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Abstract: The ultimate goal of rehabilitation engineering is to provide objective assessment tools
for the level of injury and/or the degree of neurorehabilitation recovery based on a combination of
different sensing technologies that enable the monitoring of relevant measurable variables, as well
as the assessment of non-measurable variables (such as muscle effort/force and joint mechanical
stiffness). This paper aims to present a feasibility study for a general assessment methodology
for subject-specific non-measurable elbow model parameter prediction and elbow joint stiffness
estimation. Ten participants without sensorimotor disorders performed a modified “Reach and
retrieve” task of the Wolf Motor Function Test while electromyography (EMG) data of an antagonistic
muscle pair (the triceps brachii long head and biceps brachii long head muscle) and elbow angle
were simultaneously acquired. A complete list of the Hill’s muscle model and passive joint structure
model parameters was generated using a genetic algorithm (GA) on the acquired training dataset
with a maximum deviation of 6.1% of the full elbow angle range values during the modified task 8
of the Wolf Motor Function Test, and it was also verified using two experimental test scenarios (a
task tempo variation scenario and a load variation scenario with a maximum deviation of 8.1%). The
recursive least square (RLS) algorithm was used to estimate elbow joint stiffness (Stiffness) based
on the estimated joint torque and the estimated elbow angle. Finally, novel Stiffness scales (general
patterns) for upper limb functional assessment in the two performed test scenarios were proposed.
The stiffness scales showed an exponentially increasing trend with increasing movement tempo, as
well as with increasing weights. The obtained general Stiffniess patterns from the group of participants
without sensorimotor disorders could significantly contribute to the further monitoring of motor
recovery in patients with sensorimotor disorders.

Keywords: agonist-antagonist; electromyography; genetic algorithm; passive joint structure; Wolf
Motor Function Test

1. Introduction

Functional assessment is a basic and indispensable component of neurorehabilitation
that identifies sensorimotor deficits in patients, determines priorities, and plans therapeutic
protocols, i.e., it monitors the effects of therapy. Clinical scales such as the Fugl-Meyer
Assessment (FMA) and the Wolf Motor Function Test (WMFT) are frequently used to
assess motor functionality in patients after stroke [1,2]. However, clinical scales are not
sensitive enough to capture the quality of sensory and motor performance. To improve
our understanding of the mechanisms that drive motor recovery, we need to distinguish
between ‘true neurological repair’ (i.e., restitution), in which neurological impairments
are restored towards normal, and behavioral compensation strategies [3]. Technological
progress and development have enabled the production of various portable and built-in
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sensors that accurately record kinetic and kinematic parameters, as well as additional
parameters capable of objective assessment of the sensorimotor function of the upper
extremities [4]. New devices and technologies that contain different sensor systems for
measuring trajectories, joint angles, forces, and electromyography (EMG) signals, as well as
systems that provide estimations of non-measurable variables (such as muscle effort/force
and joint mechanical stiffness or impedance) are of great use for precise kinetic and kine-
matic analysis of motor behavior. Kinematic data can be obtained during performance of a
specific functional task or with specially designed non-functional assays, and depending
on the analysis, it is possible to determine whether a given movement is compensatory or
becoming more similar to a normal movement. Recovery trials need to consider serially
applied kinematic/kinetic measurements alongside clinical assessments to distinguish
between restitution and compensation [5].

Among non-measurable variables, the human ability to adequately generate an in-
teraction force is recognized as one of the basic parameters for the analysis of human
movement dynamics and its application in neurorehabilitation. Pathological conditions,
such as post-stroke, lead to a reduction in joint stiffness and force due to the improper
activation of antagonist muscle pairs. While several studies have investigated how to detect
the rotational stiffness of lower-limb joints during locomotion, exploiting the cyclicity of
gait or implementing musculoskeletal models driven by muscle activity, less attention has
been given to the real-time estimation of upper limb stiffness modulation during non-cyclic
movements [6].

Basic approaches have been proposed to estimate joint stiffness and force during
human arm movement [7]. Stiffness estimation for short-range human arm movement with
small variations in the interaction force can be performed using linear models. On the other
hand, stiffness estimation for long-distance hand movements with large variations in the
forces of interaction with the environment involves nonlinear models using musculoskeletal
modeling [8,9].

A common method for estimating joint stiffness during small movements of the hu-
man arm using a linear model was proposed by Perreault [10,11]. This approach is based
on applying stochastic perturbation to the human hand using a robotic manipulator and
measuring the restoring forces imposed by the hand movement. Ajoudani et al. extended
the research of Perreault et al. [10,11] to include muscle activation using EMG signals as
additional parameters to assess endpoint stiffness. They concluded that endpoint stiffness
of the human arm is related to the muscle co-contraction index and arm configuration.
In [12], the Jacobian matrix of the human arm and the co-contraction index of the domi-
nant antagonist muscle pair define the endpoint stiffness. Changing the activation of the
dominant muscles directly affects the volume of the stiffness ellipsoid, while changing
the position of the arm affects the direction of its axis. The identified endpoint stiffness
model of the human arm in real time is used in the tele-impedance of the robot. In a
continuation of this research, Ajoudani et al. [13] presented the application of new models
of the musculoskeletal system of the human arm based on the muscular Jacobian and the
synergistic contribution of muscle activities (the long heads of the biceps brachii and triceps
brachii) to estimate the endpoint stiffness. The disadvantage of this approach is that it
does not include the joint moment within the muscular Jacobian matrix. The evaluation
of the complete joint stiffness matrix is incomplete because the endpoint stiffness from
the end effector space needs to be transferred to the larger joint space. To identify the
actual total joint stiffness of the human hand, they developed a new technique based on
nullspace stiffness [14]. It is a complex two-stage identification procedure where, in the
first stage, shoulder-hand rotational perturbations are applied with wrist fixation, and in
the second stage, translational and rotational perturbations are applied without a wrist
brace. On the other hand, Stanev et al. [15] analyzed the problem of redundancy at the
muscle level. They proposed a method to estimate the endpoint and joint stiffness of the
redundant musculoskeletal model for any arm movement. Since the CNS uses different
strategies to coordinate muscles during arm movement, they proposed a nullspace solution
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for muscle redundancy and calculation of the joint stiffness according to defined tasks and
muscle constraints. The presented results are based on simulation of the arm and leg. In the
first part of the analysis, a simplified arm model with three degrees of freedom and nine
muscles without joint nonlinearity was used, and in the second part of the analysis, the
existing OpenSim model was used without any improvements. In [16], a new model was
constructed based on the main axes of the stiffness ellipsoid and their lengths, i.e., the Eigen
decomposition of the stiffness matrix, based on the arm configuration. Eigen decomposition
was much easier compared with Jacobians, especially the muscle Jacobian. They defined
four parameters that are closely related to muscle strength and skeletal dimensions. In
this way, the stiffness calculation was simplified and allowed for personalized matching
of an individual’s physical interaction characteristics. An average model error of about
20% existed due to the neglect of the influence of external forces and their assumption on
muscle synergy. This approach is not suitable for other applications that are more sensitive
to variation in the stiffness value. Most studies are based on a perturbation experiment,
where joint stiffness is estimated from a linear model using small displacement and small
variations in muscle activity. This approach is not suitable for estimating joint stiffness in
real-world scenarios. Since the human arm behaves nonlinearly on the large scale of hand
movement and interaction force represented in real life, nonlinear modeling of the human
hand is required [17].

Nonlinear models of the human arm require modeling of the musculoskeletal system,
which is predominantly based on Hill’s muscle model and the passive joint structure
model [18,19]. This model uses the muscle activation of the antagonistic muscle pair as
the input parameter, whereby the muscle activation is estimated using EMG signals of
antagonistic muscles during targeted movement. The values of the Hill’s muscle model and
passive joint structure model parameters of upper extremities have been shown through
several studies [20-28], but none of these publications provide a full list of range values of
the parameters.

The research performed in this paper takes into account the nonlinearity of human
muscles and considers a stiffness estimation method based on Hill’s muscle model and the
passive joint structure model, resulting in a complete list of verified model parameters dur-
ing the elbow flexion/extension task, as well as elbow stiffness curves (so-called functional
scales) for different task tempos and loads. It is worth noting that our approach provides
continuous estimation of stiffness in time, which is highly beneficial for human-robot inter-
action tasks [8,29] and for planning the stiffness trajectory of an artificial variable-stiffness
elbow joint that is used as a prosthesis [30]. This paper provides a feasibility study for
a general assessment methodology that overcomes one-size-fits-all challenges through
the application of a genetic algorithm (GA) for subject-specific elbow model parameter
prediction. We used an approach based on a commonly accepted joint/muscle physical
model [8,18-28], where we derived a subject-specific GA-based model, and then, estimated
joint stiffness based on experiments using wearable sensors. This approach gives us the
ability to predict and measure stiffness and other non-measurable quantities based on the
model, even when measurements are not directly available. The GA-based methodology
was applied to a population without sensorimotor disorders during a “Reach and retrieve”
task of the Wolf Motor Function Test—WMFT (modified to include elbow extension in
addition to elbow flexion) to examine the feasibility of the proposed objective functional
assessment, considering that the same methodology could be applied to patients with sen-
sorimotor disorders and upper extremity weakness in the future. The main contributions
of the paper are as follows: (1) identification of the range of the Hill’s muscle model and
passive joint structure model parameters using an elbow flexion/extension task in a group
of ten healthy volunteers without sensorimotor disorders based on GA, providing of a full
list of the range values of the parameters; (2) verification of the identified model parameters;
(3) continuous-time elbow joint stiffness estimation based on verified subject-specific model
parameters; (4) the definition of novel scales for assessment based on elbow joint stiffness
estimation in scenarios of different task tempos and elbow loads.
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2. Materials and Methods
2.1. Participants

Ten healthy volunteers without sensorimotor disorders participated in the study:
5 males (age 33.6 &+ 4.27) and 5 females (age 28 & 9.35). The participants verbally confirmed
that they had no previous injuries to the elbow joint, nor did they currently feel any
discomfort. Before the experiment, the selected body segment parameters (BSP) of each
participant were measured using the Hanavan model of the human body [31] (Table 1).

Table 1. Selected body segment parameters (BSP).

No Parameter No Parameter
1 Length, Hand 6 Circumference, Forearm
2 Length, Wrist to Knuckle 7 Circumference, Elbow
3 Length, Forearm 8 Width, Hand
4 Circumference, Fist 9 Width, Wrist
5 Circumference, Wrist 10 Width, Elbow

Based on BSP parameters, we estimated, for each participant, the mass (m) of the
forearm-hand segment, the distance from the elbow joint axis to the center of the forearm
mass (rem), and the moment of inertia (M) of the forearm-hand segment. The estimated
parameters were used as input parameters for Hill’s muscle model and the passive joint
structure model (see Sections 2.4.1 and 2.4.2).

2.2. Experiment Description

At the beginning of the experiment, the participant was sitting on a chair at a table
with their arm extended in front of them. The arm was supported by the elbow on the table
so that only the forearm was allowed to move in the horizontal plane. The wrist joint was
immobilized to avoid its independent movement. This position was taken as the initial
position of the arm (zero angles in the elbow, see Figure 1). The monitor for the feedback
display of the movement tempo was positioned in front of the participant.

Figure 1. Experimental setup: (A) initial position of the arm; (B) the position of the arm during
the motion. 1—EMG electrodes located on triceps brachii long head muscle, 2—EMG electrodes
located on biceps brachii long head muscle, 3 and 5—IMU units, 4—goniometer, 6—wrist fixation,
7—feedback display of the movement tempo.

The experimental protocol of the performed study was based on the “Reach and
retrieve” task of WMFT (task no. 8, where the participant attempts to pull the weight across
the table by flexing the elbow) [32]. In the performed study, the “Reach and retrieve” task
was modified, with additional extension of the elbow with the same load as in the flexion.

All participants were subjected to the same experimental conditions. Each participant
was instructed to move their hand while holding the weight from the starting position to
a position that corresponded to the maximum flexion of the user’s elbow (the range of
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elbow motion was approximately from 0° to 150°), i.e., touching the chest with the hand.
The far-right position of the “moving dot” on the feedback monitor corresponded to an
outstretched human arm (the initial position), while the far-left position corresponded to
maximum flexion at the elbow. The participants were instructed to avoid pushing the
weight against the table and lifting the weight. Friction between the weights and the table
was ignored due to the rigid, smooth finish and different materials. The weight was made
of stainless steel and the table had a veneer top.

The overall performed task, the modified task 8 of WMFT (WMFT8,), included:
(1) attempting to push the weight across the table by flexing the elbow and (2) attempting
to push the weight across the table by extending the elbow.

During the task activity, the Trigno™ Avanti (Delsys, Natick, MA, USA) system was
used for the data acquisition of: (1) surface EMG activity of two antagonistic muscle pairs
of the upper arm (triceps brachii long head and biceps brachii long head muscle) and
(2) the angle in the elbow. Trigno Avanti Duo EMG units (Delsys, Natick, MA, USA)
were used for EMG recordings and a goniometer (Biometrics, Ladysmith, VA, USA) with
Trigno Avanti Goniometer Adapter Sensor (Delsys, Natick, MA, USA) was used for angle
measurement. The positions of all sensors are shown in Figure 1. EMGworks Acquisition
software (Delsys, Natick, MA, USA) was used for simultaneous data acquisition from all
sensors. The sampling rate for data acquisition was approximately 2000 Hz.

The overall experimental scenario included the following phases:

e  Maximum voluntary contraction (MVC) data acquisition for the triceps brachii long
head and biceps brachii long head muscle against static resistance [33-36]. The
recorded values of the MVC were used in all experiments for normalization of the
recorded EMG signals (see Section 2.3).

e  Training phase. In the beginning, the participant’s arm was in the initial position
(Figure 1A). The participant repeated the WMFT8,,, rotation (while pulling the 0.5 kg
weight) of the elbow joint following the tempo of the “moving dot” shown on the
feedback display. The tempo of the “moving dot” was set to 15 beats per minute (bpm),
30 bpm, 45 bpm, and 60 bpm and it was changed for each 10 WMFT8;;, movement,
respectively. This phase was used for estimating the parameters of Hill’'s model (see
Section 2.4.1) by GA, as described in Section 2.4.3.

e  Task frequency variation experiment (E1). In the beginning, the participant’s arm
was in the initial position (Figure 1A). The participant repeated the WMFT8;, rotation
(while pulling the 0.5 kg weight) of the elbow joint following the tempo of the “moving
dot” shown on the feedback display. The tempo of the “moving dot” was set to 15 bpm,
30 bmp, 45 bmp, and 60 bmp. The participant repeated the WMFT8;;, movement for
each tempo 10 times in three series. The resting pause between series was 1 min. The
resting pause between different tempos was 5 min.

e Load variation experiment (E2). In the beginning, the participant’s arm was in the
initial position (Figure 1A). The participant repeated the WMFT8,, rotation of the
elbow joint following the tempo of the “moving dot” shown on the feedback display.
The tempo of the “moving dot” was set to 30 bmp. The participant repeated the same
WMFTS,,, movement with different “pulling” weights: 0.25, 0.5, 0.75, and 1 kg. The
participant repeated the WMFT8,;, movement for each weight 10 times in three series.
The resting pause between series was 1 min. The resting pause between different
weights was 5 min.

The experimental design was approved by the ethical review board of the University
of Belgrade—School of Electrical Engineering. Participants were well-informed about the
noninvasive protocol, and they signed informed consent forms.

2.3. EMG Processing and Muscle Activation Dynamics

The acquired EMG and MVC signals from antagonistic pairs were processed to
achieve muscle activation. First, the EMG and MVC signals were filtered using the Butter-
worth bandpass filter (10-500 Hz, order = 5) and the Butterworth Notch filter (48-52 Hz,
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order = 5). The filtered EMG and MVC signals were rectified, giving the Processed EMG
signal (Figure 2, left) and Processed MVC signal. The EMG and MVC envelopes were
extracted from the Processed EMG and Processed MVC signals. The EMG envelope was
normalized by the maximum value of the MVC envelope, giving the neural activation u(t)
(Figure 2). Muscle activation a(t) was calculated using the model with the lowest data point
optimization time [23], as suggested by Manal et Buchanan [37], given in Equation (1):

Au(t) _ q
a(t) =<~ e (1)

where A = —20 was taken to achieve the range of muscle activation function [0,1].

A
E 0.2 Processed EMG signal |
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o
2 0.1
a
=
< o
0 1 2 3 4 5 6 7
time [s]
B
>
E0.06
(0]
B 0.04 r
‘5002
=
< 0 f
0 1 2 3 4 o 6 7
time [s]
C
306 J\ [=aw]-
204}
3
S 02— | |
O 1 1 = — = 1 1 1
0 1 2 3 4 5 6 7
time [s]

Figure 2. Muscle activation estimation: (A) Processed EMG signal (blue line) and EMG envelope (red
line); (B) neural activation u(t); (C) muscle activation a(t) obtained using Equation (1).

An example of the specific measurement of the Processed EMG signal and its envelope
data for E1 and E2 belonging to participant 9 is presented in Appendix A.

2.4. Algorithm for Elbow Joint Stiffness Estimation

Figure 3 presents a block diagram for the overall process of elbow joint stiffness
estimation based on Hill’s muscle model, the passive joint structure model, GA, and the
Recursive Least-Squares (RLS) algorithm. The muscle activation function of the biceps
brachii long head muscle (asg(t)) and triceps brachii long head (asnT(t)) are the inputs to
Hill’s muscle model. The passive joint structure estimates passive torque (tp), damping
torque (14), and gravity torque (tg) based on the estimated joint angle (q) and velocity (q).
Total joint torque (Tj) is defined as the sum of torques coming from the antagonistic muscle
pair (Tiag, TtanT) and passive joint structures (tp, T4, Tg)- GA adjusts the parameters
of Hill’'s muscle model for the muscle pair and passive joint structures by taking into
account the difference between the measured joint angle (qgoni, using a goniometer) and
the estimated joint angle (q). The RLS algorithm was used to estimate the joint stiffness
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(Stiffness) based on the estimated joint torque T; and the estimated joint angle q. The
following sections will provide more details on all assessment modules.

 J
RS- i)

Figure 3. A block diagram of the joint stiffness estimation.

2.4.1. Hill’s Muscle Model

A typical and widely used representation of the muscle is Hill’s muscle model [38]
(Figure 4). The model contains: (1) a contractile element (CE) (a force generator imposed
by neural activation u(t)), (2) a parallel element (PE) that has viscoelastic constants that
oppose the movement, and (3) a series element (SE) that contributes to tendon elasticity.
The total muscle mass is represented as the moment of inertia of the forearm—hand segment
M. Neural activation u(t) in the muscle contractile element will shorten the fiber length of
the muscle (1), while the coupling force F will increase the length of the muscle.

| |
- m g
CE e
Fce Fse
/ SE link
/ Mn -\A/\/'.
/ —
/ F
PE Foe

Figure 4. Hill’s muscle model.
The force generated by CE (Fcg) is given in Equations (2)-(4):
Fcg = Fmaxa(t)f(lm)g(vm) (2)

1 — Vi /Vmax

1+ alfVm/Vmax

g(vm) 3)

2

f(lm) =exp| — (W) 4

w
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where Fpax is the maximum isometric force (the maximum force in the static state at
MVC), a(t) is the muscle activation function, vn, is the actual muscle velocity, Vmax is the
maximum unloaded shortening speed, as is the Hill’s model parameter, 1, is the actual
muscle fiber length, Imept is the optimal muscle fiber length, and w is the width of the
force-length relationship.

The total force Fpg of the PE element is the sum of the forces delivered by the stiffness
(Fp) and damping (Fy) force (Equation (5)).

Fpg = Fp + Fyq ®)

The muscle can act as a spring and has a nonlinear characteristic. The spring nature of
the muscle is modeled as stiffness with its force Fp, given in Equations (6) and (7):

0, Im < lms
Fp (lm) = %(exp(kme (lm - 1ms)) - 1)/ Ims <1 < 1mc, (6)
Fine + km(lm - lmc)/ lm > Ime
k
Fie = kml (exp(kme(lmc - lms)) - 1) (7)
me

where l, is the actual muscle fiber length, 1y is the passive muscle slack length, 1y is the
length at which the spring becomes linear and is equal to the optimal muscle length Imept,
km and k) are parallel spring constants, and ke is an exponential shape parameter. The
PE also contains a damping element for which the damping force F, is given in Equation (8):

I::d (Vm) = BmVm (8)

where By, is the parallel damping constant and vy, is the change in muscle speed over time.
The tendon connects muscle and bone and is modeled as SE. The force in the muscle
tendon Fgg is given in Equations (9) and (10):

0, L <ls,
Fse(l) = lﬁ—i(exp(kte(lt L)) —1), ls <l <l )
Fic + k(L — 1), i < i
k
Fie = k%(exp(kteam ~1s)) — 1) (10)
(S

where k¢ and ky represent tendon spring constants, kie is the exponential shape parameter, I;
is the tendon length, lis is the tendon slack length, and l. is the length at which the tendon
becomes linear.

Having in mind muscle representation given in Equations (2)—(10), the actual muscle
fiber length 1, muscle speed vy, and tendon length 1; are given in Equations (11)—(13):

1
Vi = Wm(FSE — Fcg — Fpg) (11)
t
I = / Vindt (12)
0
lt = lms+ls + Ipqy — Im (13)

where My, is the muscle mass, rp, is the radius of the elbow joint calculated as a half value
of the BSP parameter P10 from Table 1, and q is the elbow joint angle during the full
extension (q, = 0 deg).
The joint torque T¢ generated from the muscle and transmitted through the tendon Fsg
via rp is given in Equation (14).
Ty = FSErp (14)
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2.4.2. Passive Joint Structures

Passive joint structure implies stability in the musculoskeletal model [39,40]. The
passive joint torque Tp, the damping torque T4, and the torque originating from gravity tg
are given in t Equations (15)-(17):

Tp(q) = ki exp(—ka(q — qy)) — keexp(—ks(q; —q)) (15)
T4(q) = -Bpq (16)
TG = mgr., sin(g — q) (17)

where m is the mass of the forearm-hand segment, B;, is the joint damping constant, g
is the gravitational constant, roy is the distance between the joint axis and the center of
mass of the forearm-hand, q; and g, represent joint angles where the torque begins to
increase, ki and k4 are joint torque constants, and k; are ks are dimensionless parameters.
The parameters kj, ky, kg, and ks define the shape of the torque joint curve given in
Equation (15), which fits the torque joint curve experimentally defined and represented
in [40].

The total joint torque Tj is the sum of the torques originating from the passive joint
structure and the torque induced by the antagonist’s muscle TionT Subtracted by the torque
produced by the agonist’s muscle tag (Equation (18)).

T = Tp + Td + TG + TtANT — TtAG (18)

According to Newton’s Second Law for rotation, Equation (16), the joint angular
velocity q and the joint angle q can be obtained through integration and double integration
of the angular acceleration ¢, satisfying the initial static condition of the joints g, = 0 and

qp = 0 (Equations (19)—(21)):

't

q= /0 gdt+ 4 20)
t .

q= /0 qdt+q, (21)

where M is the moment of inertia of the forearm-hand segment.

2.4.3. GA for Adjustment of Parameters for Hill’s Muscle Model and Passive Joint
Structure Model

GA is defined as a multi-objective optimization approach that aims to calculate the
optimal combination of Hill’s and the passive joint structure model parameters (defined
in Sections 2.4.1 and 2.4.2) while considering the difference between the measured joint
angle (qgoni) and the estimated joint angle (q). Thus, one combination of coefficients in
GA notation is one individual. Each individual consists of chromosomes and represents
a unique solution within the solution space. For GA, in this paper, each chromosome
represents one parameter. Accordingly, the initial values of these parameters and their
ranges are defined and encoded into GA using the actual value of the chromosome repre-
sentation. The population of the designed GA is represented by a set of 20 individuals. By
testing GA with different numbers of individuals in one population, it was concluded that
20 individuals are a good compromise between the complexity of GA, its execution time,
and optimization quality. To cover the complete solution space, a uniform distribution of
individuals was used to generate the initial population. The fitness function defined by
Equation (22) was evaluated for each individual per generation:

tend t N
Ffitness = /O (qgoni - q) dt ~ 2911:; =1 (qgoni(tﬂ) - q(tn)> (22)
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where ggon; is the joint angle measured using a goniometer, q is the estimated joint angle
according to Equation (21), tenq is the motion duration, and N is the number of samples
during the motion.

The value of the fitness function was used to determine the probability that each
individual would be selected for the next generation during the selection process. Roulette-
wheel selection was used, which selects the solutions with the lowest values of fitness
function but also gives a chance to some weaker solutions to survive the selection process.
A weaker solution may include some components that may prove useful after the crossover
process. The roulette-wheel selection process was chosen to prevent convergence to a local
minimum and to try to find a globally optimal solution. The crossover rate was chosen to
be equal to 0.7, which means that 70% of new (child) individuals were created using the
crossover operator. Other children were defined using the mutation operator or were elite
individuals. Two individuals with the lowest values of the fitness function in the current
generation (elite individuals) were selected and directly included in the next generation to
accelerate the convergence of the GA to the optimal solution. To create new combinations
of parameters (individuals) that differed from the existing ones, the mutation operator was
used. Mutation provides genetic diversity, allows the GA to search a wider space, and
can take individuals out of a local minimum and move them towards a global one. The
mutation operator added a Gaussian distributed random value to a chromosome gene.
If it fell outside the lower and upper limits for the gene, the new value of the gene was
truncated. The imposed condition for stopping the GA was heuristically obtained since the
change in the best value of the fitness function F was not greater than 10~ for the previous
20 generations.

A PC platform with an Intel(R) Core(TM) i7-9700F CPU at 3.00 GHz and 64.0 GB RAM
was used for the optimization procedure. The software used for the Hill’s and passive
joint structure models was the Matlab2022 (license: Matlab Campus-Wide 2022) package
Simulink. The Hill’s and passive joint structure model parameters were estimated using
genetic algorithm functions ga within the Matlab Global Optimization toolbox. The ga
function contained: an objective (fitness) function that is given in Equation (22); the number
of variables set to 24 (the number of Hill’s and passive joint structure model parameters);
‘PopulationSize” set to 20 individuals; ‘SelectionFcn’ set to “selectionroulette’; *EliteCount’ set
to 2; and “CrossoverFraction’ set to 0.7. The values of the Hill’s and passive joint structure
model parameters given in papers [19-28] were used to define the upper and lower bounds
of the parameters. Half the value of the given parameters shown in the papers [19-28] was
taken for the lower bound, while twice the value of the given parameters was taken for the
upper bound. The CPU operating time was ~30 h for each participant and for each task.

2.4.4. Verification of the Training GA Outputs

The measured joint angle (qgoni) in the Training phase (described in Section 2.2) was
used for verification of the GA estimation parameters from the Hill’s and passive joint
structure models. The overall accuracy of the estimated parameters obtained by GA was
obtained using the estimated joint angle (q) from the passive joint structure model for
the values of the estimated parameters in the Training phase. The measured joint angle
(qgoni) from the Training phase and the estimated joint angle (q) were compared using
Dynamic Time Wrapping (DTW) [41]. DTW gives the sum of the Euclidian distance
between corresponding points of estimated joint angle (q) and the measured joint angle
(qgoni)- The Training GA output verification is represented by the obtained DTW value
divided by the number of samples.

2.4.5. Recursive Least Square Algorithm

Analogously to the approach presented in [42,43], the RLS algorithm was applied to
the estimated joint torque Tj and joint angle q to estimate the elbow joint stiffness. The total
joint torque Tj was expressed as in Equation (23):
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T = ®I1 (23)

where ® = (1,q,4¢%...,q") is the n order torque regressor, which is the function of the

joint angle, and IT = (my, 7y, ... nn)T is a vector of the state parameters to be estimated.
The order n = 3 was chosen to capture the main features of the RLS mathematical model
while the estimation was simultaneously denoised. The estimation of the state parameter
ITis proposed in [44] and given by Equations (24)—(28):

elk] = Tj[k] — P[K|II[K] (24)

plk] = TPk — 1]@[K] (25)

Gl = (1+ p[k]) 'P[k — 1]®[K] (26)
I1[k] = [k — 1] + G[K]e[K] 27)
P[k] = P[k — 1] — G[K]®T[K]P[k — 1] (28)

where e[k] is the error of the measured (tj[k]) and estimated torque values (®[k|IT[k]) in
the kth time sample, P[k] is the covariance matrix, and G[k] is the gain of the RLS algorithm.
The initial values of IT and P are given as IT[0] = [0 0 0]" and P[0] = 0.01I3,3, where I is an
identity matrix. The elbow joint stiffness (Stiffness) in each time sample k was calculated
using Equation (29).

Stif fness [k] = —®[k]"TI[K] (29)

2.4.6. Stiffness Functional Scale

The data acquired in E1 and E2 were used for designing novel functional scales. First,
the parameters of the Hill’s and passive joint structure models estimated in the Training
phase were applied to the acquired data in E1 and E2. Second, Dynamic Time Wrapping
(DTW) [41] was performed on a measured joint angle (qgoni) and the estimated joint angle
(q) to quantify the estimation error. Finally, fitting curves (so-called functional scales) for
different task frequencies (Stiffness (tempo) in E1) and different weights (Stiffness (weight)
in E2) were defined.

3. Results
3.1. Identification of Hill’s and Passive Joint Structure Model Parameters

Table 2 presents the range (maximal and minimal values) of the parameter values of the
Hill’s and passive joint structure models for elbow joints obtained using the GA algorithm.
The muscle activation function of the biceps brachii long head muscle (apg(t)) triceps
brachii long head (aanT(t)) and the measured elbow joint angle (qgoni) from the Training
phase were used as inputs in the Hill’s and passive joint structure models. The range
values (minimum and maximum values) of the Hill’s and passive joint structure models’
parameters for the elbow joint for each parameter were calculated as the boundary values
(minimum and maximum) of all values estimated for all participants for each parameter.

Table 2. Parameters of Hill’s model and passive joint structure model for the elbow joint.

Mean Value +

Parameter Standard Deviation Min Value Max Value
kq [Nm] 7.16 +1.88 454 9.05
ko [radfl] 0.35 = 0.05 0.25 0.43
k4 [Nm] 35.89 +13.24 15.00 60.5
ks [radfl] 0.026 4+ 0.006 0.02 0.04
q [rad] 420+ 0.77 3.11 5.49
qp [rad] 5.25+1.29 3.22 6.95

Bp [Nms] 3.32 £ 0.81 1.55 4.05
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Table 2. Cont.

Mean Value +

Parameter Standard Deviation Min Value Max Value
Fmax [N] 2289.76 4+ 786.18 1401.59 3913.00
w [n.u.] 0.78 £0.14 0.64 0.96
Imopt [m] 0.19 £ 0.05 0.10 0.27
af [n.u.] 0.39 £0.19 0.25 0.75
Kie [m™1] 2611.95 4= 862.11 1511.02 4042.59
ky [N/m] 27,230.04 + 8846.59 15,570.31 43,133.01
ki [N/m] 5‘;’2’65, 491285(1); 317,771.71 923,909.99
lc [m] 0.34 £+ 0.093 0.23 0.47
lis [m] 0.33 £ 0.070 0.24 0.46
Ky [N/m] 408.21 + 137.80 244.96 710.60
Kme [m™1] 75.84 + 23.35 46.05 113.92
km [N/m] 4551.31 + 1590.63 2500.06 7352.47
Ime [m] 0.14 £ 0.03 0.10 0.19
Ims [m] 0.19 £ 0.05 0.10 0.27
Bm [Ns/m] 0.19 £ 0.05 130.97 342.17
Mp, [kg] 241.77 £ 75.83 0.33 0.45
Vmax [m/s] 0.39 £+ 0.04 0.54 1.46

3.2. Verification of Hill's Model and Passive Joint Structure Parameter Estimation

Verification of the accuracy of the Hill’'s model and passive joint structure parameter
estimation was performed using the DTW algorithm (defined in Section 2.4.4) and is
presented in Table 3. The values in Table 3 represent the average deviation (in degrees)
of the measured (qgoni) and estimated (q) angles in the elbow joint (DTW divided by the
number of samples) for 10 participants.

Table 3. Verification of the Training GA outputs using DTW—average deviation (in degrees).

1 2 3 4 5 6 7 8 9 10
Training phase 8.47 4.46 8.02 1.95 8.67 9.16 4.89 2.56 2.77 1.83
15 bpm 2.78 521 8.43 4.37 5.42 5.48 6.67 1.63 3.55 5.80
El 30 bpm 4.45 1.98 291 4.05 5.16 5.83 1.78 5.25 2.96 2.16
45 bpm 4.80 3.11 6.05 2.06 6.32 6.51 243 2.23 2.95 2.31
60 bpm 5.31 5.74 10.79 6.56 11.85 7.03 3.13 476 3.65 0.99
E2 Okg 4.55 7.80 8.47 2.52 4.35 12.16 11.43 5.10 475 6.94
0.25 kg 4.76 6.55 6.64 491 5.33 3.53 10.15 6.29 2.23 3.02
0.5kg 4.45 1.98 291 4.05 5.16 5.83 1.78 525 2.96 2.16
0.75 kg 3.70 7.22 11.22 3.20 3.93 8.65 5.49 1.69 2.93 11.14
1kg 8.13 5.44 10.79 4.38 5.35 8.82 5.32 6.96 2.30 3.26

Figure 5 shows an example of the typical pattern for WMFT8,,, movement. The mean
value (bold line) and standard deviation (shaded area) of these signals were obtained by
overlapping all WMFT8, movements and their normalization with the time: (A) measured
(qgoni) and estimated (q) elbow joint angles; (B) estimated stiffness value (Stiffness); and (C)
estimated total joint torque value (tj).

The comparative analysis of stiffness accuracy in relation to the change in model
parameter values is presented in Table 4. The values of the model parameters were modified
for £10%, £20%, and +30% regarding the parameter values estimated by GA. The accuracy
of the stiffness was calculated using the DTW algorithm, comparing the estimated stiffness
values using GA and stiffness calculated from modified parameters. The results show
that stiffness sensitivity increases with the increase or decrease in each of the parameters.
The stiffness is more sensitive to changes in the kq, ka, k4, q2, lic, lts, Fmax, Imopt, Ims, and
Vmax parameters (DWT > 0.1) (see Table 4), while for the others, the change in stiffness is
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negligible. It can be observed that in the DWT value for li, lis is high, because the algorithm

for stiffness diverged after parameter modification.

angle[degree]

[Nm/rad]

2
1+ —Stiffness

20

10 20

)

S,

70

80

100

—Torque

70 80 90 100
( ( ) ?
e

Figure 5. An example of WMFT8m movement pattern: mean value (bold line) and standard deviation
(shaded area) of (A) measured and estimated elbow angle; (B) elbow joint stiffness; (C) total joint
torque. The presented signals belong to participant 9 for task E1 and have a tempo of 30 bpm.

Table 4. Verification of the accuracy of the generated stiffness patterns depending on the change in

parameter values using DTW—average deviation (in Nm/rad).

Parameter Percentage Variation
—10% +10% —20% 20% —30% 30%

kq 0.0622 0.0429 0.1784 0.1370 0.2854 0.2916
ko 0.1712 0.1341 0.3541 0.3405 0.4556 0.5504
ky 0.0331 0.0353 0.1078 0.0916 0.2543 0.1592
ks 0.0019 0.0019 0.0040 0.0038 0.0064 0.0059
qi 0.0024 0.0024 0.0052 0.0050 0.0084 0.0077
Q2 0.1669 0.1934 0.3211 0.3747 0.4050 0.3827
By 0.0041 0.0040 0.0100 0.0094 0.0173 0.0155
Fmax 0.0239 0.0243 0.0538 0.0614 0.1028 0.1066
w 0.0142 0.0104 0.0446 0.0235 0.0994 0.0367
Lmopt 0.0444 0.0287 0.0938 0.0548 0.1887 0.0899
ag 0.0193 0.0159 0.0559 0.0377 0.0994 0.0609
ke 0.00035 0.00042 0.0005 0.00064 0.00057 0.00072
ky 0.00028 0.00033 0.00037 0.00036 0.00047 0.00047
k¢ 0.00074 0.00071 0.0012 0.00087 0.0020 0.0011
lic 5.0826 0.0038 7.1025 0.0038 5.8225 0.0038
lis 0.0038 4.9648 0.0038 6.9452 0.0038 6.2682
Kmi 0.00028 0.00031 0.00043 0.00044 0.0005 0.00051
Kme 0.00032 0.00026 0.00046 0.00039 0.00056 0.00046
km 0.0074 0.0072 0.0186 0.0168 0.0322 0.0277
Ime 0.0082 0.0133 0.0110 0.0215 0.0114 0.0298
lms 0.0444 0.0287 0.0938 0.0548 0.1887 0.0899
Bm 0.00079 0.00079 0.0013 0.0012 0.0018 0.0018
Mm 0.00005 0.00009 0.00007 0.00014 0.00009 0.00017
Vmax 0.0254 0.0215 0.0733 0.0517 0.1440 0.0846
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3.3. Elbow Joint Stiffness Estimation and Functional Scales

The comparative analysis of the stiffness value through different tempos in task E1 is
presented in Figure 6. The comparative analysis of the mean value of the stiffness signal
for participant 9 for each tempo (15 bpm, 30 bpm, 45 bpm, and 60 bpm) is presented
in Figure 6A. The stiffness mean values were calculated by overlapping all WMFT8,
movements and their normalization with the time. Using the boxplots, the stiffness behavior
for each tempo for all 10 participants is shown in Figure 6B. Each boxplot represents the
median and the interquartile range of the area under the stiffness signal (Figure 5B) for all
repetitions of each participant.

I I I
——15bpm —— 30bpm 45bpm ——60bpm

[Nm/rad]

[%]

35—

—15bpm —30bpm 45bpm —60bpm

Stiffness
I
—{T~

é % % s, $ . % g F

Participant

Figure 6. Comparative analysis of (A) elbow joint stiffness mean value for participant 9; (B) stiffness
value for each tempo for all 10 participants in task E1.
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[Nm/rad]

A stiffness fitting curve (a so-called functional scale) for different task tempos Stif fness
(tempo) is given in Equation (30) and shown in Figure 7.

Stif fness(tempo) = 0.001975- tempol‘mg 30)

¥ mean
—scale

Stiffness

0.5

15 20 25 30 35 40 45 50 55 60
tempo [bpm]
Figure 7. Stiffness fitting curve (green curve) for different task tempos (E1). Mean value for all
participants is represented by red dots and the corresponding standard deviation is represented by
blue lines.

The comparative analysis of the stiffness value through different loads in task E2 is
presented in Figure 8. The comparative analysis of the mean value of the stiffness signal
for participant 9 for each weight (0, 0.25, 0.5, 0.75, and 1 kg) is presented in Figure 8A.
The stiffness mean values were obtained by overlapping all WMFT8, movements and
their normalization with the time. Using the boxplots, the stiffness behavior for each load
for all 10 participants is shown Figure 8B. Each boxplot represents the median and the
interquartile range of the area under the stiffness signal (Figure 5B) for all repetitions of
each participant.

T I T T
[—o0kg —0.25kg —0.5kg —0.75kg — 1kg|

| | | | | | | |
30 40 50 60 70 80 90 100

Figure 8. Cont.
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Stiffness

05

—0kg — 0.25kg ——0.5kg —0.75kg — 1kg

Participant

Figure 8. Comparative analysis of (A) elbow joint stiffness mean value for participant 9; (B) stiffness
value for each tempo for all 10 participants in task E2.

Stiffness fitting curves (so-called functional scales) for different “pulling” weights
Stif fness(weight) are given in Equation (31) and shown in Figure 9.

Stif fness(weight) = 0.39- exp(1.014- weight). (31)

¢ mean
—scale

f

o °
3 ®

Stiffness

o
o
T

0.5

0. .41

L 1 1 1 1

03 L
06 07 08 09 1

0 0.1 0.2 03 04 0.5
weight [kg]
Figure 9. Stiffness fitting curve (green curve) for different “pulling” weights task (E2). Mean value
for all participants is presented by red dots and corresponding standard deviation is presented by
blue lines.

4. Discussion

This paper presents a novel methodology for elbow joint stiffness estimation in people
without sensorimotor disorders during different movement scenarios regarding movement
tempo and the upper limb load. The overall research goal of the paper is to define a



Sensors 2023, 23, 1709

17 of 22

Stiffness functional scale (general Stiffness curve pattern) that is useful for the further
neurorehabilitation follow-up of patients.

Considering that the musculoskeletal system of the upper limb is a nonlinear model,
Hill’s muscle model and the passive joint structure model are convenient for use in such
research [18,19]. One of the challenges when using Hill’s muscle model and passive joint
structure is the estimation of the model parameters, which are the physical parameters of the
muscles and tendons themselves, as well as the parameters that describe the characteristics
of their behavior during movement. To the best of our knowledge, no report includes a
complete list of parameter values for the antagonistic pair (the triceps brachii long head
and biceps brachii long head muscle) and passive joint structure. Parameter values that
describe the lengths of the above-mentioned muscles (Imopt, lts, Ims) are presented in [20-28];
additionally, Fmax values are given in [20,21,23,24,27,28], M, values are given in [22,27],
a¢ values are presented in [22], and vimax Vvalues are given in [22,28]. In this paper, we
proposed an experimental task corresponding to the clinical Wolf test, which aims to
assess human/patient capabilities. The task comprises the repetition of a movement with
different velocities and loads. To the best of our knowledge, there has been no similar
scenario performed in the literature, and this fact makes comparison with previous research
difficult. Additionally, it is worth remarking that exact equivalence among parameters
is impossible due to the high variability in the human body. However, good matching is
observed for the parameters lmopt, lis, Ims, Fmax, Mm, @, and vmax, as presented in Table 5.

Table 5. Comparative analysis of the Hill’s muscle model and passive joint structure model parameters.

Reference 1mopt [m] lgs [m] Ims [m] Fmax [N] Mmn [kg] a¢ [n.u.] Vmax [m/s]
Cavallaro et al. [20] 0.15 0.19-0.23 n.a. 393-1000 n.a. n.a. n.a.
Garner et al. [21] 0.15 0.19-0.23 n.a. 462-629 n.a. n.a. n.a.
Winters et al. [22] 0.09-0.14 0.22 0.31-0.37 n.a. 0.06-0.13 0.35-0.45 0.49-0.76
Desplenter et al. [23] 0.11-0.17 n.a. 0.16-0.25 2875-2397 n.a. n.a. n.a.
Holzbaur et al. [24] 0.11-0.13 0.14-0.27 n.a. 624-799 n.a. n.a. n.a.
Murray et al. [25] 0.13 0.22-0.23 0.22-0.36 n.a. n.a. n.a. n.a.
Yu et al. [26] 0.15 0.11-0.13 n.a. n.a. n.a. n.a. n.a.
Song et al. [27] 0.16-0.17 0.21-0.23 0.39-0.41 630-764 0.34-0.45 n.a. n.a.
Bingshan et al. [28] 0.12-0.13 0.14-0.27 n.a. 624-799 n.a. n.a. 0.96-1.04
This paper 0.1-0.27 0.24-0.46 0.1-0.27 1400-3900 0.33-0.45 0.25-0.75 0.54-1.46

Cavallaro et al. [20] and Zhao et al. [45] used GA in their work to estimate a subset
of Hill’s model parameters. Other parameters of the Hill model, as well as all parameters
of the passive joint structure for the elbow joint, are not described in the literature, so
one of the major contributions of this paper is the presentation of the complete estimation
of all parameters of the Hill’s muscle model and the passive joint structure model using
GA. The range values (minimum and maximum values) of all the parameters estimated in
the Training phase of ten participants are presented in Table 2. Considering that during
the experiment, the tempo of the WMFT8m movement was variable (see Section 2.2),
different dynamics of the elbow joint movement were taken into account during parameter
estimation. The quality of parameter estimation using GA was tested using the DTW
algorithm by comparing acquired and estimated values in the elbow joint. The values of
the DTW analysis show that the maximum deviation is 9.16 deg, which corresponds to 6.1%
of the full elbow angle range values during one WMFT8m movement (see Table 3). The
parameters estimated from the Training phase were applied in experiments E1 and E2 for
all participants to estimate stiffness in the elbow joint. A maximum deviation of 12.16 deg,
which corresponds to 8.1% of the full elbow angle range values during one WMFT8m
movement, was obtained for E1 and E2 (see Table 3). Additionally, a visual representation
of the pattern matching of the estimated and acquired elbow joint angle is presented in
Figure 5A. Stiffness in the elbow joint for participant 9 in task E1 and task E2 is presented
in Figures 6A and 8A, respectively. The maximum values of the estimated stiffness for
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task E1 are in the range [1.75 Nm/rad-7 Nm/rad], while those for task E2 are in the range
[2.2 Nm/rad-5.25 Nm/rad]. Obtained maximal values of joint stiffness are aligned with
the values of elbow joint stiffness presented in papers [15] (from 3 to 20 Nm/rad), [46]
(from 2.5 to 9 Nm/rad), [47] (from 9 to 14 Nm/rad), and [48] (~10 Nm/rad).

Due to the variability in biological mechanisms and experimental conditions, we
qualitatively compared the stiffness evolution in our work with results from the relevant
literature in cases where the human arm is moving with different velocities and where it is
acting against different forces. Humans perform interaction tasks with ease and precision
by modulating their mechanical stiffness. It is intuitively expected and proven in the
literature that the co-contraction of antagonistic muscle groups (which is highly related
to joint mechanical impedance) depends on velocity [49] or load [50]. However, for a
number of challenges that include human motion analysis, rehabilitation, and human-
robot interaction, comprehensive study and understanding of the mutual influence of
velocity and load on human motion and stiffness planning are needed. Furthermore,
considering the latest enabling technology—collaborative robots capable of mechanical
impedance modulation—the impact that cobots can have on healthcare and industry highly
depends on our capabilities to understand human behavior patterns in contact and non-
contact tasks.

The stiffness estimation in tasks E1 and E2 is presented in Figures 6-9. To the best
of our knowledge, no report analyzes the stiffness in such a way in the existing literature.
The obtained results for experiment E1 (Figure 6) show that the stiffness value increases
with the increase in the movement tempo and that the same effect was observed in all
participants. Therefore, it can be concluded that there is a universal relationship that
connects the stiffness and the movement tempo, and this dependence can be represented
by Equation (30). The corresponding curve is shown in Figure 7 and it represents the
functional scale of the stiffness change regarding the movement tempo change in the
population without sensorimotor disorders. The obtained functional scale can be used as
a reference curve for assessing the recovery of patients with upper extremity weakness.
Compared to the papers [46,49], which analyze the correlation between joint stiffness and
joint velocity, we obtained quite similar results: the increase in speed affects the increase
in stiffness. A similar stiffness-increasing trend with increasing weight in the E2 task
is presented in Figure 8. It can be observed that in participants 5, 7, and 10, stiffness
has an increasing trend for all increasing weights, including 1 kg. Upon comparing the
stiffness—force relationship with the results in [8], it can be noticed that with increasing
force, stiffness also increases, which complies with the conclusions of [8]. However, in most
cases (participants 1, 2, 3, 4, 6, 8, and 9), stiffness has an increasing trend for all increasing
weights except for 1 kg, where the stiffness value is close to the stiffness at 0.75 kg. A
possible reason for this phenomenon is the saturation of stiffness in the elbow joint with an
increase in weights greater than 0.75 kg. This saturation property of elbow joint stiffness
can be explained by the compensatory ability of motor behavior [47]. Based on the obtained
results for different weights, the functional scale of stiffness change regarding weight
change can be defined and is given in Equation (31). The corresponding curve is given
in Figure 9. Due to the previously mentioned saturation effect, the stiffness deviation at
1 kg is larger than for other weights. Considering that the 0.5 kg weight is conventionally
used in task 8 of WMFT, the obtained functional scale can also be used as a reference for
assessing the recovery of patients with upper extremity weakness [51].

5. Conclusions

This paper introduced a general assessment methodology for elbow joint stiffness
estimation based on Hill’'s muscle model and the passive joint structure model, and a
genetic optimization procedure during the “Reach and retrieve” task that is conventionally
used within neurorehabilitation testing. The model parameters were estimated using the
short-term tempo ramp scenario, and then, verified in two independent scenarios, resulting
in 6.1% and 8.1% errors for the training and test datasets, respectively. The estimated joint
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stiffness in the two long-term test scenarios (the first one with tempo variation and the
second one with load variation) was used for creating elbow stiffness curves to represent the
general pattern of motor behavior in the population without sensorimotor disorders. The
proposed objectification criteria of motor behavior in the form of stiffness patterns could
significantly contribute to the monitoring of motor recovery in patients with sensorimotor
disorders. A comparison to the results obtained using the proposed model with existing
clinical scales (for the selected task as well as for the overall functional assessment of
the arm) would be of interest for future work, as would further automatization of the
overall system using collaborative robot-based approaches. Understanding human stiffness
patterns and stiffness monitoring is a prerequisite for the development of rehabilitation
devices based on collaborative robots capable of imposing recommended stiffness patterns,
on the one hand, and monitoring Cartesian stiffness in contact tasks, on the other hand.
Future research will exploit the presented methodology in clinical studies for assessment of
the rehabilitation process with a larger number of participants.
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Appendix A

The specific measurement data (Processed EMG signal and its envelope) for tasks E1
and E2 for participant 9 are presented in Figures Al and A2, respectively. The results for
task E1 are presented in Figure Al. The EMG signals and envelopes are represented for a
time sequence of 4 s. The different tempo of the motion is evident in the EMG signals and
envelopes. For a tempo of 15 bpm during 4 s, the motion is performed once, while for a
tempo of 60 bpm during 4 s, the motion is performed four times. Additionally, increasing
the tempo affects the values of the Processed EMG signal and its envelope (see Figure A1).
The maximal envelope value for a tempo of 15 bpm is ~0.02 mV, for a tempo of 30 bpm is
~0.03 mV, for a tempo of 45 bpm is 0.05 mV, and for a tempo of 60 bpm is 0.1 mV.

In task E2, increasing the load affects the values of the Processed EMG signal and its
envelope (see Figure A2). The EMG signals and envelopes are represented for the time
sequence of 4 s. Because task E2’s tempo is 30 bpm, the motion is repeated four times for 4 s
for each load. The results show that the EMG signals and envelope increase with increased
load. The maximal envelope value for a load of 0 kg is ~0.025 mV, for a load of 0.25 kg is
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~0.04 mV, for a load of 0.5 kg is ~0.06 mV, for a load of 0.75 kg is ~0.07 mV, and for a load of

1kgis ~0.1 mV.
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Figure A1l. Muscle activation estimation: Processed EMG signal (blue line) and EMG envelope (red
line) in task E1.
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Figure A2. Muscle activation estimation: Processed EMG signal (blue line) and EMG envelope (red

line) in task E2.
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