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Abstract: In recent years, deep learning techniques have excelled in video action recognition. How-
ever, currently commonly used video action recognition models minimize the importance of different
video frames and spatial regions within some specific frames when performing action recognition,
which makes it difficult for the models to adequately extract spatiotemporal features from the video
data. In this paper, an action recognition method based on improved residual convolutional neu-
ral networks (CNNs) for video frames and spatial attention modules is proposed to address this
problem. The network can guide what and where to emphasize or suppress with essentially little
computational cost using the video frame attention module and the spatial attention module. It
also employs a two-level attention module to emphasize feature information along the temporal
and spatial dimensions, respectively, highlighting the more important frames in the overall video
sequence and the more important spatial regions in some specific frames. Specifically, we create the
video frame and spatial attention map by successively adding the video frame attention module and
the spatial attention module to aggregate the spatial and temporal dimensions of the intermediate
feature maps of the CNNs to obtain different feature descriptors, thus directing the network to focus
more on important video frames and more contributing spatial regions. The experimental results
further show that the network performs well on the UCF-101 and HMDB-51 datasets.

Keywords: action recognition; attention mechanism; spatiotemporal features; CNNs

1. Introduction

A great number of videos have been generated as a result of the advancement of
multimedia technologies. In recent years, video understanding has emerged as a crucial
field of computer vision for better analyzing and understanding video data. Human action
recognition is one of the most fundamental tasks in video understanding, which is becom-
ing increasingly popular in surveillance systems [1], health care systems, social robots [2],
and other applications. In short, the ultimate goal of human action recognition is to allow
machines to understand the action of the subject’s objectives in various observations, such
as video frames through the camera sensors. Two important and complementary indica-
tions for action recognition in videos are spatial and temporal dynamics. The ability of a
recognition system to extract and use useful information from it determines its performance
to a considerable extent. However, owing to raw videos including far more redundant or
irrelevant information in the space and time domains, extracting such information is tough.
For example, in Figure 1, the discriminative part of four instances is just in the red dotted
line box, demonstrating that not every part of the subject has a clear discriminatory effect
on action recognition. As a result, it is critical to create effective representations to address
these issues when learning categorical information about action classes.
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discriminatory effect on action recognition. As a result, it is critical to create effective rep-
resentations to address these issues when learning categorical information about action 
classes. 

 
Figure 1. Examples of four video frames from the UCF-101 video dataset. From (a) to (d) all repre-
sent a video frame in which the action target occurs in a specific spatial region. 

The original video is cut into different video clips, each with different contributions 
to action recognition. Some clips have a discriminatory role in the classification, while 
others may lead to the action classifier being misled. For instance, as shown in Figure 2, 
the figures in the first and the second row are the same action, “Surfing”, but only the first 
seven frame figures contain the target of the action (marked by the red dotted line in the 
figure), while the surfer and the surfboard do not appear in the next few frame figures. 
These figures are irrelevant for recognizing the action. Although each figure in the third 
and the fourth row contains the action subject, the motion information of the several 
frames marked in the red box is not obvious. These figures appear in many actions of the 
same dataset, such as “Archery”, “Playing Flute”, “Swing”, “Jetski” and so on, which are 
not discriminative when it comes to recognizing action. When the action classifier aver-
ages the predictions from all figures, these irrelevant and non-discriminating figures de-
ceive it. Previous approaches required pre-processing of input videos to remove irrelevant 
and non-discriminating figures. However, because pre-processing is normally performed 
by hand, it is not only time-consuming, but also requires significant financial resources in 
real-world applications. 

 
Figure 2. Two video examples from UCF-101 datasets. 

Many studies on action recognition concentrate on modeling the temporal and spa-
tial characteristics of the video. The key advantage of convolutional neural networks 

Figure 1. Examples of four video frames from the UCF-101 video dataset. From (a–d) all represent a
video frame in which the action target occurs in a specific spatial region.

The original video is cut into different video clips, each with different contributions
to action recognition. Some clips have a discriminatory role in the classification, while
others may lead to the action classifier being misled. For instance, as shown in Figure 2,
the figures in the first and the second row are the same action, “Surfing”, but only the first
seven frame figures contain the target of the action (marked by the red dotted line in the
figure), while the surfer and the surfboard do not appear in the next few frame figures.
These figures are irrelevant for recognizing the action. Although each figure in the third
and the fourth row contains the action subject, the motion information of the several frames
marked in the red box is not obvious. These figures appear in many actions of the same
dataset, such as “Archery”, “Playing Flute”, “Swing”, “Jetski” and so on, which are not
discriminative when it comes to recognizing action. When the action classifier averages
the predictions from all figures, these irrelevant and non-discriminating figures deceive
it. Previous approaches required pre-processing of input videos to remove irrelevant and
non-discriminating figures. However, because pre-processing is normally performed by
hand, it is not only time-consuming, but also requires significant financial resources in
real-world applications.
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Figure 2. Two video examples from UCF-101 datasets.

Many studies on action recognition concentrate on modeling the temporal and spatial
characteristics of the video. The key advantage of convolutional neural networks (CNNs)
is their ability to extract spatiotemporal features directly from video frames in an effective
manner. Inspired by the successful application of CNNs in image classification [3] and



Sensors 2023, 23, 1707 3 of 15

target detection tasks [4], CNNs have also been introduced into video-based human action
recognition algorithm [5–7].

In our previous work [8], as shown in Figure 3a, which is the bottleneck of the original
resnet [9], while in [10], the 3 × 3 convolution kernel is inflated to 3 × 3 × 3 for video
action recognition, named resnet3d, and on this basis, we replace the 3 × 3 × 3 convolution
kernels with 1 × 3 × 3, 3 × 1 × 3 and 3 × 3 × 1, respectively, and perform 2D convolution
of the volumetric video data along the three views to learn collaborative spatiotemporal
features by sharing the parameters of the different convolution kernels, named s-resnet3d.
In order to address these challenges, we propose a video frame attention module that
instructs the model to concentrate on the more relevant frames in the whole video by
assigning different weights to different video frames, thus making it possible to avoid the
negative effects of action categories of similarity between different video frames. Then, a
spatial attention module is utilized for the more important frames mentioned above, so
that the visual information of the action-related regions in the spatial features of the video
frames is effectively captured, trying to eliminate the interference of negative information,
such as noise and redundant information with action space features. For brevity, we name
our model the frame and spatial attention network (FSAN). Finally, we implemented it
in an end-to-end training way with ResNets and perform experiments on two datasets:
UCF-101 and HMDB-51. The evaluation results show that our model is able to generate
the state-of-the-art performance on the datasets using a similar backbone setup. The main
contributions and novelty of this paper are summarized as follows:

• We propose an FSAN model with the ability to model spatiotemporal features of video
information. FSAN contains a spurious-3D convolutional network and a two-level
attention module that can be easily implemented and embedded into a CNN-based
action recognition model with end-to-end training.

• We design an effective two-level attention module to help exploit information features
across channel, time and space dimensions, and a video frame attention module to
highlight the more important frames in the entire video sequence to reduce interfer-
ence due to similarities between heterogeneous action video sequences. The spatial
attention module focuses on the more important spatial regions in some given frames.

• Implementing end-to-end training on two challenging action recognition datasets,
UCF101 and HMDB51, FSAN outperforms state-of-the-art video action recognition
networks compared to existing methods.
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Figure 3. A “bottleneck” residual building block for resnet (a), resnet3d (b) and s-resnet3d (c).
(a) shows the original residual network, (b) shows the 3d residual network after inflating the convolu-
tional kernel, and (c) shows the spurious 3d residual network using 3 different convolutional kernels.

The remainder of this paper is organized as follows. In Section 2, we first intro-
duce classical video action recognition methods, from traditional manual features to deep
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learning-based approaches, and then describe related work on attention mechanisms used
in the field of action recognition and beyond. In Section 3, we introduce in detail our
proposed model and each of the modules. Section 4 describes the details of our experiments
and evaluation and shows a comparison with state-of-art methods. It also includes an
ablation study to verify module validity and determine the optimal module sequence.
Section 5 concludes our work and points out future directions.

2. Related Works

Human action recognition in video has been widely used in areas such as autonomous
driving, intelligent security, virtual reality, video parsing, military reconnaissance, sports
training aids, etc. It has contributed significantly to the development and progress of many
fields, both industrial and military, and has received considerable critical attention. In
this section, we present the relevant action recognition models and attention mechanisms
respectively.

2.1. Video-Based Action Recognition

Human action recognition is a hot topic in video understanding. Early work focused
on designing a variety of handcrafted features to encode video data [11–13], particularly
the Improved Dense Trajectories (IDT) [13], which dominated the field before deep learning
was applied to the field because of its excellent results and robustness. However, hand-
crafted features are computationally expensive and difficult to scale and deploy, and the
performance of these approaches is often limited.

With the rise of deep learning [14], the great success of convolutional neural net-
works (CNNs) in image recognition has driven researchers to start using CNNs for video
problems, developing several deep learning-based methods to solve action recognition
tasks. Simonyan et al. [15] proposed and used a two-stream model to train two sepa-
rate convolutional networks: spatial, i.e., stream on single-frame RGB images to extract
appearance features, and temporal, i.e., stream on multi-frame optical stream images to
simulate motion features, and then fused their confidence scores to improve classification
performance. Their experiments suggest that CNNs trained on dense frames of optical
flow pictures can improve action recognition ability significantly. However, the optical flow
computation will demand huge computational loads and memory resources. To mitigate
these issues, Tang et al. [16] proposed a novel network named Temporal Segmentation
Network (TSN), which uses a long-range modeling temporal structure to extract small
clips from the videos based on a sparse temporal sampling strategy. The sampled video
clips are then used as the input to the network. Each segment will obtain its initial predic-
tion, understand the action category through the network, and then obtain a video-level
prediction of the whole video through a consensus function of the segments. Another
method of obtaining motion information is the 3D CNNs proposed by Tran et al. [10],
which exploited the three-dimensional convolutional and pooling layers carried out on the
large-scale video datasets in spatial and temporal domains simultaneously. Furthermore,
several 3D CNNs variations have been developed; for example, Carreira et al. [17] built a
unique two-stream inflated 3D CNNs (I3D) for learning spatiotemporal feature for video,
which has the benefits and parameters of the 2D CNNs trained on ImageNet. I3D has
achieved high performance in video recognition tasks because they can jointly capture the
spatial and temporal information of the video, but each has its constraints. For instance,
I3D cannot learn true spatiotemporal features since they employ late fusing of two streams
classification scores, but 3D CNNs have high memory and processing demands. Given this,
we intend to create an RGB-only CNN model for our action recognition work and achieve
an architecture that can be trained in a video-level, end-to-end manner.

2.2. Attention Mechanism

The attention mechanism is used by the human visual system to aid with the efficient
and effective analysis and interpretation of complicated situations. As a result, researchers
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have begun to incorporate attention processes into computer vision systems to increase their
performance. In recent works, the visual attention mechanism has been widely applied
to various CNNs-based models and yielded impressive results in both image [18–21] and
video fields [22–24].

For the field of image recognition, Wang et al. [20] proposed attentional residual
learning, which used residual connectivity to allow different layers of attentional modules
to be fully learned, not only to focus operations on a specific region, but also to enhance
the features of that part of the region. By combining feature channels as local models and
fine-grained feature representations for joint learning, Zheng et al. [19] proposed a novel
multi-attention convolutional neural network made up of convolutional, channel grouping,
and part classification subnetworks. This allows part generation and feature learning to be
mutually reinforced. In addition, recurrent neural networks (RNNs) and long short-term
memory (LSTM) [25] units were utilized by Mnih et al. [26] and Vaswani et al. [21] to
develop the attention-based model.

For the field of action recognition, by adaptively recalibrating channel feature re-
sponses, Chen et al. [27] proposed a Spatiotemporal Channel Attention Network that may
effectively acquire distinguishing characteristics of human actions. Specifically, they built
a Channel Attention Unit (CAU) module for STCAN, which is based on a two-stream
architecture. The interdependencies across channels may be modeled using the CAU
module to further provide weight distributions for boosting information properties in a
targeted manner. In [28], Shi et al. investigated the visual attention process in video analysis
and proposed a novel 3D-CNN model for learning attention-enhanced spatiotemporal
representations. To acquire attention-enhancing features for improved spatiotemporal
representation, they built an entity-enhanced regular learning module that leverages two-
branch residual learning. In order to capture a wider variety of signals, Long et al. [29]
developed a shifting operation in addition to a local feature integration framework based
on attention clusters. There are also many works [30–32] on attentional mechanisms for
video comprehension tasks.

In summary, with deep learning-based video human action recognition, as video data
bring temporal information, we need to focus more not only on important features to
reduce the interference of information such as noise in the spatial dimension but also on
important frames in the temporal dimension.

3. Module Design

In this section, we make a detailed description of the proposed FSAN. Figure 4 depicts
the general structure of our model. In particular, it is noted that the ResBlock in Figure 4 is
based on the s-resnet in Figure 3. We embed our proposed attention module on the last
three residual blocks of the s-resnet. For convenience, we give a demonstration of only one
ResBlock-connected attention module in Figure 4. In both the spatial and temporal dimen-
sions, video often provides discriminating information for action recognition. However, the
distribution of the identity data is frequently uneven. Not every component of the frame is
directly connected to the activity in the spatial realm. For instance, in the action of hitting
a box with a stick, the box and the stick should have more discriminatory information
than the other pieces. Different frames do not convey an equal amount of information in
the temporal domain. The video’s fewest frames include the most discriminating action
recognition data. For instance, a golf swing is more discriminating than picking up the
club. As a result, it is only normal to pay varying amounts of attention to various areas of
the film. These discoveries led us to develop a frame and spatial attention module that can
determine which portion of the video is more crucial.



Sensors 2023, 23, 1707 6 of 15Sensors 2023, 23, x FOR PEER REVIEW 6 of 15 
 

 

 
Figure 4. The overview of the FSAN. 

3.1. Frame Attention Module 
In video action recognition, each video frame contributes differently to the recogni-

tion of action categories. Some actions may occur in some concentrated frames, and some 
actions may occur in some long sustainable sequence of frames. Therefore, not all video 
frames are relevant to action recognition, and there are some video frames that are less 
relevant, or even not relevant at all, to the action category. If we feed these interfering 
frames into the network, this may introduce interference signals such as noise, making the 
recognition results inaccurate. Conversely, some frames are more relevant to the action 
category and more attention needs to be paid to these frames. The CNNs for human action 
recognition are more reliable when it concentrates on shorter but more information-rich 
sections of the action video rather than all of the video sequence. In order to learn the 
differentiation function, a frame attention module must be introduced. We compress the 
channel and spatial dimensions of the input feature map, retaining information in the 
temporal dimension to extract temporal features, and to obtain temporal descriptors, 
which are then used to efficiently aggregate frames consisting of information relevant to 
particular action categories and to generate frame attention scores.  

As shown in Figure 5. We obtain the output feature map of the s-resnet, mapping the 
original input feature map to 𝑋′𝑡 = [𝑥 ′1, 𝑥 ′2, 𝑥 ′3, … , 𝑥 ′𝑡]. The initial features mapping 𝐹 ∈𝑅 × × ×  is extracted to the s-resnet for spurious-3d convolution calculation and then fed 
to the video frame attention. This generated two distinct time feature descriptors, 𝐴𝑣𝑔 ∈𝑅 × × ×  and 𝑀𝑎𝑥 ∈ 𝑅 × × × , to represent the attention weights of the video frames. We 
concurrently compress the channel and spatial dimensions using AvgPool3d and Max-
Pool3d. The original features are then passed via the frame attention module to yield the 
frame attention map 𝐴𝑣𝑔  and 𝑀𝑎𝑥 . The complete operation is as follows: 

Avgt=AP3d xt
’ =

1
C×H×W ℝ × × ×W

w=1

H

h=1

C

c=1

 (1)

and 𝑀𝑎𝑥 = 𝑀𝑃3𝑑(𝑥 ) = max{𝑋 } (2)

where 𝐴𝑣𝑔  and 𝑀𝑎𝑥  represent the set of global and local descriptors for the entire 
video, respectively; h and w represent the spatial indices, while c represents the channel 
indices; t is a temporal indicator in the range [1, 2, …, T]; C, H and W and denote the 
channel, height and width of the feature map, respectively. The module then aggregates 
two different temporal feature descriptors by element summation to obtain the final tem-
poral feature descriptor 𝑀 ∈ 𝑅 × × × , which operates as follows: 𝑀 = 𝐴𝑣𝑔 + 𝑀𝑎𝑥  (3)

Figure 4. The overview of the FSAN.

3.1. Frame Attention Module

In video action recognition, each video frame contributes differently to the recognition
of action categories. Some actions may occur in some concentrated frames, and some
actions may occur in some long sustainable sequence of frames. Therefore, not all video
frames are relevant to action recognition, and there are some video frames that are less
relevant, or even not relevant at all, to the action category. If we feed these interfering
frames into the network, this may introduce interference signals such as noise, making the
recognition results inaccurate. Conversely, some frames are more relevant to the action
category and more attention needs to be paid to these frames. The CNNs for human action
recognition are more reliable when it concentrates on shorter but more information-rich
sections of the action video rather than all of the video sequence. In order to learn the
differentiation function, a frame attention module must be introduced. We compress the
channel and spatial dimensions of the input feature map, retaining information in the
temporal dimension to extract temporal features, and to obtain temporal descriptors, which
are then used to efficiently aggregate frames consisting of information relevant to particular
action categories and to generate frame attention scores.

As shown in Figure 5. We obtain the output feature map of the s-resnet, mapping
the original input feature map to X′t =

[
x′1, x′2, x′3, . . . , x′t

]
. The initial features mapping

F ∈ RC×T×H×W is extracted to the s-resnet for spurious-3d convolution calculation and
then fed to the video frame attention. This generated two distinct time feature descriptors,
Avgt ∈ R1×1×1×T and Maxt ∈ R1×1×1×T , to represent the attention weights of the video
frames. We concurrently compress the channel and spatial dimensions using AvgPool3d
and MaxPool3d. The original features are then passed via the frame attention module to
yield the frame attention map Avgt and Maxt. The complete operation is as follows:

Avgt= AP3d
(
x′t
)
=

1
C× H ×W

C

∑
c=1

H

∑
h=1

W

∑
w=1

RC×T×H×W (1)

and
Maxt = MP3d

(
x′t
)
= max

{
X′t

}
(2)

where Avgt and Maxt represent the set of global and local descriptors for the entire video,
respectively; h and w represent the spatial indices, while c represents the channel indices; t
is a temporal indicator in the range [1, 2, . . . , T]; C, H and W and denote the channel, height
and width of the feature map, respectively. The module then aggregates two different
temporal feature descriptors by element summation to obtain the final temporal feature
descriptor M f ∈ R1×1×1×T, which operates as follows:

M f = Avgt + Maxt (3)
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Then, since the bottleneck of our s-resnet has three convolutions, we need to aggregate
the feature maps of the three different convolutions, for which we used the function “cat”.
Afterwards, we fed the integrated features into a fully connected (FC) layer.

Finally, the output was normalized using the sigmoid function. We can obtain the
weights according to the following formula:

wt = ∂
(

Conv1D
(

M f

))
(4)

where Conv1D denotes a one-dimensional convolution, ∂ is the sigmoid function and
ωt = R1×1×1×T in the range 0 to 1.

3.2. Spatial Attention Module

We may investigate spatial attention at the channel level, which aids in learning
discriminative features for action recognition. The individual channels in a convolutional
neural network-based model can be considered as spatially appearing representations
of specific actions. We created a SAM for learning the relevance score of each channel
of a convolutional neural network having a specific action feature, inspired by ECA-
Net. The model emphasizes spatial regions with high scores related to particular action
categories while suppressing regions with low values that are irrelevant. We feed the output
feature map after the FAM module into the SAM module, which is efficiently compressed
in both spatial and temporal dimensions to extract channel information and similarly
obtain channel descriptors in order to efficiently capture spatial attention maps. Previous
techniques have used global averaging pools such as ECA-Net and Se-Net to aggregate
geographic information. It is noted in the literature [33] that using each pooling method
individually is not as effective as using features from both the global average pool and the
global maximum pool, the latter of which can significantly enhance the representational
power of the convolutional neural networks.

Therefore, as shown in Figure 6, we use both the global average pool and the global
maximum pool to aggregate the spatial and temporal dimensions of the video frame
attention feature maps, and since channel information can be seen as a representation
of spatial features, the channel dimension information is retained, and we end up with
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two different channel descriptions, i.e., Avgs and Maxs, respectively. The spatial attention
feature descriptor can be obtained according to the following formula:

Ms

(
Ff

)
= ∂{w1[w2(Maxs)] + w1[w2(Maxs)]} (5)

where ∂ means the sigmoid function, which assures that the range of feature maps descrip-
tor is from 0 to 1; w1 and w2 are trainable parameters, where r is the reduction ratio; Avgs
and Maxs are two descriptors, where Avgs counts the global background information for
each channel and Maxs counts the local discriminant information.
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4. Experiments

All experiments in this paper are based on the Ubuntu 20.04 bionic operating system,
with an Intel Xeon E5-2620v4 CPU and a GeForce RTX 2080 Ti GPU. On two benchmark
datasets, we conduct extensive experiments in this section. The two benchmark datasets
are briefly introduced initially, and then the specifics of the experiments—including data
processing, training configuration and inference procedures—are presented. Some ablation
studies are followed by several comparison experiments, which are then run and analyzed
for our model and the state-of-the-art methods. All experiments were conducted on 4
GeForce RTX 2080 Ti GPUs using PyTorch (3.8).

4.1. Datasets

UCF101: The UCF-101 dataset is an action recognition dataset made up of realistic-
looking action videos. The dataset, which was compiled from YouTube, consists of 13,320
action video clips from 101 different human action categories. It also includes a range of
difficult situations, including dim illumination, crowded backdrops and sharp fluctuations
in camera movement. Non-action frames were briefly cut out of the videos. Each video
clip is an average of seven seconds long and is broken down into the following five
categories: (1) character interaction, (2) body movement, (3) human interaction, (4) playing
an instrument and (5) human interaction. Typical action examples in the UCF-101 datasets
are shown in Figure 7. This dataset is randomly spilt into three subdatasets, 70% of which
are used to train and 30% for testing.
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HMDB51: The HMDB-51 dataset contains 6766 clips divided into 51 action categories.
There are at least 101 clips in each action class, largely from movies but also a few from
online video repositories, such as YouTube and Google Video. The dataset faces the
difficulty of greater intra-class and lesser inter-class heterogeneity. The average length of
the video snippets was 3 s, just like in UCF-101. Similar to UCF-101, the training/test split
is used. Actions fall into one of five categories: (1) general facial actions, (2) facial actions
involving object manipulation, (3) general body actions, (4) body interactions involving
objects and (5) body interactions involving other people. Typical action examples in the
HMDB-51 are shown in Figure 8. This dataset provides three subdatasets, 70% of which are
used to train and 30% for testing.
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4.2. Implementation Details
4.2.1. Data Processing

Using quick video-loading libraries (such as decord and PyAV), we decoded the
video more quickly to produce the original frames. Using the decord tool, we extracted
the original frames from the movie, sampled them to get 64 consecutive frames and
then extracted 8 frames at 8-frame sample intervals. We fed the network clips that are 3
channels by 16 frames by 224 pixels by 224 pixels in size. We employed techniques for data
augmentation that are comparable to those in [34]. Random cropping, random flipping at a
flip ratio of 0.5, and other data improvement techniques were used.

4.2.2. Training Settings

On a four-GPU system, we trained our model 100 epochs. With a momentum of
0.9 and a weight decay of 0.0001, we used stochastic gradient descent (SGD) to train our
network model. Our network model was trained from scratch using two datasets. The
learning rate was 0.002 at first. We chose dropout with a dropout ratio of 0.5 after the
global pooling layer and discovered that activating batch normalization in our application
decreases overfitting. In our application, we discovered that turning on batch normalization
lessens overfitting. To initialize the weight layers, we employed the technique from [35].

4.2.3. Inference

We evaluated the proposed model on two public benchmarks (UCF101 and HMDB51).
Then, we extracted 10 clips from the original videos and calculated their action recognition
scores in the time domain. The largest classification score indicates the corresponding class
label. Finally, we calculated the average of all segment classification scores and recorded it
as the result of the test.

4.3. Ablation Studies

First, we performed comparative experiments with the baseline without any attention
module and with the addition of a frame attention module and a spatial attention module,
respectively, with the particular note that the baseline used in the experiments in this
paper was s-resnet and the dataset used for the experiments was HMDB-51 (Split1). These
two modules are capable of being connected in many ways (in parallel or in cascade).
In addition, the sequence between the two modules can be swapped at will. Through
ablation studies, we have concluded that the optimal architecture of FSAN is that the
spatial attention module is followed sequentially by the video frame attention module.

The Validation of FAM and SAM. We denote the baseline network as s-resnet50, the
network with only the spatial attention module embedded is noted as SAM and, similarly,
the network with only the video frame attention module embedded is noted as FAM.
We compared the performance of the three in HMDB-51. We investigated three ways of
combining models: parallel and fused (F//S), sequential spatial-frame (SF) and sequential
frame-spatial (FS).

As a result of Table 1, whether the two modules are embedded in the network alone
or both, they are useful for action recognition, and they improve performance at both
baselines. SAM, and FAM were significantly higher than the baseline by 1.2% and 1.7%,
respectively. These results indicate that attention to spatial regions is highly correlated with
action categories, and keyframes comprising action categories can enhance the prediction
robustness of the model. The frame attention module has higher accuracy than the spatial
attention module. This suggests that temporal attention plays a dominant role by selecting
keyframes that are relevant to the action category rather than reducing the interference of
irrelevant frames on recognition performance.
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Table 1. The validation of the attention module, embedding module into baseline.

Model HMDB-51

Baseline s-resnet50 66.2%
Spatial SAM 67.4%
Frame FAM 67.9%

The Arrangement of FAM and SAM. We investigate three ways of combining models:
parallel and fused (F//S), sequential spatial-frame (SF) and sequential frame-spatial (FS).
Here, SF means that the spatial attention module precedes the video frame attention
module, and conversely, FS means that the video frame attention module precedes the
spatial attention module. It can be verified whether assigning spatial weights first is more
helpful for action recognition or assigning video frame weights first is more helpful for
action recognition.

As seen in Table 2, sequential Frame-Spatial (FS) had the best performance, improving
by 5.2% and 4.7% over SAM and FAM, respectively. Parallel optimization is more difficult
than sequential optimization. The above results validate the complementary nature of
SAM and FAM. The model combines the advantages of SAM and FAM to further improve
the recognition performance of the CNN-based action recognition method. Moreover, our
model is able to focus on keyframes containing action categories while highlighting the
spatial regions associated with the acting categories, facilitating the robustness of the model
in extracting features. Our module contains an attention module for temporal sequencing
and is consistently applied in all experiments.

Table 2. Comparing the performance of our model with different sequences.

Model HMDB-51

Both

F//S 68.4%

SF 69.2%

FS 72.6%

4.4. Comparisons with the State-of-the-Art

We compare the performance of our FSAN architecture with other state-of-the-art
methods on two action recognition benchmark datasets: UCF-101 and HMDB-51. On the
UCF101 and HMDB51 datasets, we fine-tuned the network pre-trained on Kinetics400
or Imagenet. To be fair, we considered an approach with only RGB frames without any
additional modalities (e.g., optical flow and multiscale testing) as input. The results are
shown in Table 3. In the pre-trained column of Table 3, ‘-’ indicates that no pre-training
was performed. Our method outperforms other state-of-the-art methods with the same
backbone on all datasets. Although MEST and R(2 + 1)D outperform our FSAN, they have
approximately two to three times more network parameters than FSAN, because they use
more network streams to extract relevant features.

Table 3. Comparison of the state-of-the-art on UCF-101 and HMDB-51 datasets with only RGB frames
as inputs.

Method Pre-Trained Params(M) UCF-101 HMDB-51

IDT [13] - - 86.4% 61.7%
Two-stream [15] ImageNet 25 88.% 59.4%

C3D [10] Kinetics400 78 85.2% -
TSN [16] ImageNet 24.3 94% 68.5%
P3D [36] Kinetics400 + ImageNet 25.4 88.6% -

MiCT-Net [37] Kinetics400 50.2 88.9% 63.8%
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Table 3. Cont.

Method Pre-Trained Params(M) UCF-101 HMDB-51

STA [38] - 35.3 89.5% 70.2%
STA-TSN [39] - 29.8 82.1% 51%
DANet [40] - 36.26 86.7% 54.3%

R(2+1)D [41] Kinetics400 63.6 96.8% 74.5%
DPF [42] - 48.6 79.6% -

MEST [43] ImageNet 89.32 96.8% 73.4%
FSTFN [44] - 39 92.4% 69.43%

ActionS-ST-VLAD [45] - - 95.6% 71.4%
TDN [46] Kinetics400 + ImageNet 52.3 97.4% 76.3%

Multi-Domain [47] Kinetics400 32.02 94.82% 71.57%
TCLR [48] ImageNet 45 82.4% 52.9%

DB-LSTM [49] - - 91.21% 87.64%
HAR-Depth [50] - - 92.97% 69.74%

Ours Kinetics400 30.12 95.68% 72.6%

As shown in Table 3, on the UCF-101 dataset, our FSAN model showed a significant
improvement of about 4% compared to other models, except for the MEST model and
R(2 + 1)D, which fully demonstrates the effectiveness of our proposed model. Meanwhile,
by pre-training on the Kinetics400 dataset, our model improved over the original one.

As listed in Table 3, on the HMDB-51 dataset, our FSAN model has a significant
advantage over IDT, TSN and DANet. Again, our model improves on the original by
approximately 10%. This greatly illustrates the great superiority of our model in action
recognition. Our network performs better on UCF101 and weaker on HMDB51 com-
pared to DB-LSTM, perhaps because the LSTM is better at recognizing movie clips. The
HMDB51 dataset consists mainly of movie clips, while the UCF101 dataset consists mainly
of sports clips.

Our best results outperformed many methods on the HMDB-51 dataset and the UCF-
101 dataset, demonstrating the importance of attention mechanisms and the effectiveness of
the spatial attention module and frame attention module. In terms of action recognition, our
model can distinguish spatiotemporal feature representations, highlight action categories
with in-frame and focus on keyframes associated with action categories through space and
time. Furthermore, on both datasets, our model also outperforms the latest attention-based
approaches such as STA [40]. However, the R(2 + 1)D [42] and MEST [44] networks achieve
better performance than our method on the UCF-101 dataset. This is because these methods
use expensive optical flow maps in addition to RGB input frames. The optical flow needs
to be extracted from the image in advance, which is usually computationally intensive
and therefore difficult to obtain for large-scale datasets. Although our accuracy is lower
compared to TDN [47], our model parameters are much lower, which is an acceptable result.

5. Conclusions

In this paper, a new stacked diverse attention network is proposed. The method uses
a 3D CNN to extract basic deep features and then mines discriminative features between
actions using the proposed attention model. To better focus on key information and
keyframes in the feature graph, a spatial attention module is designed, which is an attention
mechanism that gives higher importance scores to spatial regions and video frames that
are more relevant to the action category without dimensionality reduction through a local
cross-channel interaction strategy. State-of-the-art performance can be achieved in action
recognition tasks, and extensive experiments demonstrate the effectiveness of the proposed
FSAN. In future research, we would like to investigate how to improve the robustness of
the attention mechanism to achieve better performance.
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