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Abstract: The aim of this study was to develop and validate an algorithm that can identify the type,
frequency, and duration of activities common to intensive care (IC) patients. Ten healthy participants
wore two accelerometers on their chest and leg while performing 14 activities clustered into four
protocols (i.e., natural, strict, healthcare provider, and bed cycling). A video served as the reference
standard, with two raters classifying the type and duration of all activities. This classification was
reliable as intraclass correlations were all above 0.76 except for walking in the healthcare provider
protocol, (0.29). The data of four participants were used to develop and optimize the algorithm by
adjusting body-segment angles and rest-activity-threshold values based on percentage agreement
(%Agr) with the reference. The validity of the algorithm was subsequently assessed using the data
from the remaining six participants. %Agr of the algorithm versus the reference standard regarding
lying, sitting activities, and transitions was 95%, 74%, and 80%, respectively, for all protocols except
transitions with the help of a healthcare provider, which was 14–18%. For bed cycling, %Agr was
57–76%. This study demonstrated that the developed algorithm is suitable for identifying and
quantifying activities common for intensive care patients. Knowledge on the (in)activity of these
patients and their impact will optimize mobilization.

Keywords: accelerometer; ICU; mobilization; rehabilitation; validity; algorithm; wearable technology;
activity

1. Introduction

For inpatient individuals who receive intensive care (IC), including those with exten-
sive burns, physical functioning is severely impaired. This can lead to many secondary
problems such as ICU-acquired weakness and other physical, cognitive, or mental dis-
orders. Being physically active as a form of rehabilitation, even in the early stages of
recovery, is important for optimizing physical functioning and increasing autonomy [1].
Therefore, adequate physical activity in the IC setting is important for improving physical
functioning [2,3]. However, what constitutes “adequate” physical activity has yet to be
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determined. To gain an understanding of what levels of physical activity are adequate for
rehabilitation, knowledge about the actual physical activity levels in terms of frequency,
duration, and type of activity, i.e., external load, during a hospital stay is essential [4,5].
Unfortunately, such knowledge is mostly lacking.

For intensive care patients, several methods exist for monitoring physical activities,
including mobility scales, behavioral mapping, and the use of wearable activity moni-
tors [6]. Mobility scales are easy to score and require only a minimal amount of equipment.
However, they do not provide insight into the type, duration, and frequency of actual
physical activity nor the continuity of it [7]. Behavioral mapping with video observations,
for example, provides this information in a valid and reliable manner. However, it is
very labor intensive and therefore not practical to conduct for longer periods of time [8].
Wearable activity monitors, such as accelerometers, enable continuous objective measure-
ments for extended periods of time in hospitalized patients, including those in intensive
care [5,9]. In addition, they are small, relatively inexpensive, and well tolerated. However,
the disadvantage of using accelerometers is that, when applied singularly, they do not allow
for the differentiation of physical activities common to hospitalized intensive care patients,
such as lying and sitting [10,11]. To overcome this issue, dual accelerometry using two
accelerometers at the same time combined with an algorithm based on the raw three-axial
data of both of these can be used [5,12,13].

To date, several algorithms for use in clinical settings based on dual-accelerometry have
been developed. They can identify older adults’ activities, such as sitting, standing, and
lying [14] as well as slow walking by elderly patients in a clinical setting [15]. Additionally,
Rauen et al. [16] have developed an algorithm that can identify activities such as supine
lying, side lying, or sitting in severely affected neurological patients. Although these
algorithms identify many activities, they do not include other activities that are common
for IC patients such as nurse-initiated activities, i.e., transfers with the assistance of a
healthcare provider, semi-sitting in a bed, and transitions between those activities or bed
cycling. Furthermore, although the dual-accelerometer-based method combined with an
algorithm has the potential to identify many activities, there are still some considerations
regarding the fundamentals of the algorithm and wear locations. Concerning the algorithm,
its development can be based on multiple variables, such as body movement, different body
angles, or gravitational segments. As a result, each developed algorithm is very specific to
certain physical activities and patient population [17], and a validated algorithm related
for a specific purpose is of immense importance. With regard to the wear location, it was
shown that this may influence the ability to identify different activities [18]; accelerometers
placed on the leg are less able to ascertain activities being performed by the body [16] and
may be better for detecting walking [10]. The presence of, for example, burns or lines on
different locations of the body could influence where the accelerometers can be placed;
however, it is not clear whether various locations require different algorithms.

Thus far, there is no algorithm that is validated for identifying the activities common
for IC patients. Given the need to understand what constitutes adequate physical activity for
IC patients, we aimed at developing and validating a dual-accelerometer-based algorithm
to identify and quantify activities common for IC patients.

2. Methods
2.1. Design

A cross-sectional observational study was conducted in January and February 2021 in a
Dutch hospital with a dedicated burn center (Martini Hospital, Groningen, The Netherlands).
The study was approved by the ethics committee of Martini Hospital (no. 2020-141).

2.2. Participants

Eligible participants were those who could understand Dutch, were older than 18 years,
and had no physical limitations that would affect the activities required in this study. They
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were recruited via e-mail, telephone, or personal contact. Only employees of the Martini
Hospital could participate, due to COVID-19 restrictions.

To provide insight into the heterogeneity of the sample, data on gender and age
(years) were collected, and participants’ height (centimeters) and weight (kilograms) were
measured. Before the study began, they were afforded the opportunity to ask questions.
All participants gave informed consent prior to the initiation of the study. Based on the
literature on the validation of algorithms for accelerometer data, we aimed for 10 partici-
pants [13,18–20].

Data from the ten participants were randomly allocated to be used for (1) the develop-
ment and optimization of the algorithm (n = 4) or (2) the validation of the algorithm (n = 6).
This was performed using an online randomization tool (www.stattrek.com/statistics/
random-number-generator.aspx (accessed on 16 June 2021)) based on earlier research [21].

2.3. Activity Protocols

Participants were asked to perform 14 different activities relevant and common to IC
patients in and around an IC bed, including transitions between activities (Appendix A).
Activities were performed in a fixed order according to four protocols:

(1) Protocol natural: activities were performed without further instructions in order to
induce natural variation in how participants performed the activities,

(2) Protocol healthcare provider: activities were performed with the assistance of a healthcare
provider in order to reflect the (passive) status of an IC patient, especially during the
transition from one activity to another,

(3) Protocol strict: activities were performed strictly based on instructions on how to do so
and with additional instructions if they were not performed correctly, and

(4) Protocol bed cycling: active bed-biking on a bed-cycle ergometer (MOTO-MED) at a
self-selected speed.

Protocols 1–3 took approximately eight minutes, and Protocol 4 about four minutes.

2.4. Interrater Reliability of the Video Observations

Video recordings were made with a video camera of all of the activities performed
by the participants (Sony, full HD (1080p), type HDR-PJ410, 50 fps). These were used for
the development and optimization of the algorithm and as a reference standard for the
validation of the algorithm. The camera was placed on a tripod 1.10 m from the end of the
IC bed at a height of 1.50 m. For the walking activity, the camera was rotated to ensure that
the participants remained in focus. During the last protocol, i.e., the bed-cycling protocol,
the camera with the tripod was repositioned to the corner of the ICU room.

Two different raters (YD and ASN) separately and independently determined the type
and duration of activities. The latter was calculated as the start time minus the end time of
an activity from the video recordings within a 0.004 s window. For this, a video analysis
and modeling tool that allowed a detailed analysis of video elements (Tracker, version 5.1.5)
was used. To enhance the analysis, a distinction between ‘static’ and ‘dynamic’ activities
was made. For a static activity, such as lying or sitting, the moment when the participant
was completely still in the required position was selected as start time while the moment
when the participant moved again was noted as the end time. For dynamic activities,
such as transitions and walking, the time when the participant initiated the movement as
indicated by a high velocity of postural change leading to a new activity was chosen as
the start time; the moment when the participant was in a new activity was noted as the
end time. Hesitations and minor repositioning of arms, legs, and clothes before or after
the transition were thus disregarded. Slight limb movements during a static activity were
scored as noise, whereas extensive limb movements combined with body movement were
categorized as transitions as long as they occurred between different activities. If body
movement did not correspond to a specific activity in the protocol, it was categorized by
the raters as ‘undefinable’.

www.stattrek.com/statistics/random-number-generator.aspx
www.stattrek.com/statistics/random-number-generator.aspx
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2.5. Accelerometer Locations

Six tri-axial accelerometers (ActivPAL4, ActivPALTM micro, PAL Technologies,
Glasgow, UK), size, 23.5 mm × 43 mm × 5 mm, weight 9 grams, and a sampling frequency
of 20–40 Hz (for this study 20 Hz was chosen) were fixed on the body with Tegaderm
(Figure 1). In the present study, data from two sets of two accelerometers were used, i.e.,
midclavicular line left to right thigh (MCL-TR) and midclavicular line right to left thigh
(MCR-TL) (Figure 1). Data forming the third set of accelerometers (i.e., rib cage or ankles)
(Figure 1) will be analyzed later for different configurations in a separate study. Locations
of the accelerometers used in this study were selected based on Rauen et al., 2018 [16] and
Hartley et al., 2018 [15], who demonstrated that combinations of two accelerometers at
these locations enabled them to distinguish between sitting, lying, and lying on the left or
right side. In the current study, in contrast to Rauen et al., 2018 [16], the thigh accelerometer
was placed on the anterior side of the thigh in order to avoid pressure on the skin or tissue
when someone is lying on his/her side.
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Figure 1. Pictures showing the accelerometer locations, with the blue arrows indicating the mid-
clavicular line right-thigh left (MCR-TL) and green (dotted) arrows indicating the midclavicular line
left-thigh right (MCL-TR) configuration used in the present study.

2.6. Processing of Accelerometer Data

Raw accelerometer data consisted of an acceleration signal in each axis (x, y, z). From
these raw data, three variables were derived, i.e., horizontal and vertical body angles as
well as a signal magnitude area (SMA). Accelerometer angles were calculated in three steps.
First, the raw acceleration signals for each axis were smoothed using a three-point median
filter. Second, the gravitation component (GA) representing the tilt of the accelerometer
with respect to the field of gravity was extracted by applying a low pass infinite impulse
response filter (IIR) with a cutoff to the acceleration signal at 0.25 Hz. Third, the tilt angles
were computed as described by Fisher [22]. In order to account for sensor drift of the
accelerometers, baseline corrections were made for all body angles by subtracting the offset
of those that were obtained during this supine rest position. This way, horizontal tilt angles
(θ,ψ) were set to zero and the vertical tilt angle (ϕ) to 90 in supine rest position (Appendix B)
to make the body angles easier to interpret. The SMA represents the magnitude of bodily
movements with a larger SMA during larger movements. To calculate the SMA, the GA was
first subtracted from the raw acceleration signal from each axis which resulted in values
that represent body accelerations. Hereafter, the integrals of the body accelerations were
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calculated for each axis using a sliding window method of one second and then summed
which provided the SMA value for each window [16].

2.7. Development and Optimization of the Algorithm

To develop the algorithm classifying the performed IC activities at baseline, a flowchart
with body segment angles and SMA values was made based on the algorithm used by
Lugade et al. [13] and previous pilot measurements of our group (non-published data).
Initial accelerometer body segment angles and a rest-activity-threshold were selected based
on these pilot measurements. Initial accelerometer body segment angles were used to
classify activities based on different body angles when the participant was performing the
different activities with regard to the accelerometer locations. The rest-activity-threshold
was used to classify static and dynamic activities using the SMA values and visual inspec-
tion of the SMA plots. Accelerometer and video data were aligned in time by selecting the
first transition in the protocol; this was indicated by a strong increase in the SMA value
as shown in the SMA plots. Data from the four participants of the development group
were used to optimize body angles and the rest-activity threshold of the algorithm. After
careful consideration, the activity categories ‘sitting on the edge of a bed’ and ‘sitting in
a chair’ were combined into one category as these differed minimally in angles during
performance. Furthermore, transitions during all of the protocols were combined into one
category, i.e., ‘transitions’. In order to match the frequency of the accelerometers and the
video, data from both the accelerometers and video were set to a frequency of 5 Hz. There
was a visual inspection of these coded data (i.e., video data that were classified to type of
activity organized per 5 Hz, 0.2 s) to check for notable differences between the two raters
(YD and ASN). When these were ascertained, this was resolved by discussion and, with
remaining uncertainties, by seeking the opinion of a third rater (MKN).

2.8. Statistical Analyses

To check on the quality of the reference standard, interrater-reliability of the video
observations was determined. This was performed with the total time of activity per
protocol with interclass correlations (ICCs) for all ten recorded participants (two-way
mixed, absolute agreement, single measures) [23] using SPSS version 25.0. Interrater
reliability was considered to be satisfactory when ICC > 0.75 [24].

Following the validation procedure of Lugade et al. [13], coded data (i.e., video data
that was classified as type of activity organized per 5 Hz, 0.2 s) from one rater (rater one,
YD) served as a reference, and the percentage of agreement (%Agr) was calculated as that
of correctly coded activity by rater two (ASN) compared to the coded activity of rater one.
In addition, the %Agr between raters on the video observations was used as a target score
for developing the algorithm. For example, if the %Agr between rater one and two on a
specific activity was 98%, this was subsequently also the target for the algorithm for that
specific activity. The validity of the developed algorithm was determined by the %Agr on
data from the validation group (n = 6) compared to all observations of rater one (YD). As
the %Agr of the algorithm related to the video observations was not expected to be higher
than the target score, the algorithm was considered to be valid if 80%Agr was reached [25].

3. Results
3.1. Participants and Protocols

Ten participants (five male, five female, mean age 45.9 years, SD 13.2), height 168–194 cm
(mean 179.6 cm, SD 8.1), weight 62–94 kg (mean 76.2 kg, SD 11.7) completed all four proto-
cols of activities. For one of them, the activities ‘sitting in a chair,’ ‘standing,’ and ‘walking’
were excluded from the natural protocol because the midclavicular accelerometer became
unattached. In one other participant, a problem with the video camera led to the exclusion
of ‘bed cycling with the bed head at 30 degrees’ in the bed cycling protocol. None of the
participants experienced discomfort or side effects from wearing the accelerometers.
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3.2. Interrater Reliability of the Video Observations

Interrater reliability of video observations between the two raters was high to excellent with
all ICCs > 0.76 except for ‘walking’ in the strict protocol for which the ICC was 0.298 (Table 1).
The %Agr of the coded activities between the two raters was very high with most above the 98%
(Table 1). The lowest %Agr was determined for ‘walking’ and ‘transitions’ (86–94%) (Table 1).
The percentage agreement of the undefinable activity between rater one and two was 91, 88, 78,
and 97% for the natural, healthcare provider, strict, and bed-cycling protocol, respectively.

Table 1. Interrater reliability of video analysis, percentage agreement between two raters on the coded
activities, and percentage agreement of the algorithm related to the video on the development group data.

Duration of Activities in Seconds with ICC
and CI Between Two Raters (Mean and SD)

%Agr between Two
Raters on Coded

Video Data

%Agr between Algorithm
and Video

Protocol Natural Rater 1 (s) Rater 2 (s) ICC 95% CI %Agr *
%Agr

MCL-TR
(n = 4)

%Agr
MCR-TL

(n = 4)

Supine lying 37.12 (7.74) 36.74 (7.60) 0.98 0.93–0.99 98.5 99.1 96.7
Side lying left 31.4 (2.35) 31.92 (2.40) 0.92 0.68–0.98 99.8 72.8 73.4

Side lying right 31.62 (1.83) 32.02 (2.07) 0.96 0.69–0.99 99.8 73.6 98.3
Prone lying 32.76 (1.96) 33.08 (2.02) 0.97 0.80–0.99 100 98.0 98.2

Semi sit 33.52 (1.94) 33.98 (2.11) 0.95 0.62–0.99 99.5 80.1 70.1
Semi lying left 31.62 (4.02) 32.04 (4.12) 0.97 0.90–0.99 99.7 99.0 74.4

Semi lying right 33.30 (2.38) 33.72 (1.90) 0.94 0.74–0.98 99.6 74.7 50.3
Sitting (edge of bed

or chair) 32.98 (1.72) 33.37 (1.48) 0.86 0.65–0.95 99.6 99.1 98.3

Standing 36.11 (5.69) 36.44 (5.90) 0.99 0.95–0.99 99.0 98.3 99.4
Walking 6.50 (0.79) 6.46 (1.17) 0.76 0.27–0.94 94.6 85.4 89.9

Transitions 3.39 (1.85) 3.35 (1.97) 0.87 0.81–0.95 86.9 85.1 86.9

Protocol Strict

Supine lying 33.06 (2.59) 33.14 (2.56) 0.99 0.99–0.99 99.8 98.3 97.7
Side lying left 31.06 (1.43) 31.34 (1.45) 0.96 0.73–0.99 99.8 99.2 98.2

Side lying right 31.82 (1.87) 32.26 (1.72) 0.88 0.59–0.97 99.5 72.4 96.7
Prone lying 32.72 (1.74) 33.18 (1.63) 0.91 0.56–0.98 99.9 99.1 96.4

Semi sit 32.76 (2.79) 33.50 (3.32) 0.94 0.62–0.99 99.8 98.7 73.1
Semi lying left 33.04 (2.38) 33.52 (1.81) 0.89 0.62–0.97 99.1 96.2 94.6

Semi lying right 33.28 (4.90) 33.56 (5.01) 0.99 0.96–0.99 99.9 74.6 74.5
Sitting (edge of bed

or chair) 33.24 (2.58) 34.02 (2.37) 0.80 0.51–0.92 99.4 99.4 97.9

Standing 34.54 (4.55) 35.36 (4.25) 0.97 0.71–0.99 99.9 98.4 98.9
Walking 6.16 (0.83) 6.36 (0.98) 0.30 −0.41–0.77 95.1 83.6 88.9

Transitions 2.95 (1.38) 3.26 (1.43) 0.81 0.72–0.87 92.8 84.5 82.9

Protocol
Healthcare
Provider

Supine lying 38.90 (5.13) 39.02 (5.00) 0.99 0.98–0.99 99.7 88.0 100.0
Side lying left 32.82 (2.13) 33.04 (2.09) 0.98 0.91–0.99 99.7 99.7 88.0

Side lying right 33.64 (2.31) 33.32 (2.86) 0.80 0.40–0.95 98.3 96.4 98.7
Prone lying - - - - - - -

Semi sit 37.42 (3.89) 37.84 (3.88) 0.98 0.91–0.99 99.8 100 99.9
Semi lying left - - - - - - -

Semi lying right - - - - - - -
Sitting (edge of bed

or chair) 33.85 (2.80) 34.35 (3.02) 0.97 0.80–0.99 99.8 97.9 88.5

Standing - - - - - - -
Walking - - - - - - -

Transitions 1.85 (1.36) 2.37 (1.52) 0.79 0.45–0.91 92.0 23.9 18.5

Protocol Bed
Cycling

Bed cycling 130.36 (3.55) 130.46 (3.94) 0.98 0.94–0.99 99.6 61.1 91.1
Bed cycling semi sit 135.44 (13.36) 137.05 (13.55) 0.96 0.86–0.99 99.9 65.1 48.9

Abbreviations: %Agr, percentage agreement, MCL: midclavicular line Left, MCR: midclavicular line right,
TL: thigh left, TR: thigh right; * percentage was also used as target for developing the algorithm on the data of the
development group (n = 4).
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3.3. Development and Optimization of the Algorithm

With the algorithm run on the data of the development group, the %Agr between
the algorithm and reference standard nearly reached the target scores for some static
activities such as ‘supine and prone lying’ and ‘sitting’ in the natural and strict protocol
(96–99%) for both accelerometer configurations (Table 1). However, activities with small
differences in body angles such as ’semi lying on the right’ and ’side lying right’ did
not reach the predetermined target score, as these categories were interchanged by the
algorithm (Table 1). As the distinction between these two activities is of minimal clinical
importance, the categories were merged into one category, i.e., ‘side-semi lying’, prior to
algorithm validation on the validation group. Within dynamic activities, the %Agr between
the algorithm and the video for activities such as ‘walking’ almost reached target score
(84–85%) (Table 1); however, ’transition’ in the healthcare provider protocol scored very
low (18–23%) for both configurations compared to the target score (93%) (Table 1).

As the SMA represents bodily movements with a larger SMA during larger movements,
visual inspection of the SMA plots showed that the SMA values in the healthcare provider
protocol were much lower than in the other protocols (Figure 2). When the rest-activity-
threshold was lowered, the %Agr for ‘transitions’ in the healthcare provider protocol
increased but also resulted in an overestimation of dynamic activity in the other protocols.
As ‘transitions’ in all protocols should be accurately coded by the algorithm, we decided
to establish the cut-off point for the rest-activity threshold at >0.03 (Figure 2). The main
goal of the SMA plots was to obtain an indication of the rest-activity-threshold required
to properly classify ‘transitions’ in all protocols. For this reason, the bed-cycling protocol
was not included in Figure 2 due to its more consistent SMA values. After optimizing the
algorithm, the body angles and SMA values were displayed in the final flowchart (Figure 3).
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3.4. Validity of the Developed Algorithm

To validate the algorithm, the final algorithm (Figure 3) was run on all the data of both
accelerometer configurations of the validation group (n = 6). The highest %Agr between
algorithm and video was found for static activities such as ’prone-supine lying’, ’side lying
left and right’; all were above 95% (Figure 4). For the activities ’sitting on edge of bed
or chair’ and ’semi sitting’ it was 74–100% (Figure 4). The %Agr on ’transitions’ in the
healthcare provider protocol was low (14–17%) while it was high on ’transitions’ in the
natural and strict protocol (>80%) (Figure 4). For ‘bed cycling’, the %Agr was 57–76%. The
two accelerometer configurations MCR-TL and MCL-TR had similar results (difference
between 0–8%Agr) on almost all activities in the four protocols (Figure 4). Those that
scored slightly lower were ‘standing’ (19%) and ‘sitting’ (12%) in the natural and (16%)
healthcare provider protocol, which is not in favor of a specific configuration (Figure 4). For
the absolute values of %Agr per activity per protocol for the two different configurations,
see Appendix C.
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Figure 4. Validation of the developed algorithm showing percentage agreement of correct coded
activity by the algorithm on the validation group (n = 6) compared to target scores based on the
percentage of agreement between both video raters for all four protocols. The dotted line shows the
chosen validity value of 80%. Abbreviations: %Agr, percentage agreement; MCL, midclavicular line
left, MCR, midclavicular line right, TL, thigh left, TR, thigh right.

4. Discussion

The objective of the present study was to develop and validate a dual-accelerometer-
based algorithm to identify activities that are common for IC patients. The results showed
that the developed algorithm based on data from two accelerometers, i.e., one accelerometer
placed on chest and the other one the opposite thigh, are able to detect almost all static
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activities that are common and relevant for IC patients with very high agreement scores
relative to the video data that served as a reference. The algorithm was also valid for
identifying dynamic activities such as transitions. The only activity that had low agreement
scores was ‘transitions’ with the aid of an healthcare provider. The different configurations
(i.e., left and right diagonal) of the accelerometers showed similar results, implying that
both diagonals can be used.

Just as in other studies using two accelerometers [12,13,16,26], we were able to correctly
identify different activities, such as lying and sitting. This is essential, as IC patients spent
most of their time engaged in these activities [11]. Our study adds to others in that our
developed algorithm can identify additional activities, such as transitions from lying on
the left to right side and bed cycling. An assessment of activities is important as, until now,
detailed information on the performed physical activity of IC patients during an ICU stay
has been lacking. Furthermore, although IC patients are not highly active, a recent study
found significant variations in physiological responses to different types of activities [2]
indicating that an assessment of all types is immensely important. To enhance rehabilitation
in IC patients, an appropriate amount of physical activity is essential [27], and objective
measurements about the type, intensity, frequency, and duration of performed activity by
IC patients are essential [6]. Therefore, with this detailed information provided by our
algorithm, the amount of physical activity that is required to optimize rehabilitation can be
studied more thoroughly.

In this study, we chose to manually develop and optimize the algorithm based on body
angles and SMA values using the raw data from two tri-axial accelerometers. Recently,
many different classifiers have become available, such as machine learning algorithms,
that appear to be promising for correctly identifying physical activity [17,28,29]. However,
the usefulness of applying them in a clinical setting requires some awareness, as the
optimization process is a kind of black box and cut-off points for identifying physical
activity may vary depending on the conditions [28,29]. Moreover, as described in detail
in a recent study [17], there are many different ways to estimate and validate algorithms;
however, a comparison of results from studies is difficult because not all algorithms are
described transparently. Using a machine-learning algorithm to identify physical activity is
a data-driven method. Stated differently, it can develop an optimal model based on the
given (sometimes very large) dataset and is effective to use on a large scale, but, just as in
other models, it can only be as good as the quality of the underlying data. Nevertheless, a
manually developed algorithm has some advantages, because it is both data- and logic-
based, which makes the mechanism of the algorithm and the results easier to understand.
This is important because adjustments to it must be clinically relevant in order to improve
it so that it captures body movement relevant to a particular population. Consequently,
we chose to optimize the algorithm based on video data with a very short window, to
ensure that body angles fit the performed activity and not only to ensure increasing %Agr.
Therefore, during the development, activities such as sitting and sitting on the edge of the
bed were included separately. However, since these categories were interchanged by the
algorithm, as the person is sitting and body angles were somewhat the same in both cases,
they were merged into one category.

We used the SMA value to distinguish between static and dynamic activities, as this
has been shown to have good sensitivity and specificity for distinguishing between these
types of activities [30]. However, identifying dynamic activities such as ‘transitions’ in
the healthcare provider protocol was more difficult and resulted in lower %Agr scores. A
further analysis of the data in the healthcare provider protocol showed that the absolute
SMA values of ‘transitions’ in it were relatively low compared to those in the natural
and strict protocol (Figure 2). Selecting a lower rest-activity threshold (lower SMA value)
resulted in a higher %Agr for ‘transitions’ in the healthcare provider protocol; however,
such a lower threshold would have also resulted in an overestimation of the total amount
of dynamic activity in the other protocols. Therefore, an SMA value of 0.04 was chosen
while, in other studies in other settings, SMA values of 0.135 [13], 0.2 [16], or even 0.80 [13]
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were used. These findings indicate that selecting the appropriate SMA value to identify
clinically relevant activities depends heavily on the situation and population for which the
algorithm is being created.

In addition, regarding the lower %Agr score for ‘transitions’ in the healthcare protocol,
results showed that their duration was very brief (1–2 s) while transitions such as transfer
to chair performed by the participant itself in the other protocols took approximately 3–5 s.
Short activity bouts were difficult to identify as higher agreement can be achieved with
longer activity tasks [13].

We found all ICCs between video-observers were sufficient except for one, i.e., ‘walk-
ing’ in the strict protocol. In-depth analyses indicated that it was due to one single video
in which the two observers significantly deviated (2 s) from the amount of time that the
activity ended and the transition to sit in the chair began. Without this one observation, the
ICC for walking in the strict protocol was 0.67 and would have been sufficient. Further-
more, our time frame for classification was 0.004 s, while, in other studies, this was much
longer—for example, one second [13] and one minute [14]. As a consequence, categorizing
activities was most difficult at the beginning and end of an activity. Nevertheless, we are
able to detect short activities, such as turning in bed.

In this study, healthy individuals performed the ICU-related activities of the four
protocols. Theoretically, it would have been optimal if the validity of the new method had
been developed based on observations in IC patients. In practice, however, this would
mean that ICU patients’ physical activities would have to be monitored every minute by an
observer with an activity diary and/or with video. Both ethically and organizationally, this
was not an option. Therefore, the choice was made to use healthy individuals and mimic
the setting of ICU patients as much as possible. The various activities of the protocols were
chosen based on the literature and on input from highly experienced ICU staff. The latter
input in particular was important, and led to the inclusion of activities performed with and
without instructions, and even more importantly, with the help of healthcare providers,
which has not happened in previous similar studies [13,16,17,26]. It is possible that the
validity of the new method is slightly lower when the activities have been performed
by IC patients. Reasons for this include that some activities could be misclassified by
the algorithm, for example during nursing activities such as washing. This could lead
occasionally to the over- or underestimation of a specific activity, for instance more time
being spent in dynamic than in static activities. However, we do not think this is a problem,
as our algorithm was found to be valid even with many very high agreement scores.

Another issue is that the activities chosen may be performed differently by IC patients
than by healthy individuals, such as when a patient is slumped into a chair due to limited
trunk balance or walks with a walking aid. In that case, the SMA values and combination
of angles may not fall within the predefined ranges for these activities. The algorithm will
then classify more time as ‘unknown’. This does not influence validity as such, but it does
have implications for identifying real-life activities performed by IC patients. To cover
all activities in practice, an additional step in the development of the algorithm might be
needed. Currently two studies are being conducted, one in a burn ICU and one in a general
ICU using the algorithm in combination with an activity diary. Results from these studies
will give us insight into which activities are not identified.

5. Strengths and Limitations

A strength of this study is that we chose to place the thigh accelerometer at the front
of the thigh rather than on the lateral side as was performed by Rauen et al., 2018 [16]. This
location is more useful in bedridden patients because it avoids pressure when lying on
their side. Second, the algorithm developed in this study is appropriate for both tested
accelerometer configurations (both diagonals) to identify different activities. This finding
implies that, if an IC patient has lines, devices, or wounds at one of the accelerometer
locations, a shift of locations can be made without the outcome being different. Third, all
participants performed all four different protocols, including one for which transitions
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were performed with the aid of a healthcare provider. Consequently, all of the different
activities were performed multiple times, and variation in how the separate activities were
performed by each individual is included which improves external validity for use in an
IC setting. Fourth, the activities in the different protocols were widespread (from lying
down to walking) which allows this algorithm to also be applied when patients become
more active. In this context, this algorithm can provide insight into activities performed
throughout the course of hospitalization. Fifth, we randomized the participants’ data into a
development and a validation group. This afforded us the opportunity to monitor whether
the algorithm that was developed would also be valid with an independent set of samples
and to ensure that this algorithm can be applied in the ICU setting. Sixth, activities were
classified based on video recordings observed by two different raters. Very high ICC values
were achieved, guaranteeing the reliability of activity classification.

There are, of course, also limitations to this study. First of all, we did not instruct
participants to walk or bed cycle at a certain speed. As a result, it was more difficult to
develop the algorithm, and it might have missed part of these activities if these fell beyond
the cut-off points. Nevertheless, our algorithm was able to identify these activities even
though participants chose their own speed and varied while performing the activities.
Another limitation is that the accelerometers and video data did not begin at the exact
same time, as the accelerometers had to be installed beforehand. Therefore, the first peak
in the SMA value was used to align the accelerometer data and the video observations.
Thus, the first transition of the protocol was used. However, especially in the healthcare
provider protocol, the transitions were very short (only 1–2 s) which made aligning the
data challenging. Though this is a technical limitation, it can only have a positive effect
on the validity of the algorithm in a genuine setting as the agreement scores, and thus the
validity, might be higher than currently indicated with perfect time alignment. Finally, the
activities were performed by healthy participants. When IC patients perform the activities
that are incorporated in the algorithm, they can be identified and quantified in IC patients.

6. Conclusions

The dual-accelerometer-based algorithm developed in this study to identify and
quantify activities that are common for IC patients, with video as reference, was found to
be valid. It identifies prone lying, supine lying, lying on the left or right side, sitting, semi-
sitting, standing, walking and bed cycling. Both examined accelerometer configurations
on the chest and opposite leg showed similar results, which implies that both diagonals
can be used and interchanged if clinically necessary. In future clinical studies, this dual-
accelerometer-based algorithm can be utilized to provide objective measurements for IC
patients over periods of many days regarding the type, frequency, and duration of the
different activities that are performed.
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Abbreviations

IC Intensive Care
ICC Intra Class Correlation Coefficient
MCL-TR midclavicular line left to right thigh
MCR-TL midclavicular line right to left thigh
SMA Signal Magnitude Area
%Agr Percentage Agreement
MCL Midclavicular line Left
MCR Midclavicular line Right
TL Thigh Left
TR Thigh Right
CI Confidence Interval
GA gravitation component

Appendix A

Table A1. Description and Duration of the Different Activities and Transitions for the Four Different
Protocols.

Protocol Naturally t (s) Protocol Strict t (s)

lying in bed (supine) 30 lying in bed (supine) 30

transition supine-side lying left transition supine-side lying left

side lying left 30 side lying left 30

Transition side lying left-side lying right transition side lying left-supine

side lying right 30 lying in bed (supine) 30

transition side lying right-prone lying transition supine-side lying right

prone lying 30 side lying right 30

transition prone lying-semi sit transition side lying right-supine

semi sit 30 lying in bed (supine) 30

transition semi sit-semi lying left side transition supine-prone lying

semi lying left side 30 prone lying 30

transition semi lying left-semi lying right transition prone lying-supine

semi lying right side 30 lying in bed (supine) 30

transition semi lying right- edge of bed transition supine-semi sit

edge of bed 30 semi sit 30

transition edge of bed-sitting in a chair transition semi sit-semi lying left side

sitting in a chair 30 semi lying left side 30

transition sitting in a chair-standing transition semi lying left-semi lying right

standing 30 semi lying right side 30

transition standing-walking transition semi lying right- supine

walking for 2 m, turn and return lying in bed (supine) 30

transition supine-edge of bed

edge of bed 30
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Table A1. Cont.

Protocol Naturally t (s) Protocol Strict t (s)

protocol healthcare t (s) transition edge of bed-sitting in a chair

lying in bed (supine) 30 sitting in a chair 30

transition supine-side lying left transition sitting in a chair-standing

side lying left 30 standing 30

transition side lying left-side lying right transition standing-walking

side lying right 30 walking for 2 m, turn and return

transition side lying right-semi sit

semi sit 30

transition semi sit-edge of bed protocol bed cycling t (s)

edge of bed 30 bed cycling with the head of bed on 10
degrees 120

transition edge of bed-sitting in a chair head of bed till 30 degrees

sitting in a chair 30 bed cycling with the head of bed on 30
degrees 120

Abbreviations: t time, s seconds.

Appendix B

Table A2. Classification of Activities Based on Body-Segment-Angles and SMA Values from Two
Three-Axis Accelerometers (Placed on Thorax and Opposite Leg).

Different Activities Assumptions

1. Supine lying

T phi > 0
B phi < 0
T psi < 40
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B psi < 40

B psi > −40
T theta > −40

T theta > 5
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Table A2. Cont.

Different Activities Assumptions

4. Prone lying T phi < 0
B phi < 0
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Table A2. Cont.

Different Activities Assumptions

9. Sitting (chair) -
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Appendix C

Table A3. Absolute Values Represented as %Agr of the Algorithm Related to the Video for the
Validation Group (n = 6).

Protocol Natural

Supine lying 98.5 96.5 97.0
Side-semi lying left 100.0 97.6 98.2

Side-semi lying right 99.6 96.9 98.1
Prone lying 100.0 97.1 97.6

Semi sit 99.5 74.3 80.7
Sitting (edge of bed or chair) 99.6 85.0 97.3

Standing 99.0 78.4 97.7
Walking 94.5 83.9 81.1

Transitions 86.9 83.1 84.1

Protocol Strict

Supine lying 99.8 96.4 97.1
Side-semi lying left 99.4 96.2 96.8

Side-semi lying right 89.7 96.0 96.9
Prone lying 99.9 95.3 95.9

Semi sit 99.8 96.6 96.5
Sitting (edge of bed or chair) 99.4 89.9 92.1

Standing 99.9 97.5 97.7
Walking 95.1 77.0 81.3

Transitions 92.8 80.0 80.3

Protocol Healthcare Provider

Supine lying 99.7 99.5 100.0
Side lying left 99.7 99.7 99.6

Side lying right 98.3 98.7 99.6
Prone lying - - -

Semi sit 99.8 99.0 97.8
Sitting (edge of bed or chair) 99.8 98.3 81.8

Standing - - -
Walking - - -

Transitions 92.0 17.9 14.7

Protocol Bed Cycling

Bed cycling 99.6 75.7 73.0
Bed cycling semi sit 99.9 65.4 57.3
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