
Citation: Rahaman, M.S.; Islam, A.;

Cerny, T.; Hutton, S.

Static-Analysis-Based Solutions to

Security Challenges in Cloud-Native

Systems: Systematic Mapping Study.

Sensors 2023, 23, 1755. https://

doi.org/10.3390/s23041755

Academic Editors: Paolo Visconti,

Iain Collings and Yuh-Shyan Chen

Received: 30 December 2022

Revised: 18 January 2023

Accepted: 31 January 2023

Published: 4 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Review

Static-Analysis-Based Solutions to Security Challenges in
Cloud-Native Systems: Systematic Mapping Study
Md Shahidur Rahaman, Agm Islam, Tomas Cerny * and Shaun Hutton

Department of Computer Science, ECS, Baylor University, Waco, TX 76798, USA
* Correspondence: tomas_cerny@baylor.edu

Abstract: Security is a significant priority for cloud-native systems, regardless of the system size
and complexity. Therefore, one must utilize a set of defensive mechanisms or controls to protect
the system from exploitation by potential adversaries. There is an expanding amount of research
on security issues, including attacks against individual microservices or overall systems and their
corresponding defense mechanism options. This study intends to provide a comprehensive overview
of currently used defense mechanisms involving static analysis that can detect and react against
associated attacks and vulnerabilities. We present a systematic literature review that extracts current
approaches for the security analysis of microservices and the violation of security principles. We
gathered 1049 relevant publications, of which 50 were selected as primary studies. We are providing
practitioners and developers with a structured survey of the existing literature of defensive solutions
for microservice architectures and cloud-native systems to aid them in identifying applicable solutions
for their systems.

Keywords: security; defense; cloud-native; microservice; attacks; vulnerabilities; static analysis

1. Introduction

Software developers are adopting several strategies to meet business requirements
with the emerging technological shift. The Microservice Architecture (MSA), which fueled
cloud-native principles, is now mainstream due the capability it brings to the organization
around business essentials. Developers benefit from the high serviceability, loose coupling,
and quick deployment of this architectural style [1]. The straight-forward deployment
process brings an enormous number of service instances that eases the continuous inte-
gration and deployment process [2]. In addition, microservices may be distributed over
the network among many execution platforms. By utilizing microservices, large-scale and
distributed software systems may be flexible and scalable. However, the distributed nature,
massive number of service instances, and substantial inter-service communication through
the network bring significant entry points for the potential adversaries [3] to enter the
system and potentially inflict harm. Adversaries can exploit those hotspots to violate the
security principles of the system.

With significant security challenges, developers must consider security a top prior-
ity for the MSA or cloud-native systems. A variety of safeguards are required for the
microservices. Each microservice aims to supply functions intrinsically coupled to other
microservices through the communication protocol. As a result, if the attackers compromise
one of the microservices, they may obtain access to the linked microservices. In addition,
it is more challenging to monitor specific services due to their scattered nature. The secu-
rity challenges go beyond simply locating or blocking the hotspots where the adversaries
engage in malicious activity [4]. Instead, we should involve identifying the adversary’s
mindset behind their attacks, categorizing it, reacting and responding to the system’s
failure, and putting defensive measures in place to mitigate against those vulnerabilities
or attacks. Even though researchers have developed several defensive strategies for the

Sensors 2023, 23, 1755. https://doi.org/10.3390/s23041755 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23041755
https://doi.org/10.3390/s23041755
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5882-5502
https://doi.org/10.3390/s23041755
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23041755?type=check_update&version=1


Sensors 2023, 23, 1755 2 of 27

MSA, the categorization of these techniques and the identification of potentially malicious
behavior still requires attention, given the rise in MSA attacks.

For example, several static analysis tools detect bugs in a monolithic system and
techniques utilized as a defensive module. It is also very convenient to perform security
analysis for the system. For the MSA, the gigantic structure makes the analyzer work harder
to scan for vulnerabilities [5]. Finally, deploying and operating detection and protection
mechanisms tend to be tedious work, which indicates that more investigation is needed in
this field.

This study conducted a systemic mapping study to uncover the defense mechanisms
of cloud-native systems. We comprehensively identified existing research addressing
the static analysis of the defensive approach to protect MSA-based systems, categorize
potential attacks and vulnerabilities, and provide insight into the current gaps in the
existing literature. Finally, with the defenses suggested to mitigate and avoid categorized
attacks or vulnerabilities, we used a detailed procedure to extract, categorize, and organize
them. To summarize our study, the contributions of the research are:

• Categorization of the defense mechanism utilizing static analysis addressed toward
the microservice and cloud-native architecture.

• Categorization of the attacks or vulnerabilities and identifying the potential ap-
proaches to detect them.

• A correlational analysis of the defensive approach to preventing the addressed catego-
rized attacks.

• Summarization of the open challenges in the defensive approach of the MSA resulting
from our findings and assembling a statement of intent for the community of scholars
and practitioners working in that field.

The organization of this study is as follows: Section 2 describes the “Related Works”.
Section 3 follows with our “Research Methodology” reviewing our research method to
conduct a systematic literature review, research questions, and inclusion and exclusion
criteria. Further, in Section 4, we present the “Research Findings and Results”. Section 5
discusses threats to validity. Finally, we conclude with the “Discussion” and “Conclusions
and Future Work”.

2. Related Work

The existing secondary study literature provides more general studies concentrating
on the specific field of the security aspect of microservices. The specification mainly ad-
dresses the threat modeling, authentication authorization, and security mechanism of the
MSA. The core aspect of implementing security solutions is identifying the potential chal-
lenges and how to address them. Billawa et al. [6] provided security discussions identified
in the grey literature and addressed the challenges when implementing security. Finally,
the systematic grey literature review identified solutions and best practices, which also
analyzed the improvements to existing methodologies in the microservice architectures.
Another challenging aspect of implementing a security defense mechanism is the identifi-
cation of smells indicating potential security vulnerabilities in microservice-based systems.
Ponce et al. focused on the well-known smells and their potential mitigations in [7] on
58 primary research works chosen from those published from 2011 through the end of
2020. As a practical benefit for practitioners who may use the findings of their study in
their everyday work on protecting microservice-based applications, they finished with an
examination of how their methodology molded an important starting point for the security
of the MSAs.

Using a systematic literature study, Li et al. [4] thoroughly analyzed evidence-based,
cutting-edge quality aspects that were security issues in microservice-based systems.
The six most-alarming quality traits (performance, accuracy, scalability, reliability, security,
and usability) were determined, along with strategies to address them and their related
effects on the systems. Almeida et al. [8] prompted a systematic literature review to address
issues pertaining to the difficulties, strategies, and tools for handling authentication and



Sensors 2023, 23, 1755 3 of 27

authorization in microservices. Although they focused explicitly on authentication and
authorization, their studies vastly related to security mechanisms and the open-source tools
and approaches related to that. For example, a rigorous examination of the commercial grey
literature on the drawbacks and benefits of designing, creating, and running microservices
by Soldani et al. [9] supplemented the academic state-of-the-art. The highlighted pain is-
sues, which also addressed the appropriate granularity of the design of the security policies,
were principally caused by the inherent complexity of microservice-based systems. As op-
posed to this, the benefits are related to the specific characteristics of microservice-based
architectures, design patterns that allow for better exploitation, and the ability to deploy
and manage the microservices in an application independently. The studies mentioned
above primarily focused on security issues, security as quality attributes, and the character-
ization of security design policies. The categorization of the potential security issues and
their corresponding mechanism were uncovered in the above studies. Our study is the first
to cover the research on characterizing the defense mechanisms correlating the attacks.

Hannousse et al. [10] developed a systematic mapping that concentrated on the threat
categorizations and associated ontologies to address them. They concluded that the threats
now being examined and handled by research include those related to the nature, applicable
platforms, and validation procedures of security proposals that led to illegal access, sensitive
data disclosure, and compromising individual microservices. However, this study focused
on the threat categorization not having a generalized category of how can we characterize
the potential attacks and how those can be mitigated. To develop secure systems leveraging
such security mechanisms, Pereira-Vale et al. [11] detailed the methodology and findings of
a systematic mapping analysis to identify the security mechanisms utilized in microservice-
based systems published in the literature. In addition, reusing existing architectural
expertise to handle security issues in microservice-based systems is made more accessible
by the described security solutions. Pereira-Vale et al. [12] also performed a multivocal
literature study to extract the current security solutions and introduce categorizations
into variants of standard security mechanisms and scopes connected to security contexts.
They provided an extensive selection of security measures and procedures. The catalog of
security solutions comprehensively provides significant resources for securing microservice
architectures. However, it is important to pay attention to how such solutions might
categorize and sum up the probable mitigation strategies. Ultimately, these studies define
the existing security solutions by addressing current practitioners’ threats, vulnerabilities,
and prevention strategies.

According to the combined research topics in Table 1, the aforementioned studies
have addressed work on microservices pertaining to the mechanisms and methods of
generating systematic mapping studies in microservices describing security problems.
The methodologies for examining the defense mechanism of a cloud-native system as it is
now implemented have not, however, been covered in any works.



Sensors 2023, 23, 1755 4 of 27

Table 1. Research questions of existing secondary studies in related work.

Research Questions Addressed in Related Works

Research Question Citation

1. What are the current challenges reported by practitioners in the field of microservice security?
2. How do practitioners address the challenges mentioned in RQ1 and what are their recommendations to overcome

these challenges?

(a) What best practices are mentioned by practitioners?
(b) What technical solutions do practitioners propose?

[6]

1. Are there well-recognized smells indicating possible security violations in microservice-based applications?
2. How can microservice-based applications be refactored to mitigate the effects of security smells therein? [7]

1. What are the most-concerned QAs for the MSA?
2. What tactics have been proposed or discussed to improve the most-concerning QAs of the MSA? [4]

1. What are the challenges mentioned in the literature to perform authentication and authorization in the context of
microservice architecture systems?

2. What mechanisms are used in the literature to deal with the challenges related to authentication and authorization
in a microservices architecture?

3. What are the main open-source technology solutions that implement the authentication and authorization mecha-
nisms identified in the literature?

[8]

1. How much evidence of microservices experimentation from the industry is available online?
2. What are the technical and operational “pains” of microservices?
3. What are the technical and operational “gains” of microservices?

[9]

1. What are the most-addressed security threats, risks, and vulnerabilities of microservices and microservice architec-
tures, and how can they be categorized?

2. What are existing approaches and techniques used for securing microservices and microservice architectures, and
how can they be categorized?

3. At what level of architecture are the proposed techniques and approaches applicable for securing microservices?
4. What domains or platforms are the focus of existing solutions for securing microservices and microservice

architectures?
5. What kind of evidence is given regarding the evaluation and validation of the proposed approaches and techniques

for securing microservices and microservice architectures?

[10]

1. Which security mechanisms have been reported in microservice-based systems research?

(a) In which security categories do these mechanisms fall?

2. Which empirical strategies have been used to validate research on security mechanisms?
3. Which research strategies are used in the research of security mechanisms for microservice-based systems?

[11]

1. How has the frequency of publications on security in microservice-based systems varied over time? How have the
selected publication publishers changed?

2. Security Solutions’ Categorization

(a) What security mechanisms have been proposed or studied in microservice-based systems?
(b) What is the security scope of studies in microservice-based systems?

3. What security contexts have been addressed by the research?

[12]

3. Research Methodology

This section presents our thorough analysis of the adapted strategies and protocol
to employ the systematic mapping study. We start by defining the research questions,
searching and retrieving the literature from various data sources for pertinent articles,
manually screening the automatically chosen publications to omit those irrelevant to our
study, and then, snowballing. Finally, we analyzed these publications to collect statistical
and transparent answers to our research questions.



Sensors 2023, 23, 1755 5 of 27

3.1. Research Questions

The microservice architecture implementation brought significant security issues ad-
dressing several attack hotspots. The risk analysis and the protection mechanism still
need attention as the types of attacks and their consequences differ. Practitioners seek
potential security solutions when they face any malicious activity. They need to utilize
detection methods, which can identify the hotspots considering the architectures of the cloud-
native systems, the development strategies, and deployment. Moreover, the detection
methods should justify the possible attacks and their corresponding defensive approach.
Thus, we aimed to shed light on those strategies and provide awareness of comprehen-
sive static-analysis-based methods to the developers that can be used as an asset to the
microservice development and design. Therefore, the research objectives we can adopt are:

1. Recognize and categorize attacks and vulnerabilities that affect microservice architec-
tures;

2. Identify the security mechanism utilizing static analysis to defend against those at-
tacks;

3. Identify existing tools or approaches to detect those categorized attacks;
4. Address the identified gaps and focus on the tactics and challenges for each of the

objectives above.
With these objectives in mind, we formulated four research questions:

RQ1: What are the most-common defense mechanisms for microservices to face security-
related issues based on static analysis?
(a) What is the taxonomy/categorization of these strategies?

RQ2: What attacks and vulnerabilities are addressed by these strategies?
(a) What is the taxonomy/categorization of these attacks?

RQ3: What tools or approaches exist in the literature?
(a) What features do they support?

RQ4: What are the current gaps in the defense mechanism based on static analysis?

3.2. Searching Procedure

We needed to choose a selection query that was sufficiently broad to collect relevant
research articles. To extract the primary research, we looked through five important digital
libraries. These are the databases:

• ACM Digital Library;
• IEEE Xplorer;
• Springer Link;
• Scopus;
• Science Direct.

The search queries we used to search the above databases are given below:

(security OR attack OR compromise OR vulnerability)
AND

defense OR prevention
AND

microservice OR cloud native
AND

static analysis

3.3. Study Selection

The automated search yielded two filtering phases before the collection of papers.
First, the titles and abstracts were read in the initial step to assess relevancy. The second
stage involved reviewing the whole texts of the articles to see if they met our inclusion
requirements. Then, we used snowballing to find more relevant sources for our research
from the works mentioned in the already-chosen articles. Every reference gathered in this
manner underwent screening after the first two phases. Finally, the selected articles’ dataset



Sensors 2023, 23, 1755 6 of 27

contained all referred papers approved for inclusion by these stages. Until reaching a fixed
point or until no new documents were uploaded to the dataset, snowballing was carried
out iteratively on these recently added publications.

3.4. Inclusion and Exclusion Criteria

Using stringent inclusion and exclusion criteria lowers the number of documents
that online academic libraries retrieve. Only peer-reviewed articles from journals and
conferences are included in this study. We define those criteria below:

1. Publication published since 2012.
2. Research papers that are in English. Besides being the most-frequently used language

by the study team, excluding their native tongue (if applicable), it is also the most
prevalent in the technical literature.

3. Publication including studies conducted with the defense of microservices or cloud-
native architectures as their primary topics.

4. Papers with full text available in the selected databases.
5. Research papers proposing approaches, frameworks, techniques, methods, or tools to

detect attacks or vulnerabilities in microservice or cloud-native using static analysis.
6. Research utilizing the static analysis to detect and address defense mechanisms in

microservice or cloud-native architecture.
We similarly define a set of exclusion criteria to comprehensively filter our intended

literature. Those are listed below:
1. Research paper addressing strictly network security and protocols in cloud computing.
2. Research papers, not from peer-reviewed sources.
3. Research papers without full text available in the selected databases.
4. Tutorial papers and editorial.
5. Papers describing the general architectural model without mentioning the security

aspect in microservices or cloud-native systems.
6. Papers published as short papers (less than three pages).

3.5. Data Extraction and Synthesis

We extracted and encoded the relevant data from each primary study after choosing
them from the academic literature. At first, we pulled the metadata, which included fields
for the name, publication year, source, and type of publications. In addition, we address
defense mechanisms with static analysis, corresponding attacks and vulnerabilities, tools,
and approaches for solving the issues in the cloud-native system by scanning each se-
lected article. The phases of the filtering process are explained in the link (Search Articles:
https://zenodo.org/record/7603720#.Y91UQ3bMK3A), and these procedures are used to
filter the article.

3.6. Grey Literature

Apart from our academic searching, we also conducted a grey literature review to
extract the industrial contributions and practices for security defense mechanisms. An es-
sential addition to a systematic review might come from grey literature or data that have
not been published in for-profit journals. In addition, the grey literature may eliminate
publishing prejudice, improve review comprehensiveness and timeliness, and encourage a
fair picture of existing information. In addition, grey literature materials may be helpful for
practitioners and decision-makers across disciplines since they regularly contain updated
information that applies to policy and research and is usually simple to obtain. We define
several criteria for finding articles, blogs, and journals for the grey literature:

1. We searched Google, StackOverflow, and Quora for relevant studies.
2. Only studies published by professionals with five years or more of experience should

be chosen.
3. An analysis must mention at least one industrial case study where a measurable

number of microservices are used.

https://zenodo.org/record/7603720#.Y91UQ3bMK3A


Sensors 2023, 23, 1755 7 of 27

4. Practitioners can significantly obtain the advantages and disadvantages of the issues
and topics addressed by the selected studies.

5. Once we found the articles, we categorized them once we replaced the duplicates.

4. Results

This section describes the results of the mapping studies and provides a comprehensive
answer to the research questions we have defined.

4.1. Analysis of the Selected Studies

We conducted the search process in November 2022 and discarded the articles pub-
lished before 2012. We conducted our article search on the five online databases we utilized
for the search, and Table 2 shows the number of articles we found. A total of 1049 research
articles were collected initially using our search query. Then, we employed our inclusion
and exclusion criteria to filter out 928 articles. Then, we identified inconsistency among the
research by scanning the abstracts and titles based on the inclusion and exclusion criteria
and removing 49 papers. The remaining 72 articles were then read, and we determined
the relevancy considering the research objectives, where we discarded 23 articles. Then,
we reduced four duplicate papers, performed the selected studies’ snowballing procedure,
and added five documents for consideration. Finally, we considered 50 research documents
as our intended focal points of the mapping study. The selection procedure is depicted in
Figure 1.

Initial Search with 
search query

Result: 1049 
Papers

Employing 
Filtering with 

Exclusion Criteria

Result: 121 
Papers Scanning Title and 

Abstract

Result: 72 
Papers

Full Text Filtering Snowballing

Result: 29 
Papers

- 928

- 49
- 23

Result: 50 
Papers

+5

2 iterations

Duplicate 
Removal

Result: 45 
Papers

- 4

Figure 1. Selection procedure.

Table 2. Papers extracted from particular digital libraries.

Documents by Each Database

Database Results

ACM 121
IEEE 214

Scopus 687
SpringerLink 11
Science Direct 16

Table 3 shows the in-detail analysis of the selected studies. Figure 2 shows how the
selected studies were distributed based on databases and publication year.



Sensors 2023, 23, 1755 8 of 27

Table 3. Extracted and analyzed primary studies.

Articles Selected from Journals

Article ID Article Name Year Journal Cite

A1 MetaSEnD: A Security Enabled Development Life Cycle Meta-Model 2022 ACM [13]

A2 Microservice Security Metrics for Secure Communication, Identity Management, and Observability 2022 ACM [14]

A3 Cimplifier: automatically debloating containers 2017 ACM [15]

A4 New Directions for Container Debloating 2017 ACM [16]

A5 XSS Vulnerabilities in Cloud-Application Add-Ons 2020 ACM [17]

A6 Automating the early detection of security design flaws 2020 ACM [18]

A7 A passion for security: intervening to help software developers 2020 ACM [19]

A8 Clemmys: towards secure remote execution in FaaS 2019 ACM [20]

A9 Dispersing Asymmetric DDoS Attacks with SplitStack 2016 ACM [21]

A10 Towards a Security Benchmark for the Architectural Design of Microservice Applications 2022 ACM [22]

A11 Maestro: a platform for benchmarking automatic program repair tools on software vulnerabilities 2022 ACM [23]

A12 Edge Computing Perspectives: Architectures, Technologies, and Open Security Issues 2019 ACM [24]

A13 Containers’ Security: Issues, Challenges, and Road Ahead 2019 IEEE [25]

A14 Overcoming Security Challenges in Microservice Architectures 2018 IEEE [26]

A15 Emerging Trends, Techniques and Open Issues of Containerization: A Review 2019 IEEE [27]

A16 Exploring New Opportunities to Defeat Low-Rate DDoS Attack in Container-Based Cloud
Environment 2020 IEEE [28]

A17 A study, analysis and deep dive on cloud PAAS security in terms of Docker container security 2016 IEEE [29]

A18 A Review of Intrusion Detection and Blockchain Applications in the Cloud: Approaches,
Challenges and Solutions 2020 IEEE [30]

A19 XI Commandments of Kubernetes Security: A Systematization of Knowledge Related to Kubernetes
Security Practices 2020 IEEE [31]

A20 DSEOM: A Framework for Dynamic Security Evaluation and Optimization of MTD in
Container-Based Cloud 2021 IEEE [32]

A21 Security Risks in Asynchronous Web Servers: When Performance Optimizations Amplify the
Impact of Data-Oriented Attacks 2018 IEEE [33]

A22 CloudStrike: Chaos Engineering for Security and Resiliency in Cloud Infrastructure 2020 IEEE [34]

A23 Security Mechanisms Used in Microservices-Based Systems: A Systematic Mapping 2019 IEEE [11]

A24 A Cyber Risk Based Moving Target Defense Mechanism for Microservice Architectures 2018 IEEE [35]

A25 An Integrated Approach for Effective Injection Vulnerability Analysis of Web Applications Through
Security Slicing and Hybrid Constraint Solving 2020 IEEE [36]

A26 A real-time intrusion detection system based on OC-SVM for containerized applications 2021 IEEE [37]

A27 Automated Honeynet Deployment Strategy for Active Defense in Container-based Cloud 2020 IEEE [38]

A28 SFTSDH: Applying Spring Security Framework With TSD-Based OAuth2 to Protect Microservice
Architecture APIs 2022 IEEE [39]

A29 Stay at the Helm: secure Kubernetes deployments via graph generation and attack reconstruction 2022 IEEE [40]

A30 Detection, Analysis and Countermeasures for Container based Misconfiguration using Docker and
Kubernetes 2022 IEEE [41]

A31 Improving the Security of Microservice Systems by Detecting and Tolerating Intrusions 2020 IEEE [42]

A32 Coda: Runtime Detection of Application-Layer CPU-Exhaustion DoS Attacks in Containers 2018 IEEE [43]

A33 SPEAKER: Split-Phase Execution of Application Containers 2022 Springer-
Link [44]



Sensors 2023, 23, 1755 9 of 27

Table 3. Cont.

Articles Selected from Journals

Article ID Article Name Year Journal Cite

A34 Resilient Back Propagation Neural Network Security Model For Containerized Cloud Computing 2022 Scopus [45]

A35 Microservice security: a systematic literature review 2018 Scopus [46]

A36 Securing microservices and microservice architectures: A systematic mapping study 2021 Scopus [10]

A37 Leadership hijacking in Docker swarm and its consequences 2021 Scopus [47]

A38 Privacy-preserving data sharing and adaptable service compositions in mission-critical clouds 2021 Scopus [48]

A39 Information system development for restricting access to software tool built on microservice
architecture 2020 Scopus [49]

A40 Immunizer: A Scalable Loosely-Coupled Self-Protecting Software Framework using Adaptive
Microagents and Parallelized Microservices 2020 Scopus [50]

A41 Microservices made attack-resilient using unsupervised service fissioning 2020 Scopus [51]

A42 Defense-in-depth and Role Authentication for Microservice Systems 2018 Scopus [52]

A43 A game of microservices: Automated intrusion response 2018 Scopus [53]

A44 An empirical study of security practices for microservices systems 2022 Science-
Direct [54]

A45 Lic-Sec: An enhanced AppArmor Docker security profile generator 2019 Science-
Direct [55]

A46 Integrity Protection Against Insiders in Microservice-Based Infrastructures: From Threats to a
Security Framework 2018 Springer-

Link [56]

A47 A survey on security issues in services communication of Microservices-enabled fog applications 2017 Wiley [57]

A48 Integrating Continuous Security Assessments in Microservices and Cloud Native Applications 2017 ACM [58]

A49 Security Audit of Docker Container Images in Cloud Architecture 2021 IEEE [59]

A50 Low-Level Exploitation Mitigation by Diverse Microservices 2017 Springer-
Link [60]

Figure 2. Selected studies distribution by year.

4.2. Security Defense Mechanism in Cloud-Native Systems: RQ1

Traditional monolithic architectures for creating and delivering programs are being
replaced by microservices, revolutionizing systems’ development. The security defense
mechanism involves including multi-layer defense against potential attacks and vulnerabil-



Sensors 2023, 23, 1755 10 of 27

ities. Our analysis has categorized the defense mechanisms in cloud-based systems into
five categories. The categorization is illustrated in Table 4 and comprises moving target
defense, container security issues and their defenses, security-attack-based protections,
defense-in-depth, and security-based solutions, which are described next. The distribution
is depicted in Figure 3.

Table 4. Categorized defense mechanisms and corresponding primary studies.

Potential Defenses of Cloud-Native

Defenses References

Moving Target Defense A24, A20
Container Security Issues and Their Defenses A13, A27, A30, A19, A45

Security Attack-Based Protections A5, A9, A16, A38, A40, A43, A50
Defense-in-Depth A42

Framework/Architecture-based Solutions A28, A39

12%

29%

41%

6%

12%
Moving Target Defense

Container Security Issues and Their
Defenses

Security Attack-Based Protections

Defense-in-Depth

Figure 3. Distribution of categories for defense mechanisms.

• Moving target defense: MTD is a strategy that modifies specific system components
to make it more difficult for attackers to carry out successful attacks, lowering the
attack capabilities. The primary objective is to stop attackers from using informa-
tion they have learned about target systems due to their homogeneous composition
and software monoculture. There were 11.8% primary studies that focused on MTD.
Torkura et al. [35] identified the shared vulnerabilities in the microservice architecture
and proposed a solution utilizing the moving target defense (MTD), which evaluates
the system’s risk assessment. The risk assessment is crucial for the system to iden-
tify the potential vulnerabilities, likelihood, and impact. The authors also derived a
risk-oriented diversification index and utilized it to alter the attack surface and reduce
the attack ability. The potential emergence of security concerns may be unpredictable
due to the cloud environment’s modification. To defend the system against attacks,
Jin et al. [32] thoroughly analyzed the fixed defensive strategies of MTD. They also pro-
vided a framework called DSEOM that could recognize updates to the container-based
cloud environment, quickly assess the effectiveness change of MTD, and optimize
MTD strategies.

• Container security issues and their defenses: A lightweight and resource-effective
deployment has become easy with Docker container integration in microservice and
cloud-native applications. Although we obtain significant advantages from the container,
security issues have arisen due to the heterogeneity and unnecessary dependencies and
components. We found 29.4% of the studies concentrating on container security issues
and their defenses. To safeguard the Docker container against the applications run-
ning within inter-service communication and the threats that result from it, the host,
and malicious and dishonest hosts, Sultan et al. [25] outlined four primary use scenar-



Sensors 2023, 23, 1755 11 of 27

ios. First, they offered a software-based (which uses Linux kernel capabilities) and
hardware-based (which uses trusted platform support and trusted platform modules
or TPMs) solutions. Second, Mahajan et al. [41] identified the configuration issues
in Docker containers and described potential container deployment security policies
that, when properly implemented during the deployment phase of containers, can
protect the cloud environment from security intrusions. Shamim et al. [31] offered 11
security practices that aid practitioners in protecting their Kubernetes installations
and called for the introduction of RBAC, security patches, and network-specific secu-
rity policies for the secure deployment of containers. To improve Docker container
security based on required access control and to enable container protection without
manually configuring it, Zhu et al. [55] evaluated the Linux Security Module and a
profile generator named Lic-Sec. Network attacks can adversely influence a cloud
system built on containers. By compromising the nodes, the attacker can compromise
the internal, external, and virtualization layers (considering a cyber kill chain). As a
result, Kong et al. [38] established a Honeynet deployment approach called AHDS to
defend against attacks in containers. This strategy uses attack graphs to completely
cover and model network attacks in order to successfully defend against attacks in the
container-based cloud system.

• Security-attack-based protections: Researchers have adapted several strategies to
protect against several attacks, especially in a cloud-based system. Concerning cross-
site scripting (XSS), Bui et al. [17] found vulnerabilities in the APIs of cloud-based
applications where external extensions might result in security flaws. For example,
adversaries could exploit cloud services’ document sharing and messaging aspects
to deliver malicious input. Instead, they provided guidelines, especially with coding
practices and security enforcement. To prevent distributed denial of service (DDoS)
attacks, Chen et al. [21] focused on developing SplitStack, which can stop attacks
by slicing the monolithic stack into several separable components known as mini-
mum splittable units. Li et al. [28] proposed a dynamic DDoS mitigation strategy
that can dynamically control the number of container instances serving various users
and coordinate the resource allocation for these instances. Finally, the method can
maximize service quality to maintain a tolerable service and effectively counter DDoS
attacks in the container-based cloud environment. A methodology was put up by
Bhargava et al. [48] to ensure that mission-critical cloud systems meet security and
performance criteria even in the face of unusual behavior, attacks, and service failure.
The approach promises to provide robustness and antifragility under various failures
and assaults by actively monitoring the performance and behavior of services. This
allows for proactive mitigation of threats and losses in cloud-based systems. The secu-
rity of the cloud-based system depends critically on intrusion detection and response.
To foster autonomy and deep security, Iraqi et al. [50] proposed the Immunizer frame-
work, which uses distributed cluster computing, parallelism, and asynchronous data
streaming for monitoring, unsupervised learning for intrusion detection, as well
as heuristic-based attack signature generation and intrusion prevention. As a safe-
guard against potential network attacks, a cost-sensitive adaptive intrusion response
system for microservices was proposed by Yarygina et al. [53], which employs a
game-theoretic method to respond to network intrusions in real-time automatically.
To counter low-level exploitation, Otterstad et al. [60] coupled microservices with soft-
ware diversity and viewed this as a mitigating method. In comparison to monolithic
alternatives, the integration provided higher robustness.

• Defense-in-depth: Even when using simple-to-manage low-entropy authentication
secrets, a flexible communication system with a high level of security may be created by
combining standard cryptographic primitives. The method offers encryption, forward
secrecy, and protection against replay attacks, even for out-of-order communication.
Jander et al. [52] utilized the technique for a better protection scheme. A total of 41.2%
primary studies were focused on this category.



Sensors 2023, 23, 1755 12 of 27

• Framework/Architecture-based Solutions: The management and acquisition of per-
sonal health data are secured using the spring framework by Chatterjee et al. [39].
In compliance with the General Data Protection Regulation, the hybrid solution com-
bined the services for sensitive data (TSD) as a service platform and the Hypertext
Transfer Protocol security techniques while taking into account security features such
as identity brokering, OAuth2, multifactor authentication, and access control to safe-
guard the microservices architecture APIs. Safaryan et al. [49] created a secure software
architecture of microservices that ensures authorized access to confidential data by
stating the case for selecting a potential authentication method and creating a security
layer that achieves the security objective. The designed architecture enables users to
assign or restrict permissions to specific information items using a discretionary or
credential approach, protecting them reliably against unwanted access. This category
was discussed in 11.8% of the studies we reviewed.

We found two static-analysis-based solutions from our classification that addressed
two broad protection aspects. Firstly, the solution mentioned in [39] significantly described
the protection for the microservice-based system’s APIs. This solution securely constructed
a platform where identity brokering, OAuth2, multifactor authentication, and the access
control mechanism ensure proper data safety and user management through API pro-
tection. Finally, we can utilize the second solution [49] from our findings for providing
confidentially, which also covers the least-privileged principle.

4.3. Potential Attacks and Vulnerabilities on Cloud-Native System: RQ2

Potential attacks addressed in cloud-based systems mainly depend on the detection
mechanism utilized in the literature. We identified the following attacks/vulnerabilities
and their corresponding literature from our analysis. The result and references are depicted
in Table 5 and comprise server-oriented attacks, injection vulnerabilities, container attacks,
infrastructure and architectural attacks, and denial of service (DoS) attacks. We illustrate
the distribution of the category in Figure 4 and detail these next.

Table 5. Identified attacks/vulnerabilities and corresponding primary studies.

Attacks/Vulnerabilities Addressed in the Literature

Attacks References

Server-Oriented Attacks A21
Injection Vulnerabilities A25

Container Attacks A26, A34, A32
Infrastructure and Architectural Attacks A37, A18

Denial of Service (DoS) Attacks A41
Integrity Attacks in the MSA A46

11%

11%

34%

22%

11%

11%
Server-Oriented Attacks

Injection Vulnerabilities

Container Attacks

Infrastructure and Architectural
Attacks
Denial of Service (DoS) Attacks

Figure 4. Distribution of categories for attacks.



Sensors 2023, 23, 1755 13 of 27

• Server-oriented attacks: To show how simple it is for an adversary to launch effective
attacks on asynchronous web servers that serve several clients concurrently, Mor-
ton et al. [33] proposed an instruction tracing approach and a live memory analysis
framework. The realism of exploiting memory corruption attacks to compromise these
crucial systems was considerably increased by their demonstration of how the control-
flow hijacking and privilege escalation phases in the web server exploit chain might
be avoided. They also provided several mitigation strategies to counter the attacks.

• Injection vulnerabilities: Injection happens when a hacker provides the web ap-
plication with malicious input that is subsequently processed (acted on) unsafely.
Thome et al. [36] utilized static analysis and a hybrid constraint to detect injection
vulnerabilities in java web applications. They comprehended the attack conditions,
then applied satisfiability to that condition to detect the vulnerabilities. Considering
the extensive architecture of the cloud-based systems, individual service instances can
be prone to injection attacks. This identification scheme can be a good takeaway for
the detection scheme for our analysis.

• Container attacks: In a microservice architecture, we already saw how containers
aid the development and deployment procedure efficiently and effectively. However,
the system calls of a running container are a potential source of container escalation
and brute-force attacks. Zhang et al. [37] provided an intrusion detection system based
on a one-class support vector machine (OC-SVM) to detect the attacks we specified.
Another intrusion detection system was presented by Almiani et al. [45]. Their detec-
tion technique employs a robust backpropagation neural network to identify DDoS
attacks in the containerized cloud computing environment. The suggested method
sifts through the traffic flows that flowed into the containerized microservices architec-
ture to find malicious DDoS activity. To recognize application-layer CPU-exhaustion
DoS attacks in containers, Zhan et al. [43] introduced the coda framework. Coda tracks
the amount of CPU time each connection takes and uses statistical techniques to iden-
tify attacks. At the host level, it tracks system calls and associated data coming from
the Linux-eBPF-based container. When the CPU time used by an attack connection
statistically differs from the time used by a genuine connection, an attack can finally
be identified.

• Infrastructure and architectural attacks: Farshteindiker et al. [47] presented an attack
vector on the Docker Swarm orchestrator, which is a new concept in offensive security
where a cluster is treated as a single unit of processing, an attacker can escalate their
privileges in that unit and, after that, perform malicious activity on every component of
that unit separately. Alkadi et al. [30] contributed significantly by addressing several
attack types, their properties, and their impact on the microservice architectures.
The managed attacks are insider intruders, attacks on the hypervisor, flooding, service
abuses, port scanning threats, advanced persistent threats, backdoors, and user to
root (U2R) attacks. All of the attacks can have a severe impact on the services, e.g.,
IaaS, PaaS, and SaaS. This study thoroughly analyzed the potential attacks at the
architecture level the developers may encounter.

• Denial of service (DoS) attacks: DoS attacks provide the victim with excessive traf-
fic or information, which causes a breakdown. An approach to efficiently identify
application-layer assaults on microservices was put out by Baarzi et al. [51]. Using the
Kubernetes Cluster Manager, they constructed their prototype. Performance indicated
the viability of the suggested techniques for attack detection and retaliation.

• Integrity threats in the MSA: Ahmadvand et al. [56] highlighted new integrity issues
and conducted a complete security assessment on real-world systems to uncover
representative integrity risks involving malicious insiders. Maintaining integrity is one
of the security goals. These dangers represent the risk present in such infrastructures,
which practitioners may knowingly embrace, reject, or endeavor to reduce.



Sensors 2023, 23, 1755 14 of 27

4.4. Tools or Strategies in Security Defense Mechanism: RQ3

From our findings, there are several approaches and tools that the researchers have
employed. We provided the references with the addressed approaches and tools in Table 6,
and the distribution of the categorization is illustrated in Figure 5. These categorize include
security design, container tool, tool considering security principles, detection mechanism,
risk analysis, blockchain, and machine learning, and the details are listed below.

Table 6. Identified approaches and tools and corresponding primary studies.

Approaches/Tools in Cloud-Native Systems

Approaches/Tools References

Security Design A1, A2, A6, A11
Container Tool A3, A33, A49

Tool Considering Security Services A8
Detection Mechanism A22

Risk Analysis A29
Blockchain A18, A35

Machine Learning A38, A40, A34, A41, A26

23%

18%

6%6%6%

12%

29%

Security Design

Container Too

Tool Considering Security
Services
Detection Mechanism

Risk Analysis

Blockchain

Machine Learning

Figure 5. Distribution of categories for tools or strategies.

• Security design: In cloud-based software development, developers should prioritize
the security analysis in their development lifecycle. We found that 23.5% of the studies
reviewed focused on the security design. Granat et al. [13] provided an identification
technique of security approaches in the development lifecycle, which significantly ben-
efits the developers in reducing the security overheads in the software. For microser-
vice development, implementing security architecture tactics impacts secure communi-
cation, identity management, and observability. Considering the development stages,
architectural design decisions (ADDs) tend to be novel. Zdun et al. [14] introduced
techniques to detect those secure tactics of ADDs to provide secure communication,
identity management, and observability in microservice systems. Tuma et al. [18]
presented a dataset for the security design model, which they utilized to detect se-
curity design flaws with five model inspections. Design-level security automation is
possible with an acceptable precision value, which provides significant approval of the
techniques adopted. Pinconschi et al. [23] developed a tool that automatically repairs
software vulnerabilities using the decentralized platform with RESTful APIs and has
low overheads. Finally, the tool can be an extensible repair tool for container-based
service instances to check and repair vulnerabilities.

• Container tool: Operating system virtualization is a kind of containerization. Any-
thing from a small microservice or software process to an enormous application might



Sensors 2023, 23, 1755 15 of 27

be operated inside a single container. Unnecessary component inclusion needlessly
increases the image size, which is potentially vulnerable to security attacks. Ras-
togi et al. [15] introduced a novel tool called Cimplifier, which can take a container
and simple user-defined constraints, partition it into more straightforward containers
isolated from each other, and communicate when needed; it has the least resource
capability, meaning it utilizes only the resources it needs. By modifying and differenti-
ating the necessary system calls at two different execution phases, namely the booting
phase and running phase, Lei et al. [44] presented a container security mechanism
called SPEAKER that can significantly reduce the number of system calls available to
a given application container. To find the vulnerabilities and create a list of use cases
that adheres to the NIST requirements, Ahamed et al. [59] provided a vulnerability-
centric method in Docker images. Additionally, they validated the specified use-cases
checklist against the OWASP Container Security Verification Standards [61], which
businesses may utilize to sharpen the focus of security needs on their projects. There
were 17.6% of the studies focused on the container tools.

• Tool considering security services: The security services that any software system
should consider are confidentiality, integrity, and availability. In cloud-based appli-
cations ensuring these security services is cumbersome. Clemmys, developed by
Trach et al. [20], guarantees users’ functionalities, data confidentiality, and integrity on
untrusted cloud premises. We found 5.9% of the studies concentrated on this category.

• Detection mechanism: If the cloud infrastructure is not established or appropriately
constructed, it primarily affects the system’s security. This setup error puts security
objectives at risk. For multi-cloud security, Torkura et al. [34] proposed CloudStrike,
a security chaos engineering system focused on identifying non-security issues primar-
ily dependent on availability attributes. However, CloudStrike extends the benefits of
chaotic engineering to security by introducing security flaws in a cloud infrastructure
that affect confidentiality, integrity, and availability. There were 5.9% of the papers
centered on this topic.

• Risk analysis: We already discovered security problems with Kubernetes and con-
tainer orchestration in general. Helm is a Kubernetes package manager that offers
configuration files that specify a programmatic approach for application deployments.
Blaise et al. [40] addressed security issues with Helm. They examined those setups,
converted Helm Charts into topological graphs, conducted several security studies,
and produced a security score and a list of potentially dangerous attack pathways
supported by the MITRE ATT&CK framework. This topic was the focus of 5.9% of the
publications we discovered.

• Blockchain: We already defined several approaches comprehensively addressing data
security and trust management in [20]. However, including cloud-based blockchain ap-
plications is rare in addressing the challenges. Alkadi et al. [30]analyzed the blockchain
approach for data privacy and security and how it can collaborate with intrusion detec-
tion systems to offer protection and privacy perspectives in cloud systems. In addition,
they discussed critical issues with utilizing an IDS and blockchain technology, as well
as potential solutions and attack families that would try to take advantage of them. Be-
rardi et al. [46] analyzed and found some of the existing research related to blockchain
technology. However, those are more application-based approaches; instead, they are
utilized to solve security challenges in the microservice-based system. We observed
that 11.8% of the papers reviewed put a focus on this category.

• Machine Learning: From our analysis, we found that researchers have capitalized
on several machine-learning-based approaches. For example, artificial intelligence
can strengthen the detection process of attacks and their corresponding classifica-
tion. Fredj et al. [62] performed similar work by providing several neural network
approaches: long short-term memory (LSTM), a recurrent neural network (RNN), and
multilayer-perceptron (MLP)-based models to predict the attacks and their behavior.
Bhargava et al. [48] presented a model for ensuring mission-critical cloud systems’



Sensors 2023, 23, 1755 16 of 27

security and performance requirements, where service monitoring and mining were
performed using unsupervised machine learning. The usage of machine learning
mainly focuses on the identification of abnormal behavior to determine a system’s
resilience to attacks and failures. Iraqi et al. [50] presented a framework that utilizes
autonomic computing and a microagent/microservice architecture approach, and it
expands their application-level unsupervised outlier-based intrusion detection and
prevention framework. Parallelism, asynchronous data streaming, and distributed
cluster computing are also utilized. Almiani et al. [45] introduced the concept of the
neural network in cloud-native computing, developing an intelligent network intru-
sion detection model against the most-contemporary DDoS attacks. Their model suc-
cessfully identified highly reflective DDoS attacks and can be used to defend against
them. Baarzi et al. [51] proposed an unsupervised, non-intrusive, and application-
neutral approach to identify application-layer attacks. Additionally, they provided a
service fissioning mechanism to isolate the attacker and effectively lessen the impact
of the assault on genuine users. For detecting anomalies, Zhang et al. [37] presented
an unsupervised method, one-class support vector machine (OC-SVM). Their exper-
imental findings showed that the OC-SVM algorithm could identify contemporary
assaults successfully with a good FPR, ranging from 0.02 for brute force attack to 0.12
for adversarial ML attacks. We note that the category was the subject of 29.4% of the
studies we collected.

4.5. Addressing Current Gaps in the Defense Mechanism: RQ4

Security assessment in a cloud-native system is challenging when employing de-
tection and defensive mechanisms to encounter attacks. We categorized the challenges
researchers addressed in the literature into five categories. The categorization and their
corresponding references are listed in Table 7, and Figure 6 illustrates the categorization’s
distribution, which comprise challenges related to container, edge and fog computing,
systematic literature reviews, practitioners, and system design, and the details are given
below.

Table 7. Challenges in existing literature and corresponding primary studies.

Challenges in Existing Literature in Cloud-Native Systems

Categorization Type References

Challenges Related to Containers A15, A21, A4, A17
Challenges Related to Edge and Fog Computing A12, A47

Systematic Literature Review A23, A35, A36
Challenges for Practitioners A7, A14, A44

Challenges in System Design A10, A31, A48

27%

13%

20%

20%

20%
Challenges Related to Containers

Challenges Related to Edge and Fog
Computing

Systematic Literature Review

Challenges for Practitioners

Figure 6. Distribution of categories for current gaps.



Sensors 2023, 23, 1755 17 of 27

• Challenges related to containers: Watada et al. [27] presented several prospective con-
tainerization concepts, including technical details on security and isolation, efficient
administration, and orchestration necessary for their successful industrial implementa-
tion. They also gave a thorough understanding of various research issues and possible
directions for lightweight virtualization. Finally, they offered recommendations on
how containerization should proceed to overcome the difficulties. The container’s
debloating concept was introduced by Rastogi et al. [33] in the earlier section of the de-
fensive approach. However, the primary concern is that, if the analysis is incomplete,
it might not detect all the necessary resources. Thus, to provide a better security aspect
in the container, Rastogi et al. [16] updated the concept with two new considerations
where both dynamic and static analysis were integrated and test case augmentation
using symbolic execution. Manu et al. [29] governed container security using the
cloud’s platform as a service (PAAS) protection. They compared the safety of virtual
machines with and without hypervisors and container technologies. They finally
gave some thought to the suggestions for achieving a multilateral balanced security
solution for Docker containers by consistently applying hardening security methods.
We saw that 26.7% of the studies were devoted to this category.

• Challenges related to edge and fog computing: Both concepts extend cloud computing
and provide better security in the cloud environment. Caprolu et al.’s [24] analysis
of virtualization technologies’ effects on the edge/fog network architecture included
their benefits and the security concerns they raised. They also updated the prevalent
security challenges in such designs and offered some options for future research that
might impact general security. Yu et al. [57] assessed the various security concerns
that microservice-based fog applications encounter. They focused on the containers,
data, permissions, and network components of microservices’ communication of
services. Finally, they offered a solution to address network attacks and software-
defined network (SDN) security vulnerabilities to close the existing security gaps.
Notably, 13.3% of the papers were devoted to this topic.

• Systematic literature review: Existing mapping studies are good resources when
analyzing core concepts, as they provide several in-depth challenges, benchmarks,
and guidelines. We obtained several systematic mapping studies from our findings
concerning security mechanisms, security threat detection, and mitigations. These
studies provide some thorough analysis, reducing the research gaps in this field.
Pereira-Vale [11] conducted a mapping study of 26 articles to identify the security
mechanism used in microservice-based systems. Their findings can be an excellent
resource to add to the existing architectural knowledge to address security problems
in microservices-based systems. From the perspectives of the threat model and miti-
gation, Berardi et al. [46] described security as being at an early stage and addressed
critical security attacks involving microservice architectures. They covered the connec-
tion between the primary microservices’ development methodologies and security and
modern infrastructure security solutions. Finally, Hannousse et al. [10] categorized the
security threats and mechanisms. In contrast to prevention and mitigation, auditing
and imposing access control are the strategies that have received the most-significant
research attention, according to their study. It is noteworthy that the subject made up
20% of the research reviewed.

• Challenges for practitioners: For software developers, it is challenging to consider
the security assessment for secure development and deployment. Weir et al. [19]
comprehensively analyzed how a software development team intervention might
enhance security. Additionally, they explained the significance of engineers being
able to portray security improvements in terms of their commercial benefits. This
analysis is necessary for the practitioners to assess and evaluate systems in the devel-
opment stage to encounter security issues in software. Yarygina et al. [26] focused
on how the microservice architecture affects security. Their contribution improves
the analysis while tackling the difficulties of merging distributed systems, service



Sensors 2023, 23, 1755 18 of 27

orientation, and the basic principles of software engineering. In addition, they pro-
vided security recommendations along with a straightforward security architecture for
microservices that practitioners may use. The knowledge gap on effectively protecting
a microservices system among practitioners was highlighted by Ali et al. [54]. They
concluded that the 28 practices were beneficial, as indicated by the survey respondents.
Eventually, their list of best practices for microservices security can be a valuable tool
for practitioners to handle security concerns in microservices systems. We discovered
that this category was the focus of 20% of the primary investigations.

• Challenges in system design: Due to an elevated attack surface and an excessive
cognitive burden for security analysts, the enormous structure of microservices raises
serious security concerns. For the architectural design of microservice applications,
Tukaram et al. [22] inventoried several pertinent security rules and assessed how these
rules may be verified automatically. In addition, their standards gave substantial
instructions for the secure configuration of the deployment infrastructure for mi-
croservice applications. Flora [42] solved issues with settings that have microservice
architectures, multi-tenancy, heterogeneity, and systems dynamicity. He advised that
container environments are suitable for host-based intrusion detection. This will be
expanded to include dynamic situations as a first step in studying intrusion tolerance
strategies appropriate for multiple configurations. In cloud-native architecture, it
is crucial to have a central point where the security policies can be implemented.
Torkura et al. [58] addressed design patterns that introduce security issues and intro-
duced the idea of a security gateway to address the challenges. This gateway serves as
a practical security enforcement point for enforcing security policies, such as ensuring
that microservices are pushed into production and do not have any vulnerabilities
mentioned explicitly in the security policy. We observed that this category received
20% of the attention in the primary research.

4.6. Result Extraction of Grey Literature

Industry practices can provide a comprehensive overview of how developers and
security analysts encounter security issues, what approaches they practice, and how they
mitigate those while continuously delivering the product to the customer. Organizations
and communities comprehensively construct security acts, policies, and schemes to protect
against threats and attacks [63]. This implementation can provide an in-depth overview
to safeguard data and ensure security goals for the organization’s stakeholders. From our
result analysis, we considered the top 50 result studies from our grey literature search.
After extraction, we grouped those findings into several categories. Then, we identified
and removed the duplicates to make the result consistent. We considered a total of 16
results for the conclusion, which are listed below in Table 8. From our extraction, illustrated
in Figure 7, we can see that 43.8% of the selected studies primarily focused on the tools
and approaches, 25% of the studies concentrated on best practices and security guidance,
and the rest were articles focusing on addressing threats.

Table 8. Grey literature result in cloud-native systems.

Grey Literature Result in Cloud-Native Systems

Categorization Type References

Tools and Approaches in Industry [64–70]
Security Guidance [71–74]

Best Practices for Cloud-Native Applications [75–78]
Addressing Threats [79]



Sensors 2023, 23, 1755 19 of 27

44%

25%

25%

6%

Tools and Approaches in Industry

Security Guidance

Best Practices for Cloud-Native
Applications

Threat Analysis

Figure 7. Distribution of categories for industry practices.

1. Tools and approaches in industry: For cloud-native security, we investigated the
article [64], where the four Cs of the cloud: cloud, container, cluster, and code, were
analyzed. It also suggested five strategies that comprehensively ensure the security
of cloud-native applications: shared dependencies, shifting left (which focuses on
applying vulnerability scans in the early development process), managing vulnerable
dependency packages, implementing defense-in-depth mechanisms, ad employing a
cloud-agnostic security platform. The article [65,67] similarly analyzed the four Cs of
cloud security. They mentioned those categories’ common issues and how they can
be addressed. A distributed, adaptable, and responsive zero-trust security paradigm
from IONATE [66] took the data input, source, type, and gateway into account. This
model detects anomalies and mitigates them while monitoring and learning from
the interactions between these numerous components. For DevOps and DevSecOps,
CloudStrike [68] provides a security solution tool that controls the application lifecy-
cle, encompassing workloads, containers, security posture, and compliance. It offers
visibility and security for private, public, hybrid, or multi-cloud settings. Finally,
the task and scanning process automation enhances productivity and reaction times
while preventing dangers. In addition to the advantages the cloud-native application
protection platform (CNAPP) provides, a risk-based solution was presented in [69].
This tool, named Apiiro, is a rapid, context-sensitive static analysis and NLP engine
that addresses critical risks such as design flaws, configuration errors, architecture
drifts, trade secrets, and supply chain attacks in the application code. Xenonstack [70]
discussed the guidance of DevSecOps, which implements security at every step
in the DevOps Lifecycle with DevSecOps Tools. They discussed the DevSecOps
Tools: Continuum Security, Checkmarx, GauntIt, etc., including the DevOps Pipeline.
Similarly, they comprehend several tools: IriusRisk, ThreatModeler, and OWASP
Threat Dragon.

2. Security guidance: Snyk [71] provided a comprehensive comparative analysis be-
tween cloud-native security and legacy tools. They provided security guidance
for cloud-native applications. Their infrastructure-level security guidance can be
a good takeaway for practitioners to ensure security in cloud-native environments.
Renowned Security Expert Chris Wysopal discussed the evolution of safety in cloud-
native applications in Veracode [72]. He mentioned several aspects of application
security, how CNAPP works, and why CNAPOP is better. He provided the idea of
how application security is becoming complex in the industry rather than performing
some simple execution. Synopsys [73] discussed some of the sub-domains of cyberse-



Sensors 2023, 23, 1755 20 of 27

curity where cloud safety has been analyzed. The analysis provides the typical cyber
attacks and comprehends the difference between breaches and attacks. In addition,
the best practices were suggested to provide in-depth analysis to protect against
security breaches. TechBeacon’s analyst [74] provided an overview of the importance
of application security. He mentioned static and dynamic analysis security tools and
how those can be utilized. He suggested how security teams can ensure protection
for open-source or even legacy apps. The best-recommended application security
tools and a view to employing a maturity model for them were presented.

3. Best practices for cloud-native applications: The best practices can guide software
developers and security analysts to provide protection against security attacks and
breaches for the baseline. Styra’s [75] software analyst provides seven fundamental
best practices for cloud-native applications. The first practice is shift left, which
we already covered in the tools and approaches. The second practice specifies the
security by design that considers dynamic analysis security testing (DAST) and
static analysis security testing (SAST). In the third practice, he mentioned defense in
depth. For authentication and authorization, he suggested utilizing SAML, WS-Fed,
or OpenID Connect/OAuth2 standards-based identity and access management (IAM)
for user authentication. The best practices addressed were implementing an API
gateway, ensuring the container’s security, and finally,service-to-service communi-
cation. SecurityCompass [76] analyzed the security challenges when we havethreat
models in microservice-based applications. The eight best practices it presented were
adopting a security culture, encryption, issuing and expiring credentials quickly,
decoupling security policies, and decoupling security policies introduced newly in
our analysis. Hackerone [77] described the threat modeling concept and introduced
some application security tools. Finally, the four best practices were presented, where
asset tracking and managing privileges are newly adopted practices in consideration.
Benison’s [78] security guidelines produce eight best practices where several best
practices have already been addressed in our analysis. Access control, user identifica-
tion, and automatic security upgrades are brand-new ideas for an economical and
flexible way to offer practical applications.

4. Threat Analysis: The evolution of security threats in microservice architectures was
analyzed in a research work that we found in [79]. The thesis stated that threat
modeling using attack graphs and attack simulations was used to examine dangers
in microservice architectures and how they relate to design patterns. In addition, a
meta-attack language has been used to formalize the attack graphs in two different
experimental analyses.

5. Threats to Validity

We explore the threats to the validity of our study in this part, including constraints
on construct validity, external validity, and internal validity.

• Construct validity: The construct validity of our study focuses on the operational
measures that are studied to represent the goal and how we investigated while consid-
ering the research questions. The identification of primary research from the papers
available in the literature is also reflected in it. The core aspect of designing the search
strategy was the research topic, which guided us thorough the selection of the search
query. Finally, we made two iterations of snowballing to feature additional research
for consideration. Finally, we devised a set of stringent inclusion and exclusion criteria
to ensure the inclusion of excellent papers, where only peer-reviewed journal and
conference papers were accepted for their completeness and adequate findings.

• Internal validity: We conducted a careful approach to maintain our findings’ internal
validity. The collection of data from the selected studies poses a danger to internal
validity. To lessen the risks, we developed a technique that involved searching for
relevant literature using the specified keywords and then applying a snowballing
process backward to the chosen papers. The grey literature was also left out.



Sensors 2023, 23, 1755 21 of 27

• External threats: The study’s generalization of its findings threatens external validity.
The categorization systems used in this mapping were created using the literature
obtained. Whereas many others might not, future published research might match the
suggested framework. The mind map construction concentrated on the challenges
and future extensibility of the investigation.

Threats to the validity of the results focus on problems that limit the capacity to make
the correct conclusions. For example, we adhered to the recommended best practices by
Petersen et al. [80] to reduce any risks to the result’s validity.

6. Discussion

The mapping study guided us in establishing six core concepts of microservice se-
curity analysis. Considering the concepts, we constructed an initial mind map to review
microservice security. We already discussed the potential defense mechanism in the Results
Section. The mind map is illustrated in Figure 8.

Figure 8. Categorized security research topics related to static analysis in cloud-native systems.

• Security attacks: Considering the architecture and implementation of a cloud-native
system, we found five general attacks that can occur. DDoS attacks are prevalent,
where CSRF and XSS can arise considering the web implementation of the systems.
Considering the system’s distributed nature, the database can also be prone to injec-
tion attacks. Owing to the communication between the service instances and the client
request and response, replay attacks might occur to circumvent network communica-
tions.



Sensors 2023, 23, 1755 22 of 27

• Security flaws: The security flaws in cloud-native architectures we encountered are
categorized into three broad categories: container-based, deployment, and design.
The significant literature demonstrated the issues related to service Docker containers
and their corresponding flaws. The architectural flaws and lack of security assessment
in the software development phase can significantly impact the system’s security goal.
Finally, deployment flaws, which are a critical aspect of cloud-native systems can
create security issues considering the scalability and fast delivery.

• Detection mechanism: To detect the attacks, developers must implement the potential
detection mechanisms. The request–response mechanism should be checked using
distributed tracing, where we can integrate the pen-testing to evaluate the security.
In addition, we can implement a web application firewall for the web servers to
evaluate the traffic and communication for the information flow. We can also evaluate
the system using several scanning applications such as ZAP to detect attacks or
vulnerabilities. Finally, static analyzer tools also provide significant benefits in the
detection strategy.

• Security strategies: To ensure proper security, we must consider some core aspects
that provide the security goals in cloud-native systems. Proper resource management
can give the system availability, which is one of the primary security goals. Authenti-
cation and authorization must justify the access control for the system that provides
integrity. Finally, data confidentially should be maintained using the access control
mechanism. Secure communication should follow the appropriate traffic management,
e.g., API gateway, Transport Layer Security (TLS), token-based secure communication,
certificate-based communication, and key control.

• Industry practices: We found several industry best practices. Some of the best practices
have been drawn by academic researchers, and some still need attention. The following
will discuss some industry best practices we can utilize while implementing static
security solutions against security breaches.
1. Implementing OAuth for identity and access control: OAuth can handle token-

based access control, which can handle identity management for the organization.
Utilizing it can allow developers to leverage libraries and platforms that sig-
nificantly speed up development. In addition, some of the most-prominent
organizations and most-knowledgeable engineers have already developed sev-
eral methods for enhancing the security level of your OAuth-based authorization
service.

2. Least privilege: A microservice should only be granted the access rights necessary
to perform its function. Each microservice and system component should only
receive the absolute minimum amount of permission.

3. Automatic security updates: It is convenient to find a means to automate or at
least keep the security upgrades under control in the early stages of development
if we want our microservices architecture to be safe and scalable simultaneously.

4. Implementing firewall on API Gateway: One method for efficiently handling
several service interfaces is an API gateway. Inside the microservices architecture,
this tactic can allow some firewall security. This can effectively surround all the
microservices with a firewall by hiding the API gateway behind one. For example,
the attack surface may be protected with a scalable layer by properly handling
permission and authentication.

5. Using scanner for containers: Docker local image vulnerability scanning enables
developers to assess the security issues of the container images and take corrective
action to address vulnerabilities discovered during the scan, leading to more
secure deployments.

Apart from the practices we mentioned above, we already assessed the security issues
and addressed them with the initial mind map we have developed, which can significantly
guide the practitioners. This mind map will need to be iteratively expanded over time, but
it serves as a starting point to guide practitioners.



Sensors 2023, 23, 1755 23 of 27

• Additional consideration: We already discussed several detection mechanisms of
threats and attacks in microservice architectures. Recent technological advancements
guided more sophisticated approaches that comprehensively detect anomalies in
data privacy and system security. In addition, the development of microservices
is susceptible to the formation of abnormal system behaviors for several reasons,
including their deployment in the network and the usage of various technologies.
Similar to the previous point, it is challenging to effectively monitor the security and
behavior of microservice settings due to the high complexity of small services.
1. Blockchain: As a means of establishing credibility, integrity, and consistency

across these interconnected systems, blockchain technology is an excellent tool
for coordinating data, or state information, across services. A significant problem
is coordinating user requests across time since microservices operate in dynamic
contexts that produce concurrent inquiries. The blockchain serves as a central
repository for agreed-upon truth since it is an immutable, append-only ledger that
may be locked at a particular moment. This enables coordination and reliability
across several microservices, regardless of how complicated or dynamic they
may be. With blockchain technology, it is possible to protect permissions with
the data at the source, allowing confined services to skip the discovery layer and
ensure they never access or provide clients with data that were not authorized.

2. Employing machine learning: To make quick and precise predictions and judg-
ments, machine learning has demonstrated its effectiveness in evaluating data
acquired and stored in cloud infrastructures. In addition, practitioners utilize AI
to discover, research, and anticipate possible external attacks and vulnerabilities
in microservice-based ecosystems, enhancing their security. For intrusion de-
tection, unsupervised learning methods can be used. The detection mechanism
can be made easy with the integration of a machine learning approach, and we
already acknowledged the implementation of neural networks for identifying
and preventing DDoS attacks and application-layer attacks. Furthermore, decen-
tralized learning systems offered by AI-based solutions can improve security in
microservice-based applications by tracking the data flow required to maintain
coordination between the containers containing these entities.

7. Conclusions and Future Work

This article comprehensively presented a systematic mapping study of defensive mech-
anisms using static analysis in cloud-native systems. The study investigated 50 research
articles from 1049 utilizing inclusion, exclusion criteria, and snowballing. The result demon-
strated that the existing approaches are concentrated on container vulnerabilities and their
security implementations. In addition, security design flaws, and detection mechanisms
convincingly addressed several attacks: DDoS, CSRF, SQL Injection, XSS, and Replay. Fi-
nally, we constructed an overview that provides a significant analysis for the practitioners
on how they can utilize the studies, tools, and suggestions which potentially guide us to
address the need to remove the research gap in the existing literature. Eventually, with the
progressing security issues, we will develop a static analyzer that will implement a security
defense solution addressing potential adversarial categorized attacks, detecting them, and
mitigating them in our future study.

Author Contributions: Methodology, T.C.; Formal analysis, M.S.R. and A.I.; Validation, S.H. and T.C.;
Resources, M.S.R. and A.I.; Writing—original draft, M.S.R. and A.I.; writing—review and editing,
M.S.R., S.H. and T.C.; visualization, M.S.R.; Supervision, T.C.; Project administration, T.C.; Funding
acquisition, T.C.; All authors have read and agreed to the published version of the manuscript.

Funding: This material is based on work supported by the National Science Foundation under Grant
No. 1854049 and partially supported by Red Hat Research (accessed on 30 January 2023).

Institutional Review Board Statement: Not applicable.

https://research.redhat.com


Sensors 2023, 23, 1755 24 of 27

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available in a publicly accessible repository.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of the data; in the writing of the manuscript;
nor in the decision to publish the results.

References
1. Daya, S.; Van Duy, N.; Eati, K.; Ferreira, C.M.; Glozic, D.; Gucer, V.; Gupta, M.; Joshi, S.; Lampkin, V.; Martins, M.; et al.

Microservices from Theory to Practice: Creating Applications in IBM Bluemix Using the Microservices Approach; IBM Redbooks: New
York, NY, USA, 2015. Available online: https://www.redbooks.ibm.com/redbooks/pdfs/sg248275.pdf (accessed on 15 January
2023).

2. Kalske, M.; Mäkitalo, N.; Mikkonen, T. Challenges when moving from monolith to microservice architecture. In Web Engineering;
Springer: Berlin/Heidelberg, Germany, 2017; pp. 32–47.

3. Li, X.; Chen, Y.; Lin, Z.; Wang, X.; Chen, J.H. Automatic Policy Generation for Inter-Service Access Control of Microservices. In
Proceedings of the 30th USENIX Security Symposium (USENIX Security 21), Virtual Event, 11–13 August 2021; pp. 3971–3988.

4. Li, S.; Zhang, H.; Jia, Z.; Zhong, C.; Zhang, C.; Shan, Z.; Shen, J.; Babar, M.A. Understanding and addressing quality attributes of
microservices architecture: A Systematic literature review. Inf. Softw. Technol. 2021, 131, 106449.

5. Muresu, D. Investigating the Security of a Microservices Architecture: A Case Study on Microservice and Kubernetes Security.
Master’s Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2021. Available online: https://www.diva-portal.org/
smash/get/diva2:1597972/FULLTEXT01.pdf (accessed on 15 January 2023).

6. Billawa, P.; Tukaram, A.B.; Ferreyra, N.E.D.; Steghöfer, J.P.; Scandariato, R.; Simhandl, G. Security of Microservice Applications:
A Practitioners’ Perspective on Challenges and Best Practices. arXiv 2022, arXiv:2202.01612.

7. Ponce, F.; Soldani, J.; Astudillo, H.; Brogi, A. Smells and refactorings for microservices security: a multivocal literature review. J.
Syst. Softw. 2022, 111393.

8. de Almeida, M.G.; Canedo, E.D. Authentication and Authorization in Microservices Architecture: A Systematic Literature Review.
Appl. Sci. 2022, 12, 3023.

9. Soldani, J.; Tamburri, D.A.; Van Den Heuvel, W.J. The pains and gains of microservices: A systematic grey literature review. J.
Syst. Softw. 2018, 146, 215–232.

10. Hannousse, A.; Yahiouche, S. Securing microservices and microservice architectures: A systematic mapping study. Comput. Sci.
Rev. 2021, 41, 100415.

11. Pereira-Vale, A.; Márquez, G.; Astudillo, H.; Fernandez, E.B. Security mechanisms used in microservices-based systems: A
systematic mapping. In Proceedings of the 2019 XLV Latin American Computing Conference (CLEI), Panama City, Panama,
30 September–4 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–10.

12. Pereira-Vale, A.; Fernandez, E.B.; Monge, R.; Astudillo, H.; Márquez, G. Security in microservice-based systems: A multivocal
literature review. Comput. Secur. 2021, 103, 102200.

13. Granata, D.; Rak, M.; Salzillo, G. MetaSEnD: A Security Enabled Development Life Cycle Meta-Model. In Proceedings of the
Proceedings of the 17th International Conference on Availability, Reliability and Security, Vienna, Austria, 23–26 August 2022;
pp. 1–10.

14. Zdun, U.; Queval, P.J.; Simhandl, G.; Scandariato, R.; Chakravarty, S.; Jelic, M.; Jovanovic, A. Microservice Security
Metrics for Secure Communication, Identity Management, and Observability. ACM Trans. Softw. Eng. Methodol. 2022.
https://doi.org/10.1145/3532183.

15. Rastogi, V.; Davidson, D.; De Carli, L.; Jha, S.; McDaniel, P. Cimplifier: automatically debloating containers. In Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering, Paderborn, Germany, 4–8 September 2017; pp. 476–486.

16. Rastogi, V.; Niddodi, C.; Mohan, S.; Jha, S. New directions for container debloating. In Proceedings of the 2017 Workshop on
Forming an Ecosystem Around Software Transformation, Dallas, TX, USA, 3 November 2017; pp. 51–56.

17. Bui, T.; Rao, S.; Antikainen, M.; Aura, T. Xss vulnerabilities in cloud-application add-ons. In Proceedings of the 15th ACM Asia
Conference on Computer and Communications Security, Taipei, Taiwan, 5–9 October 2020; pp. 610–621.

18. Tuma, K.; Sion, L.; Scandariato, R.; Yskout, K. Automating the early detection of security design flaws. In Proceedings of the
23rd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems, Montreal, QC, Canada, 18–23
October 2020; pp. 332–342.

19. Weir, C.; Becker, I.; Blair, L. A passion for security: Intervening to help software developers. In Proceedings of the 2021 IEEE/ACM
43rd International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP), Madrid, Spain, 25–28 May
2021; IEEE: Piscataway, NJ, USA, 2021; pp. 21–30.

20. Trach, B.; Oleksenko, O.; Gregor, F.; Bhatotia, P.; Fetzer, C. Clemmys: Towards secure remote execution in faas. In Proceedings of
the 12th ACM International Conference on Systems and Storage, Haifa, Israel, 3–5 June 2019; pp. 44–54.

21. Chen, A.; Sriraman, A.; Vaidya, T.; Zhang, Y.; Haeberlen, A.; Loo, B.T.; Phan, L.T.X.; Sherr, M.; Shields, C.; Zhou, W. Dispersing
asymmetric DDoS attacks with SplitStack. In Proceedings of the 15th ACM Workshop on Hot Topics in Networks, Atlanta, GA,
USA, 9–10 November 2016; pp. 197–203.

https://www.redbooks.ibm.com/redbooks/pdfs/sg248275.pdf
 https://www.diva-portal.org/smash/get/diva2:1597972/FULLTEXT01.pdf
 https://www.diva-portal.org/smash/get/diva2:1597972/FULLTEXT01.pdf


Sensors 2023, 23, 1755 25 of 27

22. Bambhore Tukaram, A.; Schneider, S.; Díaz Ferreyra, N.E.; Simhandl, G.; Zdun, U.; Scandariato, R. Towards a Security Benchmark
for the Architectural Design of Microservice Applications. In Proceedings of the 17th International Conference on Availability,
Reliability and Security, Vienna, Austria, 23–26 August 2022; pp. 1–7.

23. Pinconschi, E.; Bui, Q.C.; Abreu, R.; Adão, P.; Scandariato, R. Maestro: a platform for benchmarking automatic program repair
tools on software vulnerabilities. In Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and
Analysis, Virtual Event, Republic of Korea, 18–22 July 2022; pp. 789–792.

24. Caprolu, M.; Di Pietro, R.; Lombardi, F.; Raponi, S. Edge computing perspectives: architectures, technologies, and open security
issues. In Proceedings of the 2019 IEEE International Conference on Edge Computing (EDGE), Milan, Italy, 8–13 July 2019; IEEE:
Piscataway, NJ, USA, 2019; pp. 116–123.

25. Sultan, S.; Ahmad, I.; Dimitriou, T. Container security: Issues, challenges, and the road ahead. IEEE Access 2019, 7, 52976–52996.
26. Yarygina, T.; Bagge, A.H. Overcoming security challenges in microservice architectures. In Proceedings of the 2018 IEEE

Symposium on Service-Oriented System Engineering (SOSE), Bamberg, Germany, 26–29 March 2018; IEEE: Piscataway, NJ, USA,
2018; pp. 11–20.

27. Watada, J.; Roy, A.; Kadikar, R.; Pham, H.; Xu, B. Emerging trends, techniques and open issues of containerization: a review.
IEEE Access 2019, 7, 152443–152472.

28. Li, Z.; Jin, H.; Zou, D.; Yuan, B. Exploring new opportunities to defeat low-rate DDoS attack in container-based cloud environment.
IEEE Trans. Parallel Distrib. Syst. 2019, 31, 695–706.

29. Manu, A.; Patel, J.K.; Akhtar, S.; Agrawal, V.; Murthy, K.B.S. A study, analysis and deep dive on cloud PAAS security in terms of
Docker container security. In Proceedings of the 2016 international conference on circuit, power and computing technologies
(ICCPCT), Nagercoil, India, 18–19 March 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–13.

30. Alkadi, O.; Moustafa, N.; Turnbull, B. A review of intrusion detection and blockchain applications in the cloud: Approaches,
challenges and solutions. IEEE Access 2020, 8, 104893–104917.

31. Shamim, M.S.I.; Bhuiyan, F.A.; Rahman, A. Xi commandments of kubernetes security: A systematization of knowledge related to
kubernetes security practices. In Proceedings of the 2020 IEEE Secure Development (SecDev), Atlanta, GA, USA, 28–30 September
2020; IEEE: Piscataway, NJ, USA, 2020, pp. 58–64.

32. Jin, H.; Li, Z.; Zou, D.; Yuan, B. Dseom: A framework for dynamic security evaluation and optimization of mtd in container-based
cloud. IEEE Trans. Dependable Secur. Comput. 2019, 18, 1125–1136.

33. Morton, M.; Werner, J.; Kintis, P.; Snow, K.; Antonakakis, M.; Polychronakis, M.; Monrose, F. Security risks in asynchronous web
servers: When performance optimizations amplify the impact of data-oriented attacks. In Proceedings of the 2018 IEEE European
Symposium on Security and Privacy (EuroS&P), London, UK, 24–26 April 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 167–182.

34. Torkura, K.A.; Sukmana, M.I.; Cheng, F.; Meinel, C. Cloudstrike: Chaos engineering for security and resiliency in cloud
infrastructure. IEEE Access 2020, 8, 123044–123060.

35. Torkura, K.A.; Sukmana, M.I.; Kayem, A.V.; Cheng, F.; Meinel, C. A cyber risk based moving target defense mechanism for
microservice architectures. In Proceedings of the 2018 IEEE Intl Conf on Parallel & Distributed Processing with Applications,
Ubiquitous Computing & Communications, Big Data & Cloud Computing, Social Computing & Networking, Sustainable
Computing & Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom), Melbourne, Australia, 11–13 December 2018;
IEEE: Piscataway, NJ, USA, 2018; pp. 932–939.

36. Thome, J.; Shar, L.K.; Bianculli, D.; Briand, L. An integrated approach for effective injection vulnerability analysis of web
applications through security slicing and hybrid constraint solving. IEEE Trans. Softw. Eng. 2018, 46, 163–195.

37. Zhang, L.; Cushing, R.; de Laat, C.; Grosso, P. A real-time intrusion detection system based on OC-SVM for containerized
applications. In Proceedings of the 2021 IEEE 24th International Conference on Computational Science and Engineering (CSE),
Shenyang, China, 20–22 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 138–145.

38. Kong, T.; Wang, L.; Ma, D.; Xu, Z.; Yang, Q.; Lu, Z.; Lu, Y. Automated Honeynet Deployment Strategy for Active Defense in
Container-based Cloud. In Proceedings of the 2020 IEEE 22nd International Conference on High Performance Computing and
Communications; IEEE 18th International Conference on Smart City; IEEE 6th International Conference on Data Science and
Systems (HPCC/SmartCity/DSS), Yanuca Island, Fiji, 14–16 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 483–490.

39. Chatterjee, A.; Gerdes, M.W.; Khatiwada, P.; Prinz, A. SFTSDH: Applying Spring Security Framework With TSD-Based OAuth2
to Protect Microservice Architecture APIs. IEEE Access 2022, 10, 41914–41934.

40. Blaise, A.; Rebecchi, F. Stay at the Helm: secure Kubernetes deployments via graph generation and attack reconstruction. In
Proceedings of the 2022 IEEE 15th International Conference on Cloud Computing (CLOUD), Barcelona, Spain, 10–16 July 2022;
IEEE: Piscataway, NJ, USA, 2022; pp. 59–69.

41. Mahajan, V.B.; Mane, S.B. Detection, Analysis and Countermeasures for Container based Misconfiguration using Docker and
Kubernetes. In Proceedings of the 2022 International Conference on Computing, Communication, Security and Intelligent
Systems (IC3SIS), Kochi, India, 23–25 June 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–6.

42. Flora, J. Improving the security of microservice systems by detecting and tolerating intrusions. In Proceedings of the 2020 IEEE
International Symposium on Software Reliability Engineering Workshops (ISSREW), Coimbre, Portugal, 12–15 October 2020;
IEEE: Piscataway, NJ, USA, 2020; pp. 131–134.

43. Zhan, M.; Li, Y.; Yang, H.; Yu, G.; Li, B.; Wang, W. Coda: Runtime Detection of Application-Layer CPU-Exhaustion DoS Attacks
in Containers. IEEE Trans. Serv. Comput. 2022, 1–12. https://doi.org/10.1109/TSC.2022.3194266.



Sensors 2023, 23, 1755 26 of 27

44. Lei, L.; Sun, J.; Sun, K.; Shenefiel, C.; Ma, R.; Wang, Y.; Li, Q. SPEAKER: Split-phase execution of application containers. In
Detection of Intrusions and Malware, and Vulnerability Assessment; Springer: Berlin/Heidelberg, Germany, 2017; pp. 230–251.

45. Almiani, M.; Abughazleh, A.; Jararweh, Y.; Razaque, A. Resilient Back Propagation Neural Network Security Model For
Containerized Cloud Computing. Simul. Model. Pract. Theory 2022, 118, 102544.

46. Berardi, D.; Giallorenzo, S.; Mauro, J.; Melis, A.; Montesi, F.; Prandini, M. Microservice security: A systematic literature review.
PeerJ Comput. Sci. 2022, 7, e779.

47. Farshteindiker, A.; Puzis, R. Leadership hijacking in Docker swarm and its consequences. Entropy 2021, 23, 914.
48. Bhargava, B.; Angin, P.; Ranchal, R. Privacy-preserving data sharing and adaptable service compositions in mission-critical

clouds. Proceedings 2020, 1613, 73.
49. Safaryan, O.; Pinevich, E.; Roshchina, E.; Cherckesova, L.; Kolennikova, N. Information system development for restricting access

to software tool built on microservice architecture. E3s Web Conf. 2020, 224, 1041.
50. Iraqi, O.; El Bakkali, H. Immunizer: a scalable loosely-coupled self-protecting software framework using adaptive microagents

and parallelized microservices. In Proceedings of the 2020 IEEE 29th International Conference on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE), Bayonne, France, 10–13 September 2020; pp. 24–27.

51. Baarzi, A.F.; Kesidis, G.; Fleck, D.; Stavrou, A. Microservices made attack-resilient using unsupervised service fissioning. In
Proceedings of the 13th European workshop on Systems Security, Heraklion, Greece, 27 April 2020; pp. 31–36.

52. Jander, K.; Braubach, L.; Pokahr, A. Defense-in-depth and role authentication for microservice systems. Procedia Comput. Sci.
2018, 130, 456–463.

53. Yarygina, T.; Otterstad, C. A game of microservices: Automated intrusion response. In Distributed Applications and Interoperable
Systems; Springer: Berlin/Heidelberg, Germany, 2018; pp. 169–177.

54. Nasab, A.R.; Shahin, M.; Raviz, S.A.H.; Liang, P.; Mashmool, A.; Lenarduzzi, V. An Empirical Study of Security Practices for
Microservices Systems. arXiv 2021, arXiv:2112.14927.

55. Zhu, H.; Gehrmann, C. Lic-Sec: an enhanced AppArmor Docker security profile generator. J. Inf. Secur. Appl. 2021, 61, 102924.
56. Ahmadvand, M.; Pretschner, A.; Ball, K.; Eyring, D. Integrity protection against insiders in microservice-based infrastructures:

From threats to a security framework. In Software Technologies: Applications and Foundations; Springer: Berlin/Heidelberg,
Germany, 2018; pp. 573–588.

57. Yu, D.; Jin, Y.; Zhang, Y.; Zheng, X. A survey on security issues in services communication of Microservices-enabled fog
applications. Concurr. Comput. Pract. Exp. 2019, 31, e4436.

58. Torkura, K.A.; Sukmana, M.I.; Meinel, C. Integrating continuous security assessments in microservices and cloud native
applications. In Proceedings of the 10th International Conference on Utility and Cloud Computing, Austin, TX, USA, 5–8
December 2017; pp. 171–180.

59. Ahamed, W.S.S.; Zavarsky, P.; Swar, B. Security Audit of Docker Container Images in Cloud Architecture. In Proceedings of the
2021 2nd International Conference on Secure Cyber Computing and Communications (ICSCCC), Jalandhar, India, 21–23 May
2021; IEEE: Piscataway, NJ, USA, 2021; pp. 202–207.

60. Otterstad, C.; Yarygina, T. Low-level exploitation mitigation by diverse microservices. In European Conference on Service-Oriented
and Cloud Computing; Springer: Berlin/Heidelberg, Germany, 2017; pp. 49–56.

61. OWASP Application Security Verification Standard 4.0. Available online: https://owasp.org/www-pdf-archive/OWASP_
Application_Security_Verification_Standard_4.0-en.pdf (accessed on 15 January 2023).

62. Ben Fredj, O.; Mihoub, A.; Krichen, M.; Cheikhrouhou, O.; Derhab, A. CyberSecurity attack prediction: a deep learning approach.
In Proceedings of the 13th International Conference on Security of Information and Networks, Merkez, Turkey, 4–7 November
2020; pp. 1–6.

63. enisa ENISA Threat Landscape 2022. Available online: https://www.enisa.europa.eu/publications/enisa-threat-landscape-2022
(accessed on 15 January 2023).

64. Cloud-Native Security. Available online: https://www.tigera.io/learn/guides/cloud-native-security/ (accessed on 15 Jan-
uary 2023).

65. TREND-Micro Securing the 4 Cs of Cloud-Native Systems: Cloud, Cluster, Container, and Code. Available online:
https://www.trendmicro.com/vinfo/in/security/news/virtualization-and-cloud/securing-the-4-cs-of-cloud-native-
systems-cloud-cluster-container-and-code (accessed on 15 January 2023).

66. IONATE Cloud-Native Security Solution. Available online: https://ionate.io/downloads/resources/Whitepaper_Ionate_Cloud_
Native_Security_Solution.pdf (accessed on 15 January 2023).

67. Container Journal The Four Cs of Cloud-Native Security. Available online: https://containerjournal.com/features/the-four-cs-
of-cloud-native-security/ (accessed on 15 January 2023).

68. CROWDSTRIKE WHAT IS A CLOUD-NATIVE APPLICATION PROTECTION PLATFORM (CNAPP)? Available online: https:
//www.crowdstrike.com/cybersecurity-101/cloud-security/cloud-native-application-protection-platform-cnapp/ (accessed on
15 January 2023).

69. A Leap Forward in Risk-Based Application Security: The Cloud Native Application Protection Platform (CNAPP). Available
online: https://apiiro.com/blog/a-leap-forward-in-risk-based-application-security-the-cloud-native-application-protection-
platform-cnapp/ (accessed on 15 January 2023).

https://owasp.org/www-pdf-archive/OWASP_Application_Security_Verification_Standard_4.0-en.pdf
https://owasp.org/www-pdf-archive/OWASP_Application_Security_Verification_Standard_4.0-en.pdf
https://www.enisa.europa.eu/publications/enisa-threat-landscape-2022
https://www.tigera.io/learn/guides/cloud-native-security/
https://www.trendmicro.com/vinfo/in/security/news/virtualization-and-cloud/securing-the-4-cs-of-cloud-native-systems-cloud-cluster-container-and-code
https://www.trendmicro.com/vinfo/in/security/news/virtualization-and-cloud/securing-the-4-cs-of-cloud-native-systems-cloud-cluster-container-and-code
https://ionate.io/downloads/resources/Whitepaper_Ionate_Cloud_Native_Security_Solution.pdf
https://ionate.io/downloads/resources/Whitepaper_Ionate_Cloud_Native_Security_Solution.pdf
https://containerjournal.com/features/the-four-cs-of-cloud-native-security/
https://containerjournal.com/features/the-four-cs-of-cloud-native-security/
https://www.crowdstrike.com/cybersecurity-101/cloud-security/cloud-native-application-protection-platform-cnapp/
https://www.crowdstrike.com/cybersecurity-101/cloud-security/cloud-native-application-protection-platform-cnapp/
https://apiiro.com/blog/a-leap-forward-in-risk-based-application-security-the-cloud-native-application-protection-platform-cnapp/
https://apiiro.com/blog/a-leap-forward-in-risk-based-application-security-the-cloud-native-application-protection-platform-cnapp/


Sensors 2023, 23, 1755 27 of 27

70. A Guide to DevSecOps Tools and Continuous Security For an Enterprise. Available online: https://www.xenonstack.com/blog/
devsecops-tools (accessed on 15 January 2023).

71. SnykCloud Native Security Guide for Building Secure Applications. Available online: https://snyk.io/learn/cloud-native-
security-for-cloud-native-applications/ (accessed on 15 January 2023).

72. VERACODEThe Evolution of Application Security in a Cloud-Native World: Q&A with Chris Wysopal. Available online: https://
www.veracode.com/blog/secure-development/evolution-application-security-cloud-native-world-qa-chris-wysopal (accessed
on 15 January 2023).

73. SYNOPSYS Cyber Security. Available online: https://www.synopsys.com/glossary/what-is-cyber-security.html (accessed on 15
January 2023).

74. TechBeacon Buyer’s Guide for Application Security Tools 2021. Available online: https://techbeacon.com/techbeacon-app-sec-
tools-buyers-guide-2021?amp (accessed on 15 January 2023).

75. Styra Microservices Security: Fundamentals and Best Practices. Available online: https://www.styra.com/blog/microservices-
security-fundamentals-and-best-practices/ (accessed on 15 January 2023).

76. SecurityCompass Microservices and What You Need to Know about Their Security. Available online: https://www.
securitycompass.com/blog/microservices-and-what-you-need-to-know-about-their-security/ (accessed on 15 January 2023).

77. Hackerone What Is Application Security? Concepts, Tools & Best Practices. Available online: https://www.hackerone.com/
knowledge-center/what-application-security-concepts-tools-best-practices (accessed on 15 January 2023).

78. Benison 8 Best Practices to Secure Microservices. Available online: https://benisontech.com/8-best-practices-to-secure-
microservices/ (accessed on 15 January 2023).

79. KTH Evaluation of Security Threats in Microservice Architectures. Available online: http://kth.diva-portal.org/smash/get/
diva2:1708704/FULLTEXT01.pdf (accessed on 15 January 2023).

80. Petersen, K.; Feldt, R.; Mujtaba, S.; Mattsson, M. Systematic mapping studies in software engineering. In Proceedings of the 12th
International Conference on Evaluation and Assessment in Software Engineering (EASE), Bari, Italy, 26–27 June 2008; pp. 1–10.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.xenonstack.com/blog/devsecops-tools
https://www.xenonstack.com/blog/devsecops-tools
https://snyk.io/learn/cloud-native-security-for-cloud-native-applications/
https://snyk.io/learn/cloud-native-security-for-cloud-native-applications/
https://www.veracode.com/blog/secure-development/evolution-application-security-cloud-native-world-qa-chris-wysopal
https://www.veracode.com/blog/secure-development/evolution-application-security-cloud-native-world-qa-chris-wysopal
https://www.synopsys.com/glossary/what-is-cyber-security.html
https://techbeacon.com/techbeacon-app-sec-tools-buyers-guide-2021?amp
https://techbeacon.com/techbeacon-app-sec-tools-buyers-guide-2021?amp
https://www.styra.com/blog/microservices-security-fundamentals-and-best-practices/
https://www.styra.com/blog/microservices-security-fundamentals-and-best-practices/
https://www.securitycompass.com/blog/microservices-and-what-you-need-to-know-about-their-security/
https://www.securitycompass.com/blog/microservices-and-what-you-need-to-know-about-their-security/
https://www.hackerone.com/knowledge-center/what-application-security-concepts-tools-best-practices
https://www.hackerone.com/knowledge-center/what-application-security-concepts-tools-best-practices
https://benisontech.com/8-best-practices-to-secure-microservices/
https://benisontech.com/8-best-practices-to-secure-microservices/
http://kth.diva-portal.org/smash/get/diva2:1708704/FULLTEXT01.pdf
http://kth.diva-portal.org/smash/get/diva2:1708704/FULLTEXT01.pdf

	Introduction
	Related Work
	Research Methodology
	Research Questions
	Searching Procedure
	Study Selection
	Inclusion and Exclusion Criteria
	Data Extraction and Synthesis
	Grey Literature

	Results
	Analysis of the Selected Studies
	Security Defense Mechanism in Cloud-Native Systems: RQ1
	Potential Attacks and Vulnerabilities on Cloud-Native System: RQ2
	Tools or Strategies in Security Defense Mechanism: RQ3
	Addressing Current Gaps in the Defense Mechanism: RQ4
	Result Extraction of Grey Literature

	Threats to Validity 
	Discussion
	Conclusions and Future Work
	References

