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Abstract: Navigation in virtual worlds is ubiquitous in games and other virtual reality (VR) applications
and mainly relies on external controllers. As brain–computer interfaces (BCI)s rely on mental control,
bypassing traditional neural pathways, they provide to paralyzed users an alternative way to navigate.
However, the majority of BCI-based navigation studies adopt cue-based visual paradigms, and the
evoked brain responses are encoded into navigation commands. Although robust and accurate, these
paradigms are less intuitive and comfortable for navigation compared to imagining limb movements
(motor imagery, MI). However, decoding motor imagery from EEG activity is notoriously challenging.
Typically, wet electrodes are used to improve EEG signal quality, including a large number of them to
discriminate between movements of different limbs, and a cued-based paradigm is used instead of a
self-paced one to maximize decoding performance. Motor BCI applications primarily focus on typing
applications or on navigating a wheelchair—the latter raises safety concerns—thereby calling for sensors
scanning the environment for obstacles and potentially hazardous scenarios. With the help of new
technologies such as virtual reality (VR), vivid graphics can be rendered, providing the user with a safe
and immersive experience; and they could be used for navigation purposes, a topic that has yet to be
fully explored in the BCI community. In this study, we propose a novel MI-BCI application based on an
8-dry-electrode EEG setup, with which users can explore and navigate in Google Street View®. We pay
attention to system design to address the lower performance of the MI decoder due to the dry electrodes’
lower signal quality and the small number of electrodes. Specifically, we restricted the number of
navigation commands by using a novel middle-level control scheme and avoided decoder mistakes
by introducing eye blinks as a control signal in different navigation stages. Both offline and online
experiments were conducted with 20 healthy subjects. The results showed acceptable performance,
even given the limitations of the EEG set-up, which we attribute to the design of the BCI application.
The study suggests the use of MI-BCI in future games and VR applications for consumers and patients
temporarily or permanently devoid of muscle control.

Keywords: BCI; virtual navigation; motor imagery; system design

1. Introduction

A brain–computer interface (BCI) can establish a direct link between the user’s brain
activity and an external device, providing an alternative means of communication [1] or
interaction with the external world [2]. Electroencephalography (EEG), recorded non-
invasively by placing electrodes on the scalp, is often used to record brain activity, from
which specific signatures in response to a BCI paradigm are extracted and used to decode
the user’s intentions. In order to issue navigation commands, visual paradigms, such as
P300 [3] and SSVEP [4], are most commonly used to select navigation targets displayed on
a screen, or alternatively, by imagined limb motor activity to control an actuator [5]. An
example of the former is a visual BCI to navigate a wheelchair [6,7] or a quadcopter [8]
in a real environment. An example of the latter is to use a 5-class motor imagery (MI)
BCI for piloting a wheelchair [9]. As for navigation in a virtual environment (VE), some
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attempts have been made to demonstrate the potential use of a BCI in games [10] and mouse
control [11]. In [12], a cave automatic virtual environment (CAVE) was implemented, in
which subjects navigate in a virtual street projected on active screens surrounding the
subject. However, little effort has been put into developing practical and immersive VE
navigation applications. Instead, more attention has been directed towards increasing
performance on benchmark datasets by using increasingly advanced decoding algorithms.

We propose a new middle-level control paradigm that offers a good balance between
user control and efficiency. It is applicable to both known and unknown scenes. We opted
for an application in Google Street View®, as users can visit a museum using low-level
control, or a new city using middle-level control. To the best of the authors’ knowledge,
this is the first BCI navigation application beyond concept demonstrations that provides
users with a virtual immersive experience.

The paper starts with a literature review on BCI navigation, including its drawbacks
and limitations. The proposed BCI system, including the paradigm, experiment setup,
decoders, and user interface, are covered in the Methods and System Design section, which
is followed by Results and Discussion sections and the Conclusions.

2. Literature Review

The essence of BCI navigation is to extract user’s movement commands from brain
activity, primarily from EEG recorded with dry or wet electrodes. Compared to wet
electrodes, dry electrodes are less expensive and more convenient, as they do not require
gel to secure good galvanic contact with the scalp; however, current solutions feature few
electrodes and provide low signal-to-noise ratios (SNRs) [13]. The two commonly used
BCI paradigms are based on visually evoked responses or on changes in sensorimotor
rhythms (SMRs). The P300 and the steady-state visual evoked paradigms (SSVEP) are
the most widely used visual paradigms. P300 is an event-related potential evoked by
presenting a rarely occurring stimulus [3], whereas SSVEP is a periodic response evoked
by a fixed-frequency visual stimulus [4]. They are used to select one of several displayed
targets (i.e., corresponding to navigation commands) [6,7,14–18]; since users are cued by the
visual stimuli, they are examples of so-called synchronous BCIs. On the other hand, SMR
can be asynchronous, as the changes in mu and beta band power are elicited by self-paced
imagined limb movements [19]. Although SMR-based BCI navigation is considered to be
more intuitive than synchronous BCI, and does not require the user to attend to visual
stimuli, it is less accurate and supports fewer commands [20].

As for the navigation control mode, low- and high-level control are generally consid-
ered different approaches suited for different scenarios [20]. Low-level control translates
each motion intention to a specific motion command, a series of which forms a continuous
movement, providing the user with complete control, even in unknown scenes, albeit this
is slow and inefficient. In high-level control, humans have no control over individual
movements; the user only selects the destination, and an intelligent agent is responsible
for getting there, making control fast and efficient but limited to predefined destinations.
Aside from these two control modes, some studies use control methods tailored to specific
applications. For example, in [19], the authors proposed a navigation paradigm with two
mental tasks to move through fixed paths in a virtual apartment. The right/left-hand motor
imagery (MI) enabled subjects to select two different commands at each junction out of
three: turn right, turn left, and move forward. According to the latest review paper pub-
lished in 2022 [20], between 2016 and 2020, about 23 papers were published; the majority
were based on SSVEP and P300, with 7 being on SMR. Regarding navigation settings, 19 out
of 23 studies considered wheelchair or robot control, and only 4 fully focused on devel-
oping immersive virtual navigation applications. In [21], a VR based boating game was
developed with one-direction control. In [22], a P300-based BCI was designed to control
a virtual wheelchair. A maze game was built in [23] with a single-channel SSVEP-based
BCI, whereas in [24] the authors used MI to control forward and backward navigation
in a 3D game. In addition, some practical applications have been proposed as well, for
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example, to have an immersive tour in a virtual library [25], controlled by a 2-task MI BCI.
As for the EEG recording techniques, the vast majority relied on wet electrodes, which
provide higher signal quality, and only a few used wireless dry electrodes [20]. Another
observation is that less attention has been given to VE navigation. EEG-based navigation
in a virtual world is still fairly simple. It foregoes immersion, and little effort has been
made to create applications that can be transferred to existing ones. In addition, as a more
intuitive navigation control paradigm, MI faces some challenging problems, e.g., poor
decoder performance and fewer control commands, prohibiting the development of more
advanced VE-MI applications. Moreover, low and high-level control are two primarily
used control approaches which have limitations in VE navigation, where unknown scenes
are more frequent. Thus, low-level control is inefficient, and high-level control is unusable
when applied to unknown scenes. Therefore, we propose a system with the following
features to target the above problems in this study:

1. Navigation in an immersive environment based on Google Street View allows users
to appreciate art in a museum or explore a city.

2. A self-paced BCI based on motor imagery with dry electrodes, making the system
more intuitive, user-friendly, and convenient.

3. A new middle-level control approach enables efficient navigation in unknown virtual
scenes, associated with error-control strategies that enable the system to be used
despite inferior decoding accuracy.

3. Methods and System Design
3.1. System Overview

The proposed system is illustrated in Figure 1. It consists of an offline training session (left
panel) and an online testing session (right panel). In the offline training session, participants
follow the displayed instructions and perform IM tasks, which are described in the Participants
and BCI Paradigm section. The EEG data are recorded and used for training the decoder, which
in turn is used for command classification in the online experiments. The EEG processing
pipeline and decoder architecture are discussed in the BCI Decoder section. In the online
testing session, the decoder classifies the three IM tasks in real time. The classification output is
used by the control logic together with the eye blink detection output to control the navigation
in Google Street View®, which provides direct feedback to the participants through the
navigation interface. The interface is explained in the Application Interface section and the
control logic in the Navigation Mode section. The online experiment procedures and goals are
covered in detail in the Online Experiments section.

Figure 1. System Overview: left panel: offline training session, right panel: online real time naviga-
tion control. L-IM stands for the left-hand imagined motor task, R-IM for the right-hand imagined
motor task, F-IM for the flexion imagined motor task. See text for explanation. (The participant has
given the consent to use her blurred image).
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3.2. EEG Recording

The navigation system we propose is based on imagined movement (IM) eliciting a
power increase (event-related synchronization ERS) and decrease (event-related desynchro-
nization ERD) in mu (8–12 Hz) and beta (14–25 Hz) bands in EEG recorded over the ipsi-
and contralateral sensorimotor cortex, respectively [26]. The EEG recording device used in
this study was Mentalab [27], an 8-channel dry electrode wireless headset. The electrodes
are located as marked in red in Figure 2 and re-referenced to the average of both mastoid
electrodes (TP9, TP10). The sampling rate was set to 250 Hz.

Figure 2. Electrodes’ locations.

3.3. Implementation Details

The experimental interface and the decoder were programmed in MATLAB App
Designer [28]. The recorded EEG data were streamed to the laboratory streaming layer [29],
where it was synchronized to markers. The control logic was implemented on top of
the decoder, which sent navigation commands to the Google street view® application
through the TCP (Transmission Control Protocol). As the commands involve pressing
virtual arrows, the control logic can be adjusted to other navigation applications. The
junction detection and navigation application was programmed in Python version 3.7.0
(open-source, downloaded from https://www.python.org/ (accessed on 1 May 2022). To
speed up training the decoder, an NVIDIA RTX 2060 GPU was used.

3.4. Participants and BCI Paradigm

We recruited 21 healthy adults (6 males, 15 females) without neurological complaints,
aged 18 and 31 years. All participants were informed about the procedures and purpose
of the experiment and gave their written consent before participating. Experiments were
pre-approved by the Ethical Committee UZLeuven, Belgium.

This study used two types of IMs for walking and turning: a 6 s, self-paced, two-hand
clenching action to start walking, and a cued-based, 2 s, left or right-hand clenching action
to turn left or right (see Navigation Control in Navigation Mode section for detailed control
logic). The participants were instructed to sit still; limit eye blinks; and minimize bodily,
facial, and arm movements during the movement imagery tasks. The offline experiment
was a cue-based training session; the experimental procedure is shown in Figure 3. First,
the instruction ("Flexion" or "Left" or "Right") for the upcoming task was displayed for 2 s.
Afterwards, an auditory cue (a short 500 Hz tone) was played, indicating the start of the
task. Depending on the displayed instruction, the participant imagined a 6 s two-hand
clenching action with slow finger flexion or 2 s of left or right-hand clenching, terminated
by another auditory cue (a short 300 Hz tone), followed by a 4 s break that allowed the
subject to blink and rest between two successive tasks.

https://www.python.org/ 


Sensors 2023, 23, 1704 5 of 20

There were 4 recording sessions in the offline experiment. In the first two sessions,
subjects performed imagined two-hand clenching tasks; in the last two sessions, they
performed imagined left or right-hand clenching tasks. Between each session, there was a
5 min break. In total, 70 trials per task per subject were collected, of which 50 were used for
offline training and the remaining 20 for offline testing.

After approximately 80 min of the offline experiment, a two-hand clenching decoder
(flexion–rest) and a left–right clenching decoder (left–right) were developed per participant.
An online experiment was carried out to evaluate the navigation application. In the online
experiments, subjects looked at a Google Street View® interface (see Navigation interface
in Navigation Mode section). The recording device streamed EEG data to the decoding
laptop, where the recorded EEG data were band-pass filtered every 0.5 s and were stored
in a buffer. Depending on the control logic and the state, as shown in Navigation control in
Navigation Mode section, features were extracted and sent to a classifier, as described in
the pipeline in Figure 4. When a navigation command was detected, the system performed
the corresponding movement, and based on the control logic, see Navigation control in
Navigation Mode section, executed the extra error-control logic.

After the offline experiment, the participants were allowed to take a 15 min break,
without taking off the EEG cap. The decoder was trained offline in the meantime. Offline
and online experiments took less than 120 min in total, depending on how much time was
left for the online experiment; participants navigated in at least one scenario, a museum
or a city, using low-level and middle-level control, respectively (details described in the
Online Experiments session). In addition to the two MI tasks, the eye blinking signal, a
typical artifact, was also used as an extra control signal in the study, see Navigation control
in Navigation Mode section.

Figure 3. Timing of the training session.

Figure 4. EEG processing pipeline: the output shape after each step is listed in the above table.

3.5. BCI Decoder

The decoder in this study is based on a multi-frequency filter bank following a common
spatial pattern approach (FBCSP) [30]. As illustrated in Figure 4, data processing consists
of three steps. First, the 6-channel raw EEG signal is band-pass filtered into 20 frequency
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bands using 5th order Butterworth filters, leading to an output with 120 channels. Starting
from 4 Hz, each frequency band has a pass band of 4 Hz and overlaps by 2 Hz with the last
frequency band until the frequency band that starts at 40 Hz, and finally, there is a 4–40 Hz
broadband filter. Secondly, the signals from each band are applied to a CSP filter [31] that
maximizes the variance of either the non-control state and the two-hand flexion state, or the
left and right-hand clenching, depending on the task. Each CSP filter spatially compresses
the frequency band data from six channels to two channels. Thus, the output of the CSP
stage has 40 channels.

Next, features are extracted from the CSP-filtered signals. Similarly to [32], the statisti-
cal features listed in Table 1 are extracted in a sliding window way. A window with 200 time
steps, and a hop size of 15 is applied to each channel, inside which features are calculated.
As 5 features are extracted from each of the 40 CSP channels, the final feature map has
200 dimensions, for which feature scores are available for 117 time steps for the F-IM task
and 67 for the L/R-IM task. Finally, the resulting feature-time matrix is classified by a
bidirectional long short term memory (BiLSTM) network [33], which is based on LSTM [34],
a particular type of recurrent neural network (RNN) specialized in solving the gradient
descent problem when dealing with long-sequence data. The BiLSTM is believed to capture
the underlying context better than the LSTM by traversing the input data forward and
backward [35]. The proposed network structure is shown in Figure 5. The network was
built using the deep learning toolbox in Matlab, with the following layer settings:

s e t t i n g s : [ sequenceInputLayer ( numFeatures )
bi ls tmLayer ( numHiddenUnits , ’ OutputMode ’ , ’ sequence ’ )
dropoutLayer ( 0 . 2 )
bi ls tmLayer ( numHiddenUnits , ’ OutputMode ’ , ’ l a s t ’ )
ful lyConnectedLayer ( 5 )
fullyConnectedLayer ( numClasses )
softmaxLayer
c l a s s i f i c a t i o n L a y e r ]

A detailed analysis of the proposed decoder can be found in Figure A1, which was
generated by MATLAB’s analyzeNetwork function. During training, an Adam optimizer was
used, with an initial learning rate of 0.00005 that dropped every iteration by a factor of 0.8. To
control the problem of overfitting to a limited number of training examples, the maximum
iterations was set to be 50. In addition, we also applied L2 regularization (0.1) and a dropout
layer. Since the focus of this paper is not on the decoder, the choice of hyperparameters and
network structure was based on a simple hyperparameter selection obtained from the data
during few test runs at the beginning of the study. Additionally, in online experiments, first,
an artifact rejection step is applied to the raw EEG signal. If the recorded epoch’s maximum
value is over 200 µV, this epoch is regarded as having an artifact and is further not classified. In
addition, in the state where eyeblink acts as a control signal (see Navigation Modes), a simple
threshold method is used to detect eyeblinks: when the maximum value recorded from Fz
(band pass filtered between 4 and 40 Hz) is larger than 100 µV.

Figure 5. Neural network architecture: the dashed dropout layer is only used in the training phase.
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Table 1. Overview of the extracted features.

Features Formula Remark

The logarithmic sum of power (p) p = log( 1
n ∗

n
∑

i=0
x2

i + 1) n: the number of samples

The logarithmic of variance (v) v = log[ 1
n ∗

n
∑

i=0
(xi − µ)2 + 1] n: the number of samples

Zero crossing rate (ZCR)
ZCR =

1
2WL
∗

WL

∑
n=1
|sgn[xi (n)]− sgn[xi(n− 1)]|

WL: the length of the signal, n: the
number of samples,

|sgn[xi (n)] =

{
1 xi(n) ≥ 0
−1 xi(n) < 0

Sum of absolute value (SA) SA =
n
∑

i=0
Abs(xi) n: the number of samples

Peak to peak value (p2p) p2p = xmax − xmin
xmax: the maximum value of samples,
xmin: the minimum value of samples

3.6. Application Interface

The proposed navigation application interface is shown in Figure 6. It consists of two
elements: the main window, marked in red in panel A, which shows the Google street
view® of the Rijksmuseum, the Netherlands [36], is based on the open-source Moving-AI
project [37]; the state bar, marked in yellow in panel B, shows the current state and gives
instructions on allowed control commands based on the current state. More specifically, as
shown in panel C, four actions can be performed by users: two-hand flexion (Flexion), left-
hand clenching (Left), right-hand clenching (Right), and eye blinking (Blink). Depending
on the current state, only some actions are mapped to navigation commands, represented
by the images below. For example, in state A, one can perform flexion to start walking
or switch to the rotation mode by blinking; in state B, one can perform left or right-hand
clenching to rotate and stop rotating by eye blinking.

3.7. Navigation Mode

The control block diagram of the proposed low- and middle-level navigation modes is
shown in Figure 7a. The user starts the application by performing the two-hand flexion task;
once detected, the user enters the switch state, a short 2 s transition state that determines
whether the user intends to move or rotate. When an eye blink is detected in this state,
the system transits to the rotation state, in which the user performs cue-based single-hand
clenching to control left or right rotation with different error-control strategies (Figure 7b).
Without doing anything, the system enters the walk state, in which case the user moves
forward every second. To stop walking, the low-level mode detects the user’s eye blink,
and the middle-level control mode is based on the user’s current geographical location:
it stops in front of a junction. The middle-level control is accomplished by querying the
current position from the GeoNames Web Service [38].

Figure 7b demonstrates two error-control strategies deployed in the rotation state: a
double confirmation scheme (DC) and an error correction scheme (EC). Every time the
decoder detects a rotation intention for the first time, an arrow is displayed on the screen
pointing to the classified direction. If the DC strategy is used, the user must imagine the
same hand clenching twice if the direction is the intended one. Only if both attempts
are correctly classified, rotation is executed. As for the error correction scheme, an extra
correction state is present between the arrow displayed on the screen and the execution
of the rotation. The user can blink in this state if the arrow is not pointing to the intended
direction. When an eyeblink is detected, the opposite arrow direction will be executed.
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Figure 6. Navigation interface. Panel A: the main navigation window, Panel B: the state bar, Panel C:
the four navigation actions.

Figure 7. Navigation Control Diagram. (a): low- and middle-level control modes, (b): error con-
trol strategies .

3.8. Online Experiments

Before the online experiment, the task was detailed to the participant during the inter-
session breaks. First, participants learned how to control the interface. Then, a printed map
indicating the predefined navigation path was shown and placed in front of them. During
the online task, participants were told to follow that path and to navigate in a Google Street
View application using various strategies (see below). To evaluate the online experiment,
we report whether participants succeeded in reaching the destination, the online control
accuracies, and the time to accomplish the task.

First, six experiments were conducted on three participants using no error control
strategy (NE) to control the rotation. This experiment was done prior to the other navi-
gation experiments to assess feasibility. Different error-control strategies were proposed,
developed, and tested on a larger population given the poor performance obtained using
the NE strategy.

To verify that the proposed system could be used for navigation, 4 participants were
given the low-level museum task (1 in the Rijksmuseum [36] using DC and 3 in the Uffizi
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gallery [39] using DC), and 18 were given the middle-level city task, in which different
error-control strategies were evaluated. In total, 17 experiments were conducted using DC,
and 7 were conducted using EC. Notice that one participant could perform multiple tasks
when enough time is available.

To assess the low-level control scheme, the participant was asked to navigate either the
Uffizi Gallery in Italy [39] or the Rijksmuseum in the Netherlands [36], following a specific
path and stopping at different artworks, as shown in Figure 8. The dark blue line marks the
task trajectory that participants needed to follow, starting from the green marker and ending
at the red flag. Participants were required to stop at white circle positions and control the
rotation to the next task point. As for the middle-level control, the participant was asked to
reach the Leuven Town Hall from Diestsestraat, the main shopping street of Leuven, Belgium.
More details will be discussed in the results session (Task Completion Overview).

Figure 8. Low level navigation task, the Rijksmuseum on the left, the Uffizi Museum on the right.
The layout maps are from https://www.visituffizi.org/museum/uffizi-floor-plans/ and https://
kalden.home.xs4all.nl/mann/Mannheimer-inrijksmuseum.html (accessed on 20 November 2022)
See text for explaination.

3.9. Evaluation Metrics

After offline experiments, the two decoders were trained on the spot and evaluated
in terms of testing data accuracy. For online experiments, we report the following results.
First, what was displayed on the screen during the online experiment was recorded. After
that, the numbers of correct and wrong trials were counted based on the screen recordings,
and the decoder’s accuracy was determined. In addition, we evaluated the total time to
complete the task, the time needed to issue each navigation command under different
control strategies, and the number of mistakes the system made in the middle-level control
scheme. Since the time measurement was not normally distributed, the Wilcoxon rank sum
test was performed to test if there was any statistical significance between different error
control strategies.

4. Results
4.1. CSP Patterns

Similarly to [40], the spatial patterns for the Mu (8–12 Hz) and the beta bands
(18–22 Hz) are plotted in Figure 9 for three randomly selected participants and the pattern
averaged across all participants. We report the two patterns that maximize the variance of
the imagined left-hand clenching and right-hand clenching, respectively. In general, the
averaged pattern has a similar contralateral pattern to the one reported in [40] (Figure 5)
that has obvious negativity in the left hemisphere for the right-hand IM task, and in the
right hemisphere for the left-hand IM task.

https://www.visituffizi.org/museum/uffizi-floor-plans/
https://kalden.home.xs4all.nl/mann/Mannheimer-inrijksmuseum.html
https://kalden.home.xs4all.nl/mann/Mannheimer-inrijksmuseum.html
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Figure 9. Spatial patterns corresponding to the 8–12 and 18–22 Hz bands (top 2 rows and bottom
2 rows), averaged for all participants (Average) and for 3 randomly selected subjects (subjects a, b,
and c) (arranged columnwise), for imagined left-hand clenching (Left) and imagined right-hand
clenching (Right) (arranged top and bottom row in each row-pair).

4.2. Decoder Performance

Offline performance is shown in Figure 10 in terms of accuracies of the two-hand
flexion–resting and left–right-hand-clenching classifiers. Blue lines indicate the maximum,
mean, and minimum accuracies obtained from different subjects. On average, roughly
80% and 63% accuracies are achieved overall for the flexion–rest and left–right classes,
respectively. Online performance was evaluated differently for the flexion–rest classifier
and the left–right classifier. Since two-hand flexion was used as a voluntary start signal,
the time needed for the classifier to detect the intention is reported in the next section.
As for the left–right classifier, the number of correctly classified trials and the number of
wrongly classified trials were counted and are reported in Figure 11. The labels “Left” and
“Right” indicate the success rates of correctly identifying the left and right-hand clenching
intentions. “Acc” is the average rate for correct detections. No significant difference was
found between offline and online accuracies (p = 0.91, Wilcoxon signed rank test). However,
online accuracies exhibited greater variability across subjects, with the highest accuracy
being 1 and the lowest 0.35, whereas the highest and lowest accuracies from offline decoders
were 0.854 and 0.42, respectively.
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Figure 10. Offline decoder’s performance.

Figure 11. Online decoder’s performance.

4.3. Navigation Performance
Task Completion Overview

Statistics regarding the online experiments are listed in Table 2. As described in the
earlier session, six experiments of no-error-control rotation control were first done on
three participants. Regarding navigation control, one participant performed at least one
experiment of low-level control or middle-level control using DC or EC strategies.

Table 2. Overview of online experiments.

Count Low-Level Control No Error Control Middle-Level-DC Middle-Level-EC

Total number of
experiments 5 6 17 7

Success trails 4 3 15 6
Success rate 0.80 0.50 0.882 0.857
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In Figure 12, we report the performance and task completion times of all participants
in the online navigation task. The dark blue line marks the task trajectory that participants
needed to follow. Participants needed to control navigation at each junction, indicated by
white circles, starting from the green circle and ending at the red flag. The time taken to pass
through each junction is shown in the orange bar; three numbers indicate the minimum,
average, and maximum numbers of seconds participants spent at that junction. Light-blue
arrows indicate mistakes made by two subjects when navigating the city. The two failed
attempts are reported by red crosses in white-filled circles, representing the last positions
when the two participants decided to stop the experiment. Some experiment screenshots
can be found in Supplementary Figures S1–S3.

Figure 12. Task completion overview. See text for explanation.

4.4. Navigation Time Comparison

The lengths of time needed to complete the online experiment, to issue a forward
walking command and an intended rotation command with different error-control strate-
gies, are reported separately in Figures 13 and 14. The Wilcoxon rank sum test results are
listed in Appendix A Table A1, where red numbers indicate p-values smaller than 0.05.

Figure 13. Time to complete the middle-level experiment with DC and EC strategies.



Sensors 2023, 23, 1704 13 of 20

Figure 14. Time to issue a correct navigation command. Ford stands for moving forward, Rot for rotation,
dc for double confirmation strategy, EC for error correction strategy, and NE for no error control strategy.

4.5. Rotation Accuracy

As to correctly issuing one online rotation command, we also report how many trials
of imagination the system misclassified (No_error), how many wrong rotations the system
performed (No_navigation_error), and how many attempts the user needed to make before
the intended rotation was executed (No_imagination). The difference between No_error
and No_navigation_error is that the former did not necessarily result in an unwanted
rotation, whereas the latter always refers to an unwanted rotation. The results are listed in
Table 3. The Wilcoxon rank sum test results are listed in Appendix A Tables A2–A4, where
red numbers indicate p-values smaller than 0.05.

Table 3. Overview of online rotation accuracy using different error-control strategies.

Error Control Strategy No_Error No_Navigation_Error No_Imagination

Rot_S 1.34 1.34 4.48
Rot_DC 1.87 0.29 6.79
Rot_EC 0.70 0.32 1.63

4.6. User Questions during Online Navigation

User feedback is important to identify needs, preferences, and frustrations, and to identify
potential improvements. Albeit we did not formally query our users about the system’s
usability, such as being intuitive, easy to use, or effective, we took note of which and how
many questions they asked during the online experiment. Before the online experiment, each
participant was instructed orally about the control of the system in the online experiments
during the two breaks of the offline training sessions, for about 10 min in total. In the online
experiments, 7 out of 21 subjects finished the task without asking any questions regarding
the control, but for the other 14 participants, an average of 4.43 questions were asked during
the 20 min session. The maximum of eight questions came from one subject who failed to
complete the task. Participants asked questions because they were struggling with the system
and needed guidance, or when the system made mistakes of which they thought they were
the culprits, which made them doubt they were in control.

5. Discussion

According to [41], a high information transfer rate is a primary requirement of an
effective BCI application but is hampered by the inherently low SNRs of EEG signals.
Although clinical-grade gel-based electrodes, densely distributed over the scalp, can yield
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superior performances, with their long preparation time, use cases are limited to laboratory
settings. While with wireless EEG recording devices often have a restricted number of
dry-electrodes, preparation is fast and easy, and suitable for daily use. We believe that
developing BCI applications for dry-electrode devices can move BCIs out of the laboratory
into the real world. In same vein, that study developed a MI-BCI navigation application that
addresses poor decoder performance due to the use of a limited number of dry electrodes
by system design and the use of error-control strategies. The resulting CSP patterns imply
that the traditional CSP method may perform worse when using only a few electrodes, as
it may fail to capture the spatial features that could vary between subjects. As we targeted
an EEG set-up with a restricted number of dry-electrodes and refrained from using a more
sophisticated feature set, we stressed the importance of the whole BCI system’s design. We
proposed a new middle-level control scheme to fill the inefficiency gap in VE navigation.
Overall, the over 80% success rate of online experiments was achieved, except for the NE
scheme, confirming the feasibility of an MI-controlled BCI navigation system. In addition,
the middle-level navigation scheme demonstrated an efficient way of navigating in an
unknown virtual environment. According to Figure 12, users only needed to intervene at
road junctions. Although the middle-level control was tailored to VE navigation, it sheds
light on novel real-world navigation methods. Thanks to the advances in computer vision
and autonomous driving systems, junction detection could be implemented in real life,
thereby making the proposed middle-level control applicable to real-world navigation.

The proposed system differs from existing VE navigation systems in two ways. First,
the proposed Google Street View® application offers a higher degree of immersion to users.
Typical BCI-VE navigation features a specific scene only, e.g., a virtual library [25], a virtual
street [12], or a virtual apartment [19]. The scenes in each system are monotonous, either
indoor or outdoor. On the contrary, in Google Street View®, users can choose themselves to
visit a city, museum, shopping mall, zoo, etc. Second, the proposed control logic has wider
applicability. In many studies, the control logic does not easily transfer to other navigation
tasks. For example, the system in [12] can only be used for rotation or walking forward, not
both in combination. The system in [19] only works with two options when at a junction.
Although the low-level control logic can rely on visual paradigms only, as in [6,7,14–18], it
is rather impractical to navigate a city with.

According to Figures 10 and 11, the obtained accuracies of the developed decoders were
rather low, especially compared with the reported 99% accuracy when using a P300 visual
paradigm [6], or the over 91% when using an SSVEP paradigm [7]. Our results confirm the
difficulty of decoding MI tasks. Unlike the sophisticated training techniques used in [42] or
the two more distinguishable MI tasks (foot vs. hand) in [43] to boost the system’s accuracy,
our focus is on system design. The flexion–rest decoder yielded a higher accuracy compared
to the left–right decoder, which could be explained by the fact that the task’s duration was
much longer (6 s vs. 2 s) and the features were more discriminable (SMR–nothing vs. left
SMR–right SMR). The choice was made in view of the trade-off between accuracy and time.
As the flexion–rest decoder is used for voluntary start and walking and the left–right is used
for controlling rotation, it is less critical to have a longer start time than a longer rotation time,
which is performed more often and usually in a repetitive manner.

According to Figures 10 and 11, the large variability in accuracies found in online
experiments shows the intra-subject decoder variability, and the increase in accuracy implies
that some participants could adapt to the decoder. The large subject-dependent variability
can be also observed in Figure 9; each subject had different CSP patterns corresponding to
the imagined left and right-hand clenching. In general, the averaged patterns showed a
contralateral behavior that had negativities in CZ, C3, and P3 for the right-hand IM tasks;
and in C4 and P4 for the left-hand IM tasks. However, the three subjects exhibited different
patterns, some of which were similar to the averaged ones, and others even opposing (cf.
the right pattern for subject b). Apart from the addressed subject variability issue, this
could be due to the limited number of recording channels. Indeed, as can be observed
in Figure 5 in [40], some patterns were tightly clustered at a few channels in the frontal
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and temporal regions, which were not covered in our recording setup. The limitation in
available electrodes could explain why some subject-specific patterns were not captured,
which in turn could explain the large variability in accuracy among subjects. This reflects
the challenge of decoding IM tasks using limited dry electrodes, which together with the
low SNR of dry electrodes, calls for decoding algorithms that can deal which such setups.

The results also indicate that BCI control could still work, even with low decoder
accuracy, through a well-designed control scheme. With an error-control strategy, the
number of unwanted rotations was significantly reduced, as can be seen in Appendix A
Table A3. However, as a compromise, more time was needed to issue an intended navigation
command, as can be observed in Figures 12 and 13. Ideally, 100% accuracy system would have
a command issue time equal to a single epoch length: 6 s to start walking and 2 s to rotate.
However, actual walking time was 3 times larger, and rotation time was at least 10 times
larger, than the ideal cases, when the decoder had a true positive rate of 100%.

Comparing different error-control strategies, according to Figure 13, EC was signif-
icantly faster than DC, which we believe was caused by (1) the number of errors being
significantly smaller (Appendix A Table A2) and (2) the number of imaginings being signifi-
cantly smaller (Appendix A Table A4). The latter was due to the nature of EC: as long as the
eye blinking detection was accurate, the number of imaginings needed was only one, and
the error correction mechanism could correct the mistake made by the decoder. In contrast,
at least two imaginings were needed for DC, and if a mistake was made by the system,
two more imaginings were needed to correct it. This can be proven in Figure 14, where the
rotation time for DC is significantly larger than the EC. Meanwhile, with fewer imaginings
subjects have to perform, fewer errors are made by the system, demoting the occurrence
of errors. Interestingly, DC had no significant difference from SC in any metrics, except
for the number of navigation errors. The interpretation is straightforward: without any
improvement in the decoder itself, the DC could only avoid unwanted rotations, but in the
meantime, it would also take more time for two consecutive trials to be correctly classified.
As a result, the number of imaginings the decoder needed, the number of mistakes it made,
and the time it took, were comparable to those of the NE strategy. Furthermore, in Table 3,
several facts can be observed. First, for the NE strategy, the number of classification errors
equaled the number of navigation errors, since each output from the decoder resulted in a
navigation movement. To correct the errors the system made before, plus to rotate towards
the desired direction, the number of total imaginings was more than twice the number of
mistakes. As for the DC strategy, the number of imaginings needed was even larger, since
forcing the same two trials consecutively not only lowered the chance of making wrong
turns but also made it more difficult to issue a wanted rotation. On the other hand, the EC
strategy showed the best performance. With a significantly small number of imaginings,
one can rotate in the desired direction using the EC strategy. Overall, the results implied
the importance of BCI system design and the necessity of error-control strategies.

In terms of system usability, only one third of participants could learn and memorize
the controls through the oral instructions given before the online experiments. For the
rest, guidance was necessary, especially when the system made mistakes, which caused
many participants to doubt if they had made any mistakes. In some follow-up interviews,
when we asked whether the participants would like to use it daily, all answered “no”. The
reasons were twofold. On one hand, as we recruited healthy participants only, the proposed
BCI system did not offer more benefits than the traditional keyboard-based system, and
on the other hand, the amount of training time and the level of concentration during the
experiment quickly made them feel tired. Therefore, a more immersive and interesting
application may attract healthy users, and a better decoder is crucial to improve user
experience. In the future, to better address this problem, a more detailed and quantitative
usability test needs to be conducted.

In terms of technical aspects, the proposed system has some limitations. First, Google
Street View® only allows the user to navigate along a predefined path; consequently, his level
of freedom is constrained. Second, the minimum junction-passing time of 1 s indicated in
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Figure 12 was caused by the flaw in operation when relying on two online services. The system
uses the location provided by Google Maps to query the junction information from GeoNames
Web Service [38], a geographical database different from the former. Inconsistencies between
the two systems sometimes led to inaccurate junction detection results, as the geographical
location that Google treated as a junction might not correspond to a junction in the GeoNames’
database, and vice versa, sometimes causing the system not to stop at a junction. Technically,
this could be solved by using a commercial-level geographical database server or the same
Google database. In practice, the former means a paid service, whereas the latter is difficult to
achieve, as Google does not provide a direct junction query service. However, this middle-
level control design pattern can be adapted in virtual applications and games where locations
and environments are known to the system. With the metaverse concept being in the spotlight,
a post-reality universe provides users with real-time interaction with a virtual environment
and with other users [44]. We believe this study can shed light on integrating BCI-based
control into VR applications—for example, for controlling a virtual avatar in VRChat [45], a
VR-based community that enables users to create their own virtual worlds, either an indoor
environment or in a city-like open environment, just like Google Street View®.

Although we proposed a working BCI navigation application with two error-control
strategies, to compensate for the poor performance of the MI decoder, some interesting research
topics are worth further exploring. Firstly, this study only tested the method on 21 healthy
subjects for feasibility verification. To fully understand the usability of the proposed system
in the future, more healthy subjects will need to participate, along with paralyzed individuals.
Usability tests will be conducted to identify potential issues with the system. Secondly, the poor
decoding accuracies obtained by using CSP call for the future development of new MI decoding
algorithms that suit the dry-electrode setups. Thirdly, high-accuracy multi-class MI decoders
could lead to better performing navigation designs, and faster navigation could be achieved
with more straightforward control logic; for example, a 5-class MI based navigation system was
used to control a wheelchair in [9]. Unfortunately, the authors did not report either the accuracy
of their decoders or their online evaluation results. Furthermore, when targeting mobile EEG
devices, removing movement artifacts can lead to better EEG signal quality and improved
performance [46]. Another possible improvement could be to tailor the proposed decoder to
individual subjects by using some form of automatic hyperparameter tuning—for example,
applying Bayesian optimization for feature selection [47] and hyperparameter optimization for
the network structures [48]. Moreover, other BCI paradigms might lead to more user-friendly
designs; for example, one could use imagined speech to switch between walking, rotation,
and standing, while using IM for rotating only. Thirdly, the results of the comparison between
different error-control strategies indicated the importance of detecting errors with BCI systems.
The proposed error-detection mechanism relies on eye blinks, an active interaction between
users and machines, whereas a passive error detection system, as used in some communication
BCI systems (e.g., [49,50]), is believed to be able to increase the information transfer rate, based
on error-related potentials [51], which has not yet been introduced in a navigation system. A
passive error detection BCI might be worth implementing to “close the loop” of the navigation
system, further simplifying its design. Finally, a VR-based navigation application can provide a
more immersive experience to users.

6. Conclusions

This paper reported on the design and implementation of an MI-VE application to Google
Street View®, a further step towards real-life BCIs. The system was tested on 21 healthy
participants with both offline and online experiments to navigate in museums and a city. The
experiments verified the feasibility of MI-VE navigation using a wireless, dry electrodes EEG
cap, even with poor decoder accuracies of around 80% and 60% on average for flexion–rest
and left–right decoders among participants, respectively. Furthermore, a novel middle-level
control scheme was proposed, which was designed to offer a balanced trade-off between
user control freedom and navigation efficiency. When upgrading to real world junction
detection and obstacle avoidance, our design could potentially be used in real-life navigation
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as well. Finally, experiments were carried out to evaluate different error-control strategies. The
results suggest that mistakes could be largely avoided by employing error-control strategies,
calling for a compromise with control duration. The proposed error correction through eye
blinks returned the best performance, suppressing the number of navigation mistakes with an
acceptable increase in control time. In conclusion, this paper demonstrates the importance
of system design with respect to BCI-based control and calls for more effort on developing
VE-BCI navigation applications and better system control designs.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/s23031704/s1. Figure S1: Navigation in the Rijksmuseum. Figure S2:
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Appendix A

Table A1. Pairwise Wilcoxon rank sum test results for navigation time. The number is marked red
when it is statistically significant (p < 0.05)

Middle_DC Rot_S Rot_DC Rot_EC
Middle_EC 0.018
Rot_S 0.15 0.18
Rot_DC 0.0005

Table A2. Pairwise Wilcoxon rank sum test results for No_error. The number is marked red when it
is statistically significant (p < 0.05)

Rot_S Rot_DC Rot_EC
Rot_S 0.46 0.29
Rot_DC 0.009

Table A3. Pairwise Wilcoxon rank sum test results for No_navigation_error. The number is marked
red when it is statistically significant (p < 0.05)

Rot_S Rot_DC Rot_EC
Rot_S 0.013 0.021
Rot_DC 0.50

Table A4. Pairwise Wilcoxon rank sum test results for No_imagination. The number is marked red
when it is statistically significant (p < 0.05)

Rot_S Rot_DC Rot_EC
Rot_S 0.15 0.016
Rot_DC 0.0003

Figure A1. Description of the decoder architecture used in our study. The table was automatically
generated by MATLAB’s analyzeNetwork function.
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