, a 6-inch wafer was sufficient to meet the requirement of
the observable area.

In order to achieve better reproducibility of the attitude transformation, the wafer was
installed on an electric motor-driven platform, which had six motors and controlled the
attitude and position of the wafer within a certain angle range, as shown in Figure 13. The
platform consisted of a fixed frame and a mobile frame. The three motors mounted on the
fixed frame drove the mobile frame linearly along three rails to achieve the change in the
planar equation parameter D. The three motors mounted on the mobile frame drove the
wafer holder to change the pose to achieve the change in the planar equation parameters A,
B, and C. Thus, the wafer could be directed to any pose and position within the range of
the connecting rods. Motor rotation angles under each pose and position could be recorded
and replayed. At the same time, they could also be randomly generated by the controlling
software. The motor-driven platform was specially designed and developed for calibration
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by the authors. The step motors were manufactured by Makerbase and the frame consisted
of aluminum profiles and 3D-printed parts. The controlling software, which had the
ability of moving control, pose prediction, and data calculation, was developed under UOS
(Uniontech Operating System). The platform ensured the experiments were reproducible
and improved the efficiency of random plane generation, compared to manual operation.
To avoid the force deformation of the wafer, the wafer holder flexibly clamped the wafer
via two rubber rings and maintained a very low clamping force that only kept the wafer
relatively stationary while moving. The effectiveness of this clamping method in avoiding
deformation was verified by the RANSAC (random sample consensus) plane fitting of the
measured point cloud of the wafer when it was fixed.

Figure 12. The calibration object: a handheld hole–verticality measurement instrument.

Specifically designed for calibration, the front and rear of the silicon wafer on this
platform were fully open to be observed by the SLP and the LDSs at the same time. As
the source of precise plane parameters, the SLP adopted the principle of a three-frequency,
four-step phase shift, had two cameras with 5 million pixels, and was calibrated by a
checkerboard with a pattern accuracy of ±1 µm. The SLP had a scanning volume of around
40 mm ∗ 30 mm ∗ 20 mm and achieved a measurement accuracy of 0.02 mm under the
VDI/VDE 2634 standard [18]. The planar equation parameter uncertainty was less than
0.02% for multiple scans and fittings of the same surface when the wafer was fixed. The
SLP is shown in Figure 14.

The complete experiment setup is shown in Figure 15. In simple terms, this seemingly
complicated scene only contained three elements:

• The sensors to be calibrated;
• The wafer, having a posture that could be changed;
• The SLP.

The motor platform could be replaced by a simple stand, and the SLP could be
replaced by any device capable of measuring planar parameters, such as three or four
calibrated LDSs.

In the process of changing the position and pose of the wafer, it might exceed the
range of some LDSs and fall within the range of other LDSs. All LDSs within the range
could adopt this attitude to achieve the multiplexing of calibration data among the sensors.
Thus, in actual experiments, the ratio of this multiplexing could be as high as 80% to 90%.
The uncertainty of the parameter measured on the same plane by the SLP was less than
0.05%, reaching the optimal state of the simulation. The data volume was set to 100. A
simplified diagram of the calibration procedure is shown in Figure 16.
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Figure 15. The experimental setup (characters in the nameplate means “Spacial Plane Position and
Attitude Adjustment Device”).

As a verification of the calibration results, the calibrated LDSs and the SLP were used
to measure the wafer’s surface normal vector as a basis for the initial posture (when all
motor rotation angles were 0◦), and then, they were used to measure the wafer under each
of the 115 different poses, simultaneously. The angle between the normal vector of each
pose and the basis was output separately, the result from the SLP was used as a reference,
and the result from the LDSs was used as the measurement value. A simplified diagram of
the validation procedure is shown in Figure 17.

The absolute differences between the measurement values and the corresponding
references were regarded as the calibration error, the distribution of which is shown in
Figure 18. The results conformed to a normal distribution. As can be seen from the figure,
most of the results were distributed in the 0◦ to 0.08◦ range, and, out of 115 validations,
only 3 were distributed in the 0.08◦ to 0.10◦ range, whereas only one reached 0.10◦.
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Figure 16. The calibration procedure of the experiment.
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Figure 18. The distribution of the calibration errors.

5. Conclusions

This paper presented a novel method to calibrate laser displacement sensors by ob-
serving the opposite sides of a wafer and reducing the calibration error by optimizing
the results of the wafer thickness. A series of simulations was conducted to explore the
effect of several factors on the calibration error and to validate the superiority of the pro-
posed method, compared to the traditional one. The calibration method was applied to
a handheld instrument with four LDSs. The surface normal measurement results of the
instrument, after calibration, were compared with those of a SLP in 115 validations, and the
max error was 0.1◦. The proposed method is valid for laser displacement sensors and also
instructive for the calibration of other similar sensors. Since the method presented in this
paper only involves equation screening in linear solving, the screened equations can still be
constructed in a nonlinear form to further improve accuracy.
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Abbreviations and Symbols
The following abbreviations and symbols are used in this manuscript:

LDS Laser displacement sensor
O1, O2, O3, O4 Origin points of the laser beam of the LDS1, LDS2, LDS3, LDS4
P1, P2, P3, P4 Laer projection points of the laser beam of the LDS1, LDS2, LDS3, LDS4
SLP Structured light probe
x0, y0, z0 Origin coordinates of the laser beam of the LDS

l, m, n
Direction vector of the laser beam of the LDS coupling
the conversion coefficient of voltage to physical distance

d Thickness of the wafer used for calibration (from calibration)
A, B, C, D Planar equation parameters of the additionally measured plane
v Output voltage of the LDS
Q The coefficient matrix of the calibration system of equations
M Threshold for the number of deleted equations
Thresh Threshold for the distance between the solved d and measured d (i.e. d0)
d0 Thickness of the wafer used for calibration (from measurement)
d’ Iteration of d
Ratio Decrease ratio of difference between d and d0

α
Maximum value limit of the angle between the laser beam and
the surface normal to be measured

β Minimum value limit of the angle between any two planes in the calibration
a, b, c, r The intermediate variables used to generate the plane parameter

λ
The smallest angle between the newly generated plane normal (A, B, C)
and the existing ones

K The data volume (i.e. the number of equations)
RANSAC Random sample consensus

vector0
Surface normal of the wafer measured by LDSs when motors rotate
to an angle of 0

vector0’
Surface normal of the wafer measured by the SLP when motors rotate
to an angle of 0

θ
Angle between the surface normal of the wafer measured by LDSs and
vector0 when motors rotate to random angles

θ′
Angle between the surface normal of the wafer measured by the SLP
vector0’ when motors rotate to random angles
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