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Abstract: Digital twins have revolutionized manufacturing and maintenance, allowing us to interact
with virtual yet realistic representations of the physical world in simulations to identify potential
problems or opportunities for improvement. However, traditional digital twins do not have the
ability to communicate with humans using natural language, which limits their potential usefulness.
Although conventional natural language processing methods have proven to be effective in solving
certain tasks, neuro-symbolic AI offers a new approach that leads to more robust and versatile
solutions. In this paper, we propose neuro-symbolic reasoning (NSR)—a fundamental method for
interacting with 3D digital twins using natural language. The method understands user requests and
contexts to manipulate 3D components of digital twins and is able to read maintenance manuals and
implement installations and removal procedures autonomously. A practical neuro-symbolic dataset
of machine-understandable manuals, 3D models, and user queries is collected to train the neuro-
symbolic reasoning interaction mechanism. The evaluation demonstrates that NSR can execute user
commands accurately, achieving 96.2% accuracy on test data. The proposed method has industrial
importance since it provides the technology to perform maintenance procedures, request information
from manuals, and serve as a tool to interact with complex virtual machinery using natural language.

Keywords: neuro-symbolic AI; artificial intelligence; digital twin; language understanding; internet
of things; Industry 4.0; aircraft maintenance education; smart maintenance; Boeing 737

1. Introduction

Digital twins play a significant role in the industrial sector. Being a virtual representa-
tion of systems in the form of visualizations, 3D models, or virtual environments, digital
twins provide a range of benefits to organizations, including improved design, effective
decision making, and enhanced maintenance and operation of systems and products [1–3].
By simulating and analyzing complex systems, digital twins can provide new insights into
their operation and maintenance and improve the quality and efficiency of applications for
Industry 4.0 [4]. Numerous works have applied digital twins, for example, in the creation
of the digital twin of a city as a foundation for analyzing the dynamics of the city in terms of
processes and events [5], for a better understanding of urban drainage networks [6], and in
space exploration satellites to check the operability of modules [7]. For this work, we used
the most sophisticated example of a digital twin application in the aircraft maintenance
industry since aircraft is one of the most complex machines that consist of millions of parts
and complex assemblies [8,9]. Undoubtedly, digital twin technology innovates industrial
applications; therefore, having effective interaction with digital twins is vital for successful
use. Yet, digital twin technologies lack the ability to communicate with users in natural
language, which reduces their potential effectiveness.

Natural language processing (NLP) is a rapidly growing field that has many practical
applications in industries. Montejo-Ráez et al. [10] focused on emerging techniques and
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trendy applications of NLP, including text classification, text summarization, question
answering, and machine translation. The use of attention models to solve question difficulty
estimation in question-answering tasks, methods for generating more question-answer
pairs in QA models, and a privacy-preserving machine reading system using transformer
models and federated learning technologies are discussed. Massaro et al. [11] proposed a
smart virtual front-office model that uses a combination of FAQs and a chatbot for industrial
applications, with features such as self-learning, dynamic knowledge base generation, and
improved user feedback. Mah et al. [12] highlighted the use of NLP and AI in enterprise
management for Industry 4.0 to understand customer demands and improve customer
satisfaction. Massaro et al. [13] described an acoustic training model for recognizing
speech disorders, with real-time automatic scoring and a graphical dashboard for clinical
evaluations and reporting. Alexakis et al. [14] introduced an IoT agent, a web application
for monitoring and controlling a smart home remotely using NLP for user-friendly control
of devices through text or voice commands. Although traditional NLP methods have
proven to be effective in solving certain tasks, neuro-symbolic AI offers a new approach
that leads to more robust and versatile solutions for NLP challenges.

Neuro-symbolic AI is a valuable technology for digital twins since it can understand
complex structures and reason based on certain contextual knowledge, making it beneficial
for human language understanding in digital twin contexts. Neuro-symbolic AI combines
the strengths of both neural networks and symbolic reasoning, which helps complex
systems to incorporate domain knowledge and perform complex reasoning and decision
making based on that knowledge [15,16]. By extracting features using deep learning
techniques, neuro-symbolic AI can understand various patterns, whereas specifically
defined symbolic rules drive reasoning based on knowledge [17]. Neuro-symbolic AI has
been applied in industries such as robotics, autonomous vehicles, and virtual assistants [18].

In this work, neuro-symbolic reasoning—a fundamental method for interacting with
digital twins using natural language—is introduced (see Figure 1). The proposed method
allows users to operate digital twins, perform installation and removal procedures, control
3D components, and request information from digital twin manuals. Users can commu-
nicate with digital twins using smart glasses or a PC in virtual environments and request
procedures to be demonstrated. NSR can then understand the given query, search reference
manuals to find actions to be performed, identify the required 3D components of the digital
twin, and demonstrate visual animation of the requested execution. The digital twin inter-
action method consists of a neural translator, which is a machine translation model that
converts user requests into symbolic programs, and a symbolic executor, which executes
generated programs with respect to the user context. Along with this method, software
for interacting with the digital twin and its resources is developed, where neuro-symbolic
reasoning can demonstrate installation and disassembly procedures autonomously by
following maintenance manuals.

A neuro-symbolic dataset for the digital twin is proposed to train NSR. Since the
aircraft maintenance process is chosen as the use case for this work, we analyzed the
legacy manuals of Boeing 737 [19] to convert them into a machine-readable format, keeping
the standardized maintenance flow. Moreover, the 2D engineering figures present in the
manuals are converted into annotated 3D models, which are cross-referenced with the
created documents (see Figure 2). Once the annotated 3D digital twin is built, we design
special symbolic vocabulary to represent the logic, functionalities, and decision-making
process of neuro-symbolic reasoning (see Figure 3), where user commands are described
with properly arranged sequences of symbols (symbolic programs). Furthermore, a dataset
of queries is collected that includes possible user requests in a maintenance context, the
corresponding symbolic programs, and ground-truth replies expected to be given by the
system. Overall, the neuro-symbolic dataset consists of command-to-action and manual-
based information retrieval queries for digital twin interactions.
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Figure 1. Neuro-symbolic reasoning for interaction with digital twins.

Figure 2. Digital twin content creation.

The evaluation of the proposed neuro-symbolic reasoning is conducted using sev-
eral machine translation and accuracy metrics on the test data. For the neural aspect of
the method, various sequence-to-sequence neural networks are built and trained using
training samples from the neuro-symbolic dataset of queries, mapping user requests to the
corresponding symbolic programs. Next, the generated symbolic programs are executed to
obtain the final responses, which are compared with the ground-truth replies. Overall, the
experiments showed that machine translation models are able to translate the test examples
with high accuracy, which indicates that the constructed symbolic logic in the dataset is
consistent and well structured. NSR with a multi-layered GRU architecture as the backbone
for the neural translator achieved the best results, with 96.2% neuro-symbolic accuracy,
a BLEU score of 0.989, a BERTScore of 0.867, a ROUGE score of 0.994, and only a 0.2%
failure rate. The evaluation demonstrated that NSR can understand new user requests
and contexts and execute operations on the digital twin with high accuracy and a low
failure rate.
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Figure 3. Digital twin interaction symbolic vocabulary.

The proposed neuro-symbolic reasoning has industrial value since it provides a
methodology to perform the installation and removal of components in a digital twin,
allows users to request information from maintenance manuals, and serves as a tool to
interact and communicate with complex digital twins using natural language. Moreover,
NSR can be adapted to create customized natural language interaction mechanisms for
specific needs, addressing the high demand for the mass personalization of digital twins in
Industry 4.0 [20]. In addition, the proposed method supports the rise of Industry 5.0, which
is expected to focus on a more human-centered approach, and, in the context of human lan-
guage understanding, will lead to more adaptable, dynamic, and personalized models that
focus on understanding contexts to provide better and more human-like communication
with digital twins [21].

In the following sections, the background knowledge about digital twins and the
benefits of neuro-symbolic AI are discussed. Then, the creation of the neuro-symbolic
dataset for the digital twin is explained, and in Section 4, the proposed neuro-symbolic
reasoning is discussed in detail. The evaluation of the method is provided in Section 5.
Finally, we present the results, contributions, and further research plans of this work in
Section 6.

2. Background
2.1. Digital Twins

A digital twin [22–24] is a virtual replica of a physical object, device, or system that
represents all functional features and data exchanges inside the components. A certain
physical device is installed with different sensors for gathering data about vital areas of the
environment. These sensors produce data on different important aspects of the physical
system’s performance such as the energy output, temperature, humidity, etc. [25]. The
data continuously flows between the existing physical and digital twins and they are
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strongly interconnected. Any changes made to the physical device automatically lead to
an immediate update of its digital object and vice versa. Based on such direct and strong
communication, the virtual replicas can run various simulations to study performance
issues and generate possible improvement strategies, as well as provide valuable insights,
which can be applied to the original physical object.

Digital twins are widely used in manufacturing, engineering, and other industries [1–4]
to improve the design and performance of complex systems and allow simulations, which are
hard to recreate in the real world under normal conditions. For example, Dimitrov et al. [5]
created a digital twin of Sofia city as a foundation for the development of digital twin
cities, representing the landscapes and urban areas, as well as the dynamics of the city,
in terms of processes and events with high accuracy. Faced with persistent flooding and
water quality challenges, water managers have developed digital twins of surface water
systems that combine sensor data with online models to better understand and control
system dynamics in natural/urban drainage networks [6]. Another proposed digital twin
reference architecture in [26] has enabled the development of new applications as a service
across the entire value life cycle to create interactions between people, smart devices,
and wetlands. In addition, digital twins were developed for space exploration satellites
in [7], where a platform to demonstrate the operability of modular satellites was simulated.
In order to improve product quality and production efficiency, in [27], a system for a
welding production line based on the physical production line of an equipment factory
was built using digital twin technology. Furthermore, a basic model of a digital twin for
the manufacturing environment of a micro-manufacturing unit was built, permitting the
immediate integration of the machine into an industrial context and allowing the control
of the parameters of the production system [28]. Chen et al. [29] proposed a framework
in which behavioral models of drivers are shared among connected cars to predict the
potential future actions of neighboring vehicles, thereby improving the safety of driving.
Digital twins have also been introduced into architecture [30] to develop a procedure for
creating an accurate virtual model, which integrates experimental physical reality and
uses it to study the structural response of the system, its preventive maintenance, and
strengthening operations.

In this work, an aircraft maintenance digital twin is applied as a use case for building
neuro-symbolic reasoning for interactions. Digital twins in the aircraft industry have been
implemented as the inner processes become increasingly digital, and the Internet of Things
(IoT) has become increasingly dominant [4,31]. Digital twins can be used to model compli-
cated structures and processes that uniquely interact with the surrounding environment,
where one of the major challenges is the prediction of terminal effects over the entire life
cycle of an aircraft [32]. The airframe, engines, flight control surface, instrumentation,
pressurization, hydraulics, chassis, and other systems comprise the complicated aircraft’s
intricate system architecture [8,9]. However, an aircraft collects a large amount of data
during operation, which allows for the digital management of the aircraft’s full life cycle to
minimize operating costs and increase system reliability.

Various works have applied aircraft digital twins to solve certain issues. To address
the shortcomings of conventional approaches for certification, fleet management, and sus-
tainment, the digital twin in [33] integrated ultra-high-fidelity simulation into an aircraft’s
onboard health management system, maintenance history, and available historical and
fleet data to mirror the life of its flying twin and enable unprecedented levels of safety and
reliability. Additionally, “virtual reality + Internet” were combined in an experimental
power supply system for large multi-electric aircraft [34], resulting in the development of a
virtual simulation platform. This system was created for the power supply management
and fault reconstruction of multi-electric aircraft and facilitates the sharing of industrial and
social resources. Oyekan et al. [35] proposed an industrial robot with a computer vision
system and a digital twin that is used to create an automation cell for the fan-blade recon-
ditioning component of aerospace maintenance, repair, and overhaul (MRO) services, as
well as the digitization of the fan-blade surface, tracking, and guidance of material removal.
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Furthermore, virtual assembly was presented in [36], which realizes the assembly process
design, verification, and optimization of complex products in the virtual environment.
This system has been effectively used to improve the assembly quality and efficiency of
complex products.

In order to build an interaction mechanism with digital twins, the neuro-symbolic AI
concept is applied, which demonstrates great potential for the problems mentioned above.
Therefore, in the next section, neuro-symbolic AI and its methodology are introduced.

2.2. Neuro-Symbolic AI

An emerging AI domain that shows potential for use in digital twin technology
is neuro-symbolic AI (NSAI) [15,16], which blends deep learning for feature extraction
with rules-based “intuition” for manipulating those features. Until the 1980s [37], rule-
based or symbolic techniques dominated the field of artificial intelligence. Compared to
deep learning models, symbolic models require fewer input samples, can be successfully
extended to new problems, and their core functionality is conceptually straightforward.
At the same time, they require a significant amount of hand-tuning, making it difficult to
develop complex issues. Therefore, neuro-symbolic AI [16,37–39] was not a major concern
until recently, when key advances in machine learning driven by neural networks, led to
an enormous increase in interest and research work on integrating neural and symbolic
approaches. NSAI [17] is a combination of neural networks and symbolic techniques
that aims to take advantage of the strengths of each. Deep learning has demonstrated
exceptional performance in extracting complicated features from data in applications such
as object detection and natural language processing. Simultaneously, symbolic AI is useful
for formalizing human-like reasoning. The goal of NSAI [40] is to extract features from data
using deep learning techniques and then utilize these features using symbolic techniques.

NSAI [18] has been used to improve systems that now use AI such as robotics, au-
tonomous vehicles, or digital assistants. The project in [41] used neuro-symbolic AI to create
methods that can make transparent predictions in the context of drug repurposing and the
authors aimed to understand how the organization of data in a knowledge graph changes
the quality of predictions. Bennetot et al. [42] presented a probabilistic programmed
deep-kernel learning approach to the personalized, predictive modeling of neurodegen-
erative diseases while considering a spectrum of neural and symbolic machine learning
approaches, which assess predictive performance and important medical AI properties
such as interpretability, uncertainty reasoning, data efficiency, and domain knowledge.
Moreover, Morel et al. [43] advocated a merging of two trends—neuro-symbolic AI and
the smart city—and worked toward the complete integration of these two technologies. In
addition, [44] described a platform and research efforts that approximate the elements that
underlie human cognition based on the physical embodiment and environmental context,
which is achieved by combining human-like robotic grasping and social abilities with
symbolic AI with explicit knowledge models and inference and deep learning networks all
within in an adaptive, reconfigurable framework.

Therefore, the concept of neuro-symbolic AI to build NSR for interaction with digital
twins is applied, where a question-and-answer system is created to communicate with the
digital replica to find a practical solution to the industrial problem.

3. Digital Twin and Neuro-Symbolic Dataset
3.1. Overview

This work starts with building the digital twin and datasets for creating the interaction
mechanism. To develop a dataset for an aircraft maintenance digital twin, extensive work
with legacy manuals is carried out since they provide procedures that need to be strictly
followed. The manuals cross-reference each other, providing maintenance steps and related
items to work with. Therefore, to create the digital twin of aircraft maintenance, the
following steps are performed, as described in Figure 2.
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First, a hierarchy of existing aircraft maintenance manuals is identified to convert them
into a machine-readable format called JSON. All maintenance manuals and operations are
divided into sections (ex. landing gear). A section has tasks (installation or removal of an
aircraft part), a task has subtasks (procedures that concentrate on certain assemblies of that
part), and a subtask has instructions (detailed operations to be performed on items). See
Figure 2 for a detailed example.

Second, 2D engineering drawings are converted into annotated 3D models. There are
numerous figures presented in the manuals that show components, relationships, and an-
notations. We recreated the manuals in a 3D format, building the components of the digital
twin using the annotations from the legacy manuals. An annotation contains information
about an item, its installation or removal configuration, and many other features.

Combining the assets from previous steps, the digital twin metadata is obtained, which
consists of machine-readable manuals and 3D models that are interconnected. Overall,
5 tasks, 32 subtasks, and 100 instructions are built, and 3D models of each of the mainte-
nance operations are created. Next, to give the digital twin assets operability and develop
the reasoning mechanism, the neuro-symbolic dataset is introduced.

3.2. Neuro-Symbolic Dataset

The underlying principle of users’ interactions with digital twins is depicted in the
neuro-symbolic dataset, which consists of user requests and their translations into machine
language. The first step in building the dataset is to create a symbolic vocabulary that
describes procedures or operations that can be applied to the digital twin. The second step
is to map the user requests to the symbols in the vocabulary that describe the translation.
Therefore, a dataset of requests is created, which is provided in a specific context that
translates user queries in English into symbolic programs that the system can understand,
resulting in the completion of the requested operations. The dataset is used to train neuro-
symbolic reasoning and evaluate the system and is described in the later sections.

3.2.1. Symbolic Vocabulary

The proposed symbolic vocabulary represents operations that can be applied to the
digital twin. The vocabulary consists of symbols that describe the digital twin’s functions
and their possible configurations. Figure 3 illustrates the symbolic vocabulary built to
interact with the aircraft maintenance digital twin. Overall, there are 30 operations, each
with a specific purpose. The symbolic vocabulary consists of terminal and non-terminal
symbols. Terminal symbols represent a final operation to be performed on the digital
twin. In contrast, non-terminal symbols are used to retrieve or compute information
for the functional parameters of a terminal node. The following are definitions of some
terminal symbols:

• Attach-Performing installation of object A on object B;
• Detach-Performing disassembly of object A from object B;
• Rotate-Performing rotation operation on object A on specific angle B.

The following are examples of non-terminal symbols:

• FilterType-Traversing information nodes and filtering of certain types of nodes;
• Count-Counting the number of objects in a given list;
• 3D Filter Attr-Traversing 3D components and filtering of models based on attributes

and values.

Overall, the symbolic vocabulary aims to interact with the digital twin and request
information from manuals. Once the symbolic vocabulary is created, a translation of simple
English into the created symbolic language needs to be constructed. Therefore, in the next
section, the creation of user query samples and the corresponding symbolic programs
is explained.
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3.2.2. Neuro-Symbolic Dataset of Queries

To utilize the symbolic vocabulary, the dataset of user queries is proposed. The dataset
consists of numerous examples of natural language requests that are translated into a
series of symbolic programs. Considering that all the queries are taken from the aircraft
manuals, the contexts of the requests alongside the queries are defined. Correspondingly,
the expected ground-truth answer that should be provided by the system is also supplied
for each sample. Figure 4 demonstrates an example of a query. The following are the
definitions of the variables used in the queries:

• “query” represents the user requests;
• “symbolic programs” defines the corresponding symbolic programs;
• “context” provides information on the task, subtask, and instruction of the query;
• “reply” shows the expected answer from the execution of the request.

Figure 4. Neuro-symbolic dataset of queries.

There are two types of requests in the dataset (see Figure 4). The first type is command-
to-action requests. These requests are for performing an operation on the digital twin. The
operation can be the installation or removal of certain parts or the manipulation of the
3D model such as rotation, scaling, etc. As can be seen from the example in Figure 4, the
request “Disconnect [53] from [52]” results in uninstalling the item from the assembly.

The second type of query in the dataset is information retrieval requests, which
compute or extract the requested information from the aircraft manuals discussed in
Section 3.2. The execution of the programs in the query, such as “show the content of this
instruction”, results in the retrieval of the answer from the document according to the given
context in the manual.

Overall, there are 9000 queries created. The queries are made by people and au-
tomation software written in Python, altering the various needs, contexts, conditions, and
semantics of the language. The average number of symbols per query is 23.47, with a
standard deviation of 10.46, and an average of 6.14 symbolic programs are constructed
with a standard deviation of 2.48. Taking the example in Figure 4, the first query with the
request “Disconnect [53] from [52]” is converted into 11 programs, whereas, the second
sample query with the request “What is the content of this instruction?” is represented
by 8 symbolic programs. The proposed requests reflect the functionality of the developed
system when interacting with the digital twin. Our neuro-symbolic dataset addresses
real-world problems and can be applied in industries that require the use of digital twins
and document manuals. The proposed dataset is applied to build the neuro-symbolic
interaction mechanism introduced in the next section.
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4. Neuro-Symbolic Reasoning
4.1. Overview

In this work, we propose neuro-symbolic reasoning to operate a digital twin and ask
manual-related questions. Users are able to interact with the 3D assets of a digital twin and
request that various operations be demonstrated by making queries in English. Moreover,
special digital twin interaction software is developed that allows users to experience
communication with an aircraft maintenance digital twin.

The proposed digital twin is created in 3D; therefore, it can be easily introduced into
smart devices and virtual environments, including Augmented Reality (AR), Virtual Reality
(VR), or Mixed Reality (MR), since the digital twin is represented in 3D. Moreover, with the
help of NSR, a user wearing smart glasses or using a PC can query the system and receive
a reply. Figure 1 illustrates the concept of the proposed reasoning. Once a user makes a
request, NSR understands the query and searches and cross-references manuals, extracting
relevant information for execution; it finds 3D assets of the digital twin mentioned in the
maintenance documents and performs computed operations with visual feedback to the
user. There are several steps involved in the proposed neuro-symbolic reasoning, which
are described in the following sections.

4.2. Understanding User Requests

The first stage in neuro-symbolic reasoning is understanding requests. This step can
be considered machine translation since requests given in a human language need to be
converted into machine-understandable symbols defined in the system. Using the neuro-
symbolic dataset described in Section 3.2, a neural translator is developed, which parses
the questions into a series of symbolic programs (see Figure 5).

The underlying technology for the neural translator is a sequence-to-sequence neural
network that translates a sequence of English word tokens that represent requests into a
sequence of tokens from the symbolic vocabulary, which reflect symbolic programs. The neural
translator is trained on the neuro-symbolic dataset of queries presented in Section 3.2.2. Taking
the “query” and “symbolic programs” data fields of the requests, the neural translator’s
neural network is trained. The choice of a machine translation neural network can vary
based on tasks and datasets; however, in our work, a multi-layered GRU architecture is
chosen due to its superior performance over other architectures (see Section 5).

Figure 5. Neuro-symbolic reasoning pipeline.
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Figure 5 describes the inference flow. First, users’ queries are converted into vectors
by the English language tokenizer. Second, the neural translator performs sequence-
to-sequence translation, creating the symbolic vector. Lastly, the symbolic vocabulary
tokenizer converts the generated vectors into symbolic programs, which are defined in the
system (see Figure 3).

The task of the neural translator is to convert user requests into a series of symbols
for the machine to execute. It tells the neuro-symbolic reasoning what steps it needs to
perform to obtain the answer to the question. Therefore, once the system has computed the
next steps that need to be taken, the symbolic executor of NSR takes over.

4.3. Execution of Operations

The symbolic executor is a reasoning mechanism that executes generated symbolic
programs based on user context. Once the neural part of the reasoning provides symbolic
programs, the symbolic executor performs step-by-step computations to create a response
(see Figure 5).

The symbolic executor provides two types of feedback depending on the request. In
Section 3.2, it was discussed that information retrieval and command-to-action queries exist
in the dataset. For information retrieval queries, the symbolic executor provides results in
a text format and summarizes the extracted information from the manuals, whereas for
command-to-action requests, the symbolic executor generates primitive operations and
performs actions on the 3D components of the digital twin (see Figure 5).

To better understand the execution of the symbolic programs, an example is provided
in Figure 6. Assuming that the user request is “Please, show me how to install [43]
to [46]”, which is a command-to-action query type, the neural translator generates the
corresponding symbolic programs. In addition, the context of the request is provided,
including information about the current task, its subtask, and the instruction order, which
defines a specific manual process. A manual snippet of a given context is provided below.

Figure 6. Example of execution of symbolic programs.

The symbolic executor starts by executing one symbolic program at a time, passing
the result from the execution to the next stage. The symbols in a program represent a
function and the function parameters that need to be passed in the given order. Below is
the reasoning mechanism of the example in Figure 6 described:

1. ExtractNumbers Query—Extract numbers from the query, where the query is a symbol
that represents a user request in the system. The outputs of this step are the numbers
that exist in the query.
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2. CreateActions Attach—Based on predicted parameters, queries in the form of actions
are represented in case the query is a command-to-action type.

3. SaveVal2Val—Saving computed values from the previous execution to be used later.
Some queries are more complex than just sequential processing; therefore, the tempo-
rary values are stored.

4. FilterType Tasks Root—Traversing manuals to find nodes with type tasks.
5. FilterAttr task_id current_task_id—Traversing tasks to find the task of the context.
6. FilterType Subtasks—Traversing the current task to find nodes with type subtasks.
7. FilterAttr subtask_id current_subtask_id—Traversing subtasks to find the subtask of

the context.
8. FilterType Instructions—Traversing the current subtask to find nodes with

type instructions.
9. FilterAttr order current_instruction_order—Traversing instructions to find the instruc-

tion of the context.
10. FilterType Actions—Traversing the current instruction to find nodes with type actions.
11. CheckActionsValidity—Checking whether the requested actions from the user query,

which are saved in the temporary variable in step 3, overlap with valid actions of the
current context.

12. Attach—Performing actual actions requested by the user in case they are valid.

Command-to-action queries generate primitive operations if the validation of the
request is confirmed. These primitive operations consist of a sequence of generic steps
that need to be applied by the executor of the operations. In the example in Figure 5, it is
shown that the removal action of one item from another is represented as primitive move
and delay steps. For users, it is crucial to be able to see a proper visual response; therefore,
the request’s execution must be plausible and understandable in terms of both the process
and results.

All assets of the digital twin, neuro-symbolic queries, and the reasoning mechanism let
users experience communication with the digital twin, which is accessible through special
software built for this work, discussed next.

4.4. Digital Twin Interaction Software

Digital twin interaction software is developed to allow users to make requests and
explore the digital twin and neuro-symbolic datasets (see Figure 7). Users can choose a
certain context in the aircraft maintenance digital twin such as a task, a subtask, or an
instruction. Next, the system loads all the resources and presents the 3D digital twin and
its specific parts in the software. Users can choose whether to automatically execute the
actions of the context or make personalized requests. The digital twin interaction software
is developed in Unity [45], which is a cross-platform game engine that supports a variety
of desktop, mobile, and virtual reality platforms. Unity can be used to create 3D and 2D
games, as well as interactive simulations and other experiences.

The proposed neuro-symbolic reasoning is applied to each stage of the execution of
the digital twin in the software. Symbolic programs are utilized to find manual nodes
from the dataset, load the corresponding parts of the digital twin, and prepare actions for
execution. In a case where users want to view procedures, the play button in the top right
corner can be used to trigger a demonstration (see Figure 7).

The query field in the software allows users to make custom requests. Users type their
requests in the text area and NSR is triggered to perform the inference described in Figure 2.
Various operations can be performed with the aircraft maintenance digital twin, including
its manipulation, exploration, and simulation. Since the neural translator is trained with
variations of the requests, it is able to understand different semantics in the queries.
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Figure 7. Digital twin interaction software.

The interaction software incorporates communication protocol between the user and
the digital twin, which is accessed as follows: wearing smart glasses or using a PC, the user
requests are sent to a deep learning machine (server) that executes neural networks (the
neural translator) and delivers the computed symbolic programs to a client device over
the Internet.

The snapshot of the software in Figure 7 is a PC version; however, the digital twin and
interaction mechanism can be built into AR, VR, and MR environments. The PC version
allows for the comfortable use of a computer keyboard to type queries, whereas in the
case of smart glasses, an integrated speech module can be utilized to convert spoken user
requests into text and interact with the digital twin using NSR in the same way.

4.5. Choosing Neuro-Symbolic AI over Neural Networks

Applying neuro-symbolic AI in digital twins has several advantages over conventional
neural networks. We identified the most relevant benefits of NSR with respect to our work
and provide a summary below:

• Scalability. Digital twins usually represent complex structures that may consist of
millions of components (for example, aircraft maintenance digital twins) that change
regularly. Therefore, using neural networks with embedded context is not scalable
since every time a new context appears, neural nets must be retrained to be updated.
On the other hand, neuro-symbolic AI has a mechanism to interact with context
(manuals and 3D models) instead of memorizing it. This makes the modifications of
manuals and 3D models much easier, without the need to change the reasoning.

• Explainability. The reasoning mechanism of neural networks is a black box and
the results obtained are not explainable. In contrast, in our neuro-symbolic AI, the
execution of symbolic programs can be analyzed step by step, bringing clarity to the
inference process, and understanding the intermediate outputs.

• Finer Modifications. Along with the explainability of neuro-symbolic AI, finer modifi-
cations to the reasoning mechanism are possible. Since the intermediate steps in the
execution of symbolic programs can be analyzed, a certain symbol can be updated
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based on needs, reflecting changes in the system. Therefore, the neural part of neuro-
symbolic AI can remain unchanged while modifying the symbolic AI only, which is
not the case for neural networks since the only solution is to retrain them.

Overall, question-answer and interaction systems that rely on the context during
inferences, such as interaction with digital twins for complex machinery, should apply
neuro-symbolic reasoning to maintain the context and understand complex human requests.
In the next section, the evaluation process for the proposed NSR is performed.

5. Evaluation

In this section, the evaluation of the proposed neuro-symbolic reasoning is described.
First, the training and test data used for the experiments are presented. Then, the assessment
metrics and evaluation strategy, along with the results, are discussed.

5.1. Data

The data for the evaluation are sampled from the neuro-symbolic dataset of queries
and the digital twin created with manuals. As described in Section 3, the neuro-symbolic
dataset of user requests, programs, contexts, and replies based on cross-referenced digital
twin and aircraft manuals was collected. All queries were divided into two categories, that
is, information retrieval and command-to-action types. Overall, about 9000 user requests
provided in specific contexts, their corresponding symbolic programs, and expected ground-
truth replies after the execution of the requests with NSR were obtained.

For evaluation purposes, two sets of data from the available queries in the dataset
were randomly sampled:

• Training Data—8000 queries;
• Test Data—1000 queries.

All the requests from the neuro-symbolic dataset have unique characteristics, including
request texts, digital twin and manual contexts, and corresponding replies. The evaluation
process was performed using these two sets of data and is described in the next section.

5.2. Metrics and Strategy

The evaluation strategy included the assessment of the intermediate steps and a full
inference pipeline of neuro-symbolic reasoning. We evaluated the proposed method with
several neural network models, altering the neural translator of NSR. The networks were
trained with the training data and using the evaluation metrics, the performances of all the
setups were assessed on the test data.

First, various machine translation architectures were built for the neural component,
the neural translator. State-of-the-art sequence-to-sequence neural network architectures
were selected, including multi-layered LSTM, GRU, and transformer with attention mech-
anisms, to develop several versions of the neural translator. All models have encoder–
decoder architecture that encoded the source sentence (user request) into a single vector.
The request vector was then decoded by a decoder network, which learned to output the
target sentences (symbolic programs). The encoder and decoder were made up of multiple
layers of recurrent neural networks (RNNs) or transformer blocks. In the case of the RNNs,
the layers were long short-term memory (LSTM) units or gated recurrent units (GRUs). For
the transformer blocks, the layers were made with multi-head self-attention mechanisms
and point-wise feed-forward neural networks. The following is a summary of the neural
models built for the experiments:

• Multi-layered LSTM—multi-layered long short-term memory (LSTM) [46] from the
following work [47].

• Multi-layered GRU—Multi-layered gated recurrent unit (GRU) [48]. A GRU is similar
to LSTM but has two gates: the update gate and the reset gate [49].
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• GRU with Attention—Multi-layered gated recurrent unit with decoder attention,
which applies an attention mechanism by computing the weighted sums of the en-
coder’s hidden states [50].

• GRU with Padding—Multi-layered gated recurrent unit architecture that applies
packed padded sequences and masking. Padded sequences force the model to skip
padding tokens in the encoder, whereas masking allows the network to ignore atten-
tion over padded elements.

• Transformer Attention—Multi-layered transformer model with attention mechanisms [51].
The encoder and decoder are made of multiple layers, with each layer consisting of
multi-head attention and position-wise feed-forward sublayers.

Second, these sequence-to-sequence models were trained with the training data, as
described in the previous section. All the networks had the same training setup, including
the training data, environment, etc. The models had encoding and decoding dimensions of
256 and hidden dimensions of 512. The dropout applied to all encoder and decoder models
was 0.5. The training was performed using the Adam optimizer with a learning rate of
0.001, cross-entropy loss, and training batch size of 512 for all the network architectures.

Next, using machine translation and classification metrics, the performance of each
setup was assessed on the test dataset, which was allocated for evaluation purposes only.
The following evaluation metrics were applied:

• Neural accuracy is the ratio of the number of correctly predicted symbolic programs
(or translated user requests) to the total number of input pairs (requests to programs).

• Bilingual Evaluation Understudy (BLEU) [52] is a metric used to assess automatic
translation by measuring the difference between reference translations made by hu-
mans and machines for the same source sentence. The metric is language-independent
and correlates highly with human evaluation. Since a narrow domain is applied in
this work, a high BLEU score is expected [53].

• BERTScore [54] is a metric for the evaluation of automatic text generation. The
BERTScore applies the pre-trained embeddings from the BERT model [55] and com-
putes the semantic similarity between the reference and predicted tokens. The metric
computes the cosine similarity between each word from the reference and predictions.

• Metric for the Evaluation of Translation with Explicit Ordering (METEOR) [56] is a ma-
chine translation evaluation technique that matches unigrams between the reference
and predicted translations. METEOR is based on the harmonic mean of unigram pre-
cision and recall, giving higher weights to recall. It produces a substantial correlation
with human judgment at the sentence level [57].

• Recall-Oriented Understudy for Gisting Evaluation (ROUGE) [58] is a measure that
counts the number of overlapping units, such as n-grams, word sequences, and word
pairs, between machine-generated predictions and human-produced references [58].
In our case, ROUGE-1 is applied, which compares the similarity of unigrams between
the reference and predicted summaries.

• Neuro-symbolic accuracy is the ratio of the number of correctly predicted responses
(or executed symbolic programs) based on a given query and context to the total
number of examples. This metric represents the accuracy of the whole neuro-symbolic
reasoning pipeline.

• Failure rate is the ratio of the number of unsuccessful executions of generated symbolic
programs to the total number of symbolic programs.

Overall, five NSR setups were checked, altering the neural network model of the
neural translator and evaluating the execution ability and correctness of the whole system.
In the next section, the experimental results are presented.

5.3. Results and Discussion

In this section, the results and discussion of the evaluation of NSR are described. Using
the test data and the various metrics presented in the previous sections, the experiments
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are summarized as follows: first, the neural translator is evaluated by assessing its ability
to perform machine translations of user requests into symbolic programs (see Table 1);
and second, the results of the assessment of overall neuro-symbolic reasoning (see Table 2)
are shown.

Table 1. Neural translator evaluation.

Model Accuracy BLEU BERTScore METEOR ROUGE

Multi-layered LSTM 0.446 0.903 0.866 0.927 0.956
Multi-layered GRU 0.962 0.989 0.867 0.944 0.994
GRU with Attention 0.856 0.965 0.866 0.935 0.980
GRU with Padding 0.907 0.974 0.866 0.938 0.986

Transformers Attention 0.960 0.986 0.867 0.942 0.993

Table 2. Neuro-symbolic reasoning evaluation.

Model Neural Accuracy Neuro-Symbolic Accuracy Fail Rate

Multi-layered LSTM 0.446 0.449 0.010
Multi-layered GRU 0.962 0.962 0.002
GRU with Attention 0.856 0.856 0.010
GRU with Padding 0.907 0.914 0.016

Transformers Attention 0.960 0.960 0.006

As shown in Table 1, with regard to the accuracy of the neural translator, the best results
were achieved by the multi-layered GRU and transformer models with 96.2% and 96%
accuracy rates, respectively. This demonstrates that the mentioned sequence-to-sequence
models are able to accurately translate unseen user requests from the test data into symbolic
programs. As can be seen in Table 1, these models showed the best performance among the
network architectures, with the results being nearly equal in all metrics.

The BLEU score of the assessment models ranged from 0.903 to 0.989 for multi-
layered LSTM and multi-layered GRU, respectively. The BLEU scores were calculated
for individual translated sentences (symbolic programs) by comparing them with a set of
reference translations, and since the BLEU scores were high, this indicates that the predicted
symbolic programs were similar to the ground-truth programs, with some slight differences
or a different construction order.

It can be seen that the BERTScore for almost all the machine translation models was
the same at 0.86. The BERTScore focuses on computing the semantic similarity between
tokens using contextual embeddings, which may explain the above results, as our symbolic
language vocabulary was very limited and the representations for certain meanings were
unique. In the case of the METEOR and ROUGE metrics, which both compare the similarity
of unigrams, the highest scores were achieved by the multi-layered GRU architecture with
scores of 0.944 and 0.994 for METEOR and ROUGE, respectively.

Assessing NSR (Table 2), the results of neuro-symbolic accuracy were almost identical
to neural accuracy. This shows that if symbolic programs are generated incorrectly, the
output of symbolic execution, in most cases, is also wrong since NSR heavily depends
on the neural translator. Overall, the multi-layered GRU and transformer models for the
neural translator showed a 96% performance rate for NSR.

Comparing the GRU-based models, the results show that the more complex GRU net-
works, either with special decoder attention or packed padded sequences and masking
techniques, were less effective compared to simple multi-layered GRU. GRU with attention
and GRU with padding achieved 10.6% and 4.8% lower neuro-symbolic accuracy, respectively.

The greatest failure rate in the experiments was 1.6%, which was only 16 failed
executions out of 1,000 test samples. This demonstrates the excellent ability of the sequence-
to-sequence models to construct symbolic programs with proper structural arrangements
of functions and symbolic attributes and shows the capability of machine translation
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models to predict the next token in the sequence. Thus, even though the multi-layered
LSTM architecture showed the worst performance among all the architectures with only
44% of neural and neuro-symbolic accuracy, it only had a 0.1% failure rate. In contrast,
multi-layered GRU showed exceptional results in the failure rate metric, with only 0.2% of
unsuccessful executions, which was the lowest among the architectures. One reason why
the multi-layered LSTM model may have exhibited lower accuracy is a lack of data. LSTMs
are complex models that require a large amount of data to effectively train. If the model is
not trained on enough data, it may not be able to learn the underlying patterns in the data,
resulting in poor performance on the test data. Similarly, if the problem is too complex for
the current model’s architecture, more data may be needed to improve performance.

In summary, the evaluation results showed that the proposed neuro-symbolic dataset
is consistent since the machine translation models were able to converge on the training
data, achieving high accuracy on the test data. In addition, the results demonstrated that
the multi-layered GRU and transformer architectures were the most suitable for use in
the neural translator of NSR. Overall, 96.2% of neuro-symbolic accuracy was achieved
on the test data, with only a 0.2% failure rate for symbolic programs. The ontology of
neuro-symbolic reasoning is embedded in the manuals and digital twin, and when a user
makes a request in natural language, the neural translator interprets the request, creating a
series of instructions (symbolic programs) to be performed with the knowledge base. As the
system trains, it learns to map user requests to symbols from the symbolic vocabulary. To
provide a response, the symbolic executor executes the instructions step by step, accessing
information from the ontology. Therefore, NSR is a scalable solution as it has a mechanism
for interacting with the context, making modifications to manuals and 3D models much
easier without the need to change reasoning.

6. Conclusions and Future Works

To conclude, digital twins have gained popularity in industrial applications since
they can help to predict a system’s behavior and performance. As they are in a virtual
environment, they can simulate and analyze the digital replica of a physical object or
system to identify potential problems and opportunities for improvement. Furthermore,
the ability to effectively interact with digital twins plays a crucial role in their successful
use and natural language is the most convenient interaction mechanism. Recent advances
in neuro-symbolic AI that combine both neural networks and symbolic reasoning to solve
complex problems allow for the interpretation of the sophisticated structures of digital
twins and their operation using natural language requests.

In this work, we proposed the neuro-symbolic reasoning mechanism—a fundamental
way of interacting with digital twins using natural language. The proposed method allows
users to perform the installation and removal of digital twin components, manipulate
3D models, and obtain specific knowledge from manuals using language dialog with the
digital twin. To accomplish this, a neuro-symbolic dataset of the digital twin was created.
First, the aircraft maintenance digital twin of a Boeing 737 was constructed by converting
maintenance manuals into a structural machine-readable format and transforming 2D
engineering drawings into annotated 3D models. Second, a special symbolic vocabulary
was created, where symbols represent the components and functionality of the digital
twin. Third, a neuro-symbolic dataset of queries was collected, consisting of user requests
given in specific contexts and their corresponding symbolic programs. The proposed
dataset has industrial importance since it demonstrates the use of neuro-symbolic AI in a
real-world application. Moreover, NSR was proposed, which allows intuitive interaction
with the digital twin through simple language communication. It consists of a neural
translator, which understands user requests and translates them into symbolic programs,
and a symbolic executor, which executes the symbolic programs considering the user
context. In addition to natural language understanding, the system is able to read structured
maintenance manuals and implement assembly and disassembly procedures autonomously.
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An evaluation of NSR was conducted. By altering various sequence-to-sequence mod-
els for the neural translator, the system was trained using a training dataset and experiments
were carried out using test data. The individual components and the overall reasoning
mechanism were assessed using various machine translation and classification metrics. To
sum up, the experimental results demonstrated that the proposed neuro-symbolic dataset is
consistent and well structured since the machine translation models were able to translate
the test examples with high accuracy. The best NSR setup was achieved with the multi-
layered GRU neural translator, which demonstrated neuro-symbolic accuracy of 96.2%, a
BLEU score of 0.989, a BERTScore of 0.867, a ROUGE score of 0.994, and only a 0.2% failure
rate. This shows that NSR can understand new user requests and contexts and perform
executions with high accuracy and a low failure rate.

To sum up, the contributions of this work include the following: a method for under-
standing natural language using neuro-symbolic reasoning for intuitive and explainable
interactions with digital twins; a virtual aircraft maintenance digital twin with structured
manuals; a neuro-symbolic dataset of user queries for operating the digital twin; and digital
twin interaction software, which provides an environment for users to interact with the
industrial digital twin.

In the future, it is planned to enhance neuro-symbolic reasoning to understand the
shape, structure, and purpose of 3D components of digital twins using neural AI to further
eliminate the need for metadata. This would require building neural models capable of
predicting the relationships between 3D objects regardless of their features. We truly believe
that NSR is a sustainable technology for digital twins that will bring numerous innovations
to the field.
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