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Abstract: Many parameters can be used to express a machine’s condition and to track its evolution
through time, such as modal parameters extracted from vibration signals. Operational Modal Analysis
(OMA), commonly used to extract modal parameters from systems under operating conditions, was
successfully employed in many monitoring systems, but its application in rotating machinery is still
in development due to the distinct characteristics of this system. To implement efficient monitoring
systems based on OMA, it is essential to automatically extract the modal parameters, which several
studies have proposed in the literature. However, these algorithms are usually developed to deal with
structures that have different characteristics when compared to rotating machinery, and, therefore,
work poorly or do not work with this kind of system. Thus, this paper proposes, and has as its
main novelty in, a new automated algorithm to carry out modal parameter identification on rotating
machinery through OMA. The proposed technique was applied in two different datasets to enable
the evaluation of the robustness to different systems and test conditions. It is revealed that the
proposed algorithm is suitable for the accurate extraction of frequencies and damping ratios from the
stabilization diagram, for both the rotor and the foundation, and only one user defined parameter
is required.

Keywords: automated operational modal analysis; rotating machinery; hydrodynamic bearings;
rolling bearings; hierarchical clustering

1. Introduction

Structural Health Monitoring (SHM) is the process of implementing a damage identifi-
cation strategy for aerospace, civil, and mechanical engineering infrastructures [1]. SHM
strategies have been employed in recent decades in order to improve the infrastructure’s
lifetime and safety. According to Lynch, Farrar, and Michaels [2], SHM can be divided
into damage detection, prognostic, and risk assessment. The first step usually consists
of collecting the structure’s response over extended periods of time, followed by a data
normalization for signal processing purposes, extracting damage-sensitive features, and
finally, implementing a robust method for damage detection using the extracted features.

The structure’s modal parameters can be used as damage-sensitive features in damage
detection since they are based on parameters that are modified in the presence of dam-
age. The modal parameters can be extracted by modal testing, using either Experimental
Modal Analysis (EMA) or Operational Modal Analysis (OMA). EMA extracts the modal
parameters considering that both inputs and outputs are measured whereas OMA obtains
these parameters only from the measured outputs of the system. Whereas EMA requires
equipment to excite the system and needs to take the system out of operation, OMA’s
premise is that the environmental loads acting upon the system excite it with an approxi-
mate white noise signal and do not require the system to go out of operation. Since the idea
of SHM involves the constant monitoring of the structure, EMA is more adequate to an
initial study of the modal parameters and OMA becomes an alternative to the monitoring
while in operation.
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There are numerous techniques to apply OMA, and one of the most employed is
the Stochastic Subspace Identification (SSI). This technique has some advantages when
compared to the others, such as the presence of noise truncating mechanisms based on
Singular Value Decomposition (SVD), the solution of the identification problem by means
of linear algebra tools, which avoids non-linear optimization problems and results in a
lower computational cost, and the possibility of using weighting matrices to improve
the method’s performance in the presence of noise or weakly excited modes [3]. Yet, the
quality of the estimation relies on a correct choice of SSI parameters, e.g., the number of
block rows, the weighting matrices, the system order, etc. Theoretically, the system order
could be estimated inspecting the number of singular values that are different from zero,
and the number of block rows could be determined through a direct relation between
the system order and the number of outputs. However, this approach is not suitable
for real data because noise is usually present in the measurements and because of the
structures’ complexity. Hence, different approaches were proposed to handle real data. In
order to solve the number of block rows problem, Reynders and De Roeck [4] proposed a
relationship between the sampling frequency and the lowest frequency of interest, and the
so-called stabilization diagram was proposed to deal with the fact that the system order is
unknown and to better visualize and interpretate the technique’s results.

To build this diagram, the SSI method is performed with increasing system orders and
the obtained poles are plotted on a diagram of frequency vs. system order. In other words,
it is possible to identify modes that stabilize in frequency, damping ratio and mode shape
with increasing orders, which usually represent physical modes of the system. Because
of that, the stabilization diagram is inevitably composed of groups of the physical modes
that can be identified by the group of machine learning techniques called clustering. Given
that the system order can be overestimated, several spurious and mathematical poles
also appear on the diagram because of the model’s attempt to better fit the experimental
data, making it harder to identify the system’s modal parameters. Moreover, when the
system is excited by periodic signals, as rotating machinery in operation, several poles
appear on the diagram at the fundamental and harmonic frequencies of the signal, and the
alignment of these poles can be misinterpreted as modes of the system. Considering this, a
procedure that combines clustering techniques with other signal processing techniques to
automatically interpretates the stabilization diagram is essential and can promote a better
and more reliable parameter extraction and would allow the SHM to be carried out without
much user interaction in the selection of the system’s modes.

Magalhães, Cunha, and Caetano [5] proposed an algorithm for the automatic analysis
of stabilization diagrams and implemented it on a set of response measurements of a bridge.
First, the authors used the SSI-COV method to build the stabilization diagrams of each
signal, classifying as stable all poles whose modal parameters respect the limits of variation
from one order to another. Considering the block row problem preciously discussed, the
authors pointed out that a separate investigation was performed to deal with it. Then,
hierarchical clustering was employed to group stable poles from the stabilization diagram.
The clustering was performed with the single linkage algorithm and with a similarity
measure that includes both the frequency difference and the MAC (Modal Assurance
Criterion) value between a pair of modes. The threshold for this distance was manually
determined through the analysis of the results. Finally, an outlier analysis based on a
statistical technique was performed in order to remove the extreme values of damping
within each cluster.

Reynders, Houbrechts, and De Roeck [6], on the other hand, proposed three automated
steps to group the poles and applied them to response measurements collected from two
different bridges. SSI-COV was used to create the stabilization diagram, and parameters
such as the number of block rows and the maximum order of the stabilization diagram were
manually selected. In the first step, the poles of the diagram were divided into two groups
with the K-means clustering algorithm: certainly spurious modes and possibly physical
modes. The K-means algorithm input was a feature vector containing as many relevant
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single-mode validation criteria as possible, such as frequency, damping ratio, mode shape
distance measures, modal phase collinearity, mean phase deviation, etc. All poles from the
certainly spurious cluster were removed from the stabilization diagram and the remaining
poles were evaluated using Hard Validation Criteria (HVC), i.e., all poles whose damping
ratio is out of the permissible range and that do not have a complex conjugated pair are also
removed from the stabilization diagram. In the second step, the hierarchical clustering was
used to group the possible physical modes, using the average linkage algorithm. Similar to
Magalhães, Cunha, and Caetano [5], a similarity measure based on the frequency difference
and on the MAC value between a pair of poles was considered. The similarity measure
threshold was determined with an automated procedure that considers the results obtained
in the previous step. In the last step, the K-means algorithm was once again employed
to separate clusters of physical poles from clusters of spurious poles, being the algorithm
input the number of poles in each cluster, and the clusters with highest number of elements
were chosen as the physical ones. Since outliers could still be present in the clusters, the
authors choose to select the pole with median damping ratio value in the cluster to represent
that cluster.

Neu et al. [7] pointed out that the algorithm proposed by Reynders, Houbrechts, and
De Roeck [6] is limited to approximately real vibration modes and therefore limits the
damping ratio range, a premise that is not always suitable to more complex valuated mode
shape systems. To overcome this issue, the authors developed a new automatic algorithm
that works without any user-provided thresholds and does not place any limitations on the
damping ratio or the complexity of the system under analysis. As well as the other studies
mentioned, the first step of this approach was to perform the SSI-DATA for numerous
system orders. Then, mathematical poles were removed through a HVC based on the
real and imaginary parts of each pole. The next step was to separate the poles in two
groups: the probably physical poles and the certainly mathematical ones. In this attempt,
the authors used a K-means clustering technique and proposed a consistent feature vector,
applying transformation and normalization techniques to highly biased vectors. Then, the
hierarchical clustering technique was employed in the probably physical group with the
average linkage algorithm and using as similarity measure the relationship between the
frequency difference and the MAC value between a pair of poles. The similarity measure
threshold was determined from the probability distribution function of probable physical
modes. In addition, repeated poles of the same order inside each cluster were located and
all but one were removed based on their proximity to the cluster’s centroid. The obtained
clusters were separated into physical and mathematical clusters based on the number of
poles in each one. Finally, the authors applied the modified Thompson Tau technique to
remove outliers and the average natural frequency, damping ratio, and mode shape of
each cluster were selected to represent it. The authors applied the proposed technique in
measurements from a wind tunnel investigation with a composite cantilever, promoting
the assessment of the algorithm’s performance with a highly damped structure and low
signal-to-noise ratio conditions.

Cardoso, Cury, and Barbosa [8] proposed an algorithm inspired by the ones presented
by Magalhães, Cunha, and Caetano [5] and Reynders, Houbrechts, and De Roeck [6] and
applied it to data from a numerical experiment, from a laboratory experiment of a simply
supported beam and from dynamic tests of a bridge. According to the authors, the main
contributions of the proposed methodology rely on an innovative similarity measure that
leads to a symmetric dissimilarity matrix, additional modifications regarding filtering the
spurious modes with damping and Mode Phase Collinearity (MPC) criteria, and a novel
cluster regrouping technique.

More recently, automated identification of modal parameters that uses clustering
techniques was studied by Fan, Li, and Hao [9], Wu et al. [10], and Mugnaini, Fragonara,
and Civera [11], extending the application of the proposed algorithms on a steel frame
structure, bridges, and a helicopter blade. The subject was also approached in studies
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presented in the International Operational Modal Analysis Conference (IOMAC) of 2022 by
Amer et al. [12], Priou et al. [13], and Dreher, Storti, and Machado [14].

All abovementioned papers employed machine learning techniques to the automated
identification of modal parameters and demonstrated its relevance to current research.
However, most presented research focused on the development and validation of automatic
algorithms for civil structures, which exhibit different characteristics when compared
to rotating machinery. To the authors’ knowledge, no specific automatic algorithm for
interpreting rotating machinery stabilization diagram has yet been studied.

Regarding the application of OMA in rotating machinery, this has been and still is a
subject of great importance. Since rotating machines are exposed to periodic excitation,
present nonlinear behavior, closely spaced modes, among other conditions that make the
application of OMA a challenge, and several authors recently investigated the applicability
of OMA in rotating machines. Brandt [15] developed two methods for harmonic removal,
the Frequency Domain Editing (FDE) and the Order Domain Deletion (ODD) methods.
Gres et al. [16–18] proposed and applied a method for harmonic removal based on orthog-
onal projection, applying it to experimental data from a plate and a ship in operation.
Gioia et al. [19] and Peeters et al. [20], on the other hand, investigated a harmonic removal
technique based on cepstrum analysis, applying it to the drivetrain of a wind turbine.
More recently in IOMAC of 2022, Dreher, Storti, and Machado [21] proposed a method
to identify both forward and backward modes of a rotor that appeared as closely spaced
modes difficult to differentiate via traditional OMA by the use of directional coordinates.
In the same conference, Zivanovic et al. [22] presented a novel approach to harmonic distur-
bance removal in single-channel wind turbine acceleration data by means of time-variant
signal modeling.

These studies emphasize the importance given to the expansion of OMA’s techniques
to rotating machinery. Therefore, the objective of this work is to develop a new algorithm,
based on the algorithms previously described that considers the different characteristics
of rotating machinery, such as the presence of harmonics, outliers, the gyroscopic effect,
and the complexity of the mode shapes, but still retains user friendliness. The main novelty
of this work is the development of an algorithm that can identify the modal parameters
related to the rotor, not the structure, which was not presented so far in the literature. The
proposed algorithm is applied to two different datasets: response measurements of a test
rig with a rotor supported by hydrodynamic bearings, and response measurements of
a test rig with a rotor supported by rolling bearings, all under different operating and
excitation conditions. The bearings were under healthy conditions for the generation of
both datasets. Since rotating machines are also usually subjected to unideal excitation
conditions with regard to OMA’s premise of white noise excitation, this study evaluates
whether the automatic OMA algorithm is adequate for the identification of the rotor’s
modal parameters under different excitation conditions, such as colored noise, tapping,
lower sampling frequency, among others that will be further exposed, and which is another
novelty of this work.

Section 1 presented the motivation for the development of this work, together with
the literature review. An overview of the approach proposed for this work is presented in
Section 2, along with a brief explanation of the SSI-DATA algorithm, the explanation of the
algorithm proposed for automatic modal identification, and the description of both datasets
used in this work. Section 3 presents the results obtained with the proposed approach and
comparisons with methodologies previously proposed in the literature are pointed out.
Finally, Section 4 presents the conclusions.

2. Materials and Methods
2.1. Overwiew of the Proposed Approach

The present work was organized according to the diagram presented in Figure 1, in
which the dotted areas indicate a sequence of steps that was performed repeated times in
order to generate the indicated results. First, the datasets are generated. Since the same
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test rig is used to generate both datasets, the test setup is carried out in order to place the
corresponding bearing (rolling or hydrodynamic) in the test rig. The operating condition
is also defined, the rotor starts its operation, and the vibration signals corresponding to
that setup and operating condition are collected. With the vibration signals of all setups
and operating conditions, the acquisition of both datasets is completed. More information
about the datasets is provided in Section 2.4.
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With vibration signals of both datasets, EMA and OMA analyses are performed to
identify the modal parameters of the system, that is the natural frequencies, damping ratios,
and mode shapes. Both the EMA and OMA methods were applied to the vibration signals
of the system in order to perform the identification. The EMA analysis is performed with
the Stepped Sine method to determine reference values for the rotor’s modal parameters.
This is done for both the rotor supported by rolling and hydrodynamic bearings. An EMA
analysis is also performed to determine the modal parameters of the rotor’s foundation.
More information about the EMA analysis is also provided in Section 2.4. The OMA
analysis is performed as described in Section 2.3, using the automatic OMA algorithm
proposed by this work. A brief summary of this section is the application of the SSI method
in a set of vibration signals to generate a stabilization diagram. From each diagram, a series
of stages (including machine learning techniques) extract the modal parameters from the
system that originated the set of signals. The OMA analysis is performed for all setups and
operating conditions. Finally, the modal parameters extracted from the automatic OMA are
compared with the reference values, and the discussions are presented in Section 3.

2.2. Data Driven Stochastic Subspace Identification (SSI-DATA)

Although most of the papers presented in the previous section used the Covariance
Driven SSI (SSI-COV) algorithm, there are indications that the Data Driven SSI (SSI-DATA)
algorithm is more precise and robust [23,24]; thus, it was chosen in this research.

The Stochastic Subspace Identification is based on the stochastic model, defined by
Equation (1): {

xk+1 = Axk +wk
yk = Cxk + vk

, (1)

in which yk ∈ Rl denotes the outputs in the instant k, xk ∈ Rn denotes the states in the
instant k, and wk and vk denote the white gaussian noises, with zero mean, related to the
process and the measurement noises, respectively. The white gaussian noises have the
following covariance matrix:

E
[(

wp
vp

)(
wT

q v
T
q

)]
=

(
Q S
ST R

)
δpq. (2)

The system’s order is n. Hence, the matrices dimensions are A ∈ Rn×n, C ∈ Rl×n,
Q ∈ Rn×n, S ∈ Rn×l , and R ∈ Rl×l .

It is assumed that the pair {A, C} is observable, which implies that all modes of the
system can be observed in the outputs yk and, therefore, can be identified. It is also assumed
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that the pair
{

A, Q1/2
}

is controllable, which implies that all dynamic modes of the system
are excited by the process noise.

The purpose of SSI is to use the outputs of the system to determine the systems
matrices A and C, and, with them, extract the modal parameters of the system.

In order to do that, the first step is to build the output block Hankel matrix (Y0|2i−1),
that can be divided into the block Hankel matrices of the past outputs (Yp) and the future
outputs (Yf ) and is given by:

Y0|2i−1 ,



y0 y1 · · · yj−1
· · · · · · · · · · · ·

yi−2 yi−1 · · · yi+j−3
yi−1 yi · · · yi+j−2

yi yi+1 · · · yi+j−1
yi+1 yi+2 · · · yi+j
· · · · · · · · · · · ·

y2i−1 y2i · · · y2i+j−2


=

(
Y0|i−1

Yi|2i−1

)
=

(
Yp

Yf

)
, (3)

in which i is the number of block rows and j is the number of block columns. Then, the
projection matrix (Oi) can be determined by the projection of the future outputs onto the
past outputs and can be obtained through the QR decomposition of the output block
Hankel matrix:

Oi = Yf /Yp (4)

The SVD decomposition is then applied to a product of the projection matrix and
weighting matrices that are selected based on the desired algorithm (Principal Compo-
nent Analysis—PCA, Unweighted Principal Components—UPC, or Canonical Variate
Algorithm—CVA):

W1OiW2 = USVT = (U1U2)

(
S1 0
0 0

)(
VT

1
VT

2

)
= U1S1VT

1 . (5)

The projection matrix can also be expressed as the product of the extended observabil-
ity matrix (Γi) and the forward Kalman filter state sequence (X̂i):

Oi = ΓiX̂i. (6)

Therefore, the extended observability matrix and the state sequence are determined by:

Γi = W−1
1 U1S1, (7)

X̂i = Γ†
i Oi. (8)

Similar operations can be used to determine the shifted state sequence (X̂i+1). Then,
the system’s matrices A and C can be determined applying the least square method to the
following equation, derived from the stochastic model (Equation (1)):[

X̂i+1
Yi|i

]
=

[
A
C

]
X̂i +

(
ρw
ρv

)
, (9)

in which ρw and ρv are the Kalman filter residues. The modal parameters extraction, along
with more details about the hole procedure, can be found in [23].

2.3. Algorithm

The proposed automatic algorithm was divided in the following steps:

1. Create the stabilization diagram using the SSI algorithm and classify each pole based
on stabilization criteria;
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2. Clear the stabilization diagram using the Hard Validation Criteria (HVC);
3. Group poles that represent the same mode using agglomerative hierarchical clustering;
4. Remove from each cluster poles of repeated orders, so that only one pole of this

order remains;
5. Eliminate small clusters that probably represent clusters of spurious or mathemati-

cal poles;
6. Perform an outlier detection based on the boxplot method;
7. Describe the global modes by the clusters mean frequency, mean damping, and mean

mode shape;
8. Group poles with mode shapes of high correlation using agglomerative hierarchi-

cal clustering.

In the following, the choice of all above-mentioned steps is justified and clarified.

2.3.1. Stabilization Diagram and Stabilization Criteria

For the first step, it is possible to employ either SSI-COV or SSI-DATA algorithms,
although the authors decided for the last. The identification is performed with increasing
model orders and all extracted poles are inspected and classified according to the following
evaluation. A k-order pole is stable if there is at least one (k−1)-order pole that satisfies the
following stabilization criteria:

∆ fm,n =
| fn − fm|

fn
< lim f , (10)

∆ζm,n =
|ζn − ζm|

ζn
< limζ , (11)

MACm,n =

∣∣ϕH
m ϕn

∣∣2
(ϕH

m ϕm)(ϕH
n ϕn)

> limMAC, (12)

where m corresponds to the pole of order k under evaluation and n corresponds to any
pole of order (k − 1). All limits are manually selected, but suitable values can be easily de-
termined through initial analyses of the system. All poles that do not fulfill the stabilization
criteria are classified as not stable.

2.3.2. Hard Validation Criteria (HVC)

The idea behind the HVC is to remove all certainly spurious poles from the analysis of
the following steps. In order to detect these poles, two criteria are employed: the damping
ratio, and information about complex conjugated pairs.

As physical modes are characterized by positive damping ratios, it is expected that all
poles with negative damping are spurious. Moreover, performing initial tests allow the
analyst to know the normal behavior of the system, including the normal range of damping
ratios. Thus, modes from the rotor or from its foundation are usually known within a
determined range of damping. Furthermore, as already mentioned, rotating machines
are constantly excited by periodic signals coming from their own operation or from the
operation of other rotating parts in their surroundings. These harmonic frequencies appear
in the stabilization diagram as stable poles of low or negative damping ratio due to their
statistical aspects. Therefore, a first filter based on the poles damping ratio can be stablished
as an HVC, all poles with values that are negative or out of the expected range being
spurious, as employed by [6,8].

As mentioned by [6,7], every physical mode of a system appears in complex conjugated
pairs, which makes it possible to classify as spurious all poles from the diagram that does
not have a complex conjugated pair and remove them for the subsequent analysis.
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2.3.3. Agglomerative Hierarchical Clustering

Before applying the hierarchical clustering, some of the papers mentioned in the
introduction added a step that would separate certainly spurious poles from probably
physical ones using some criteria based on the pole’s mode shape complexity, such as Mode
Phase Collinearity (MPC) and Mode Phase Deviation (MPD). As will be presented in the
results, during the development of the algorithm proposed in this paper, it was observed
that these criteria are not suitable to distinguish the rotor’s modes in the stabilization
diagram. In order to avoid criteria that are not suitable for rotating machinery, it was
decided to not apply a step before the hierarchical clustering.

As with all papers presented in the previous section, the machine learning technique
called agglomerative hierarchical clustering was selected to group poles that represent the
same mode. According to [7], the average linkage showed better results to create compact
clusters of individual physical modes, thus it is used as the algorithm for hierarchical
clustering. Moreover, in this paper, it was decided to employ the same algorithm with a
similarity measure based solely on the frequency difference between all pair of poles, and
the analysis of the MAC value within each cluster is postponed at the end of the algorithm.

∆ fm,n =

∣∣∣∣ fn − fm

max( fn, fm)

∣∣∣∣. (13)

Since only the frequency difference is used as similarity difference, the threshold can
be easily selected. This can be done from an analysis of the modes of interest variation in
the stabilization diagram.

2.3.4. Removal of Poles from Repeated Orders

In the case of closely spaced modes or spurious and mathematical poles near physical
poles, it can be that more than one pole from the same order are grouped in the same cluster,
which is not appropriate since each cluster is supposed to represent a single physical
mode. Aiming to remove the repeated poles, a comparison of the damping ratio of each
repeated pole with the cluster’s damping ratio median is done, given that no outlier
removal was yet performed, and only the repeated pole with damping ratio closest from
the median is maintained.

2.3.5. Small Clusters Removal

Since physical modes tend to have a better stabilization when compared to spurious
and mathematical poles (i.e., appear at several model orders in the stabilization diagram),
the number of poles in each cluster can be used to separate clusters of spurious or mathe-
matical poles from clusters of physical poles. A study by [7] presents a methodology that
eliminates all clusters with sizes lower than 50% of the biggest cluster size. However, stabi-
lization diagrams of rotating machinery data comprise both structural and rotor modes, the
last being usually harder to stabilize in comparison with the first. Therefore, a 50% limit
proved to exclude some rotors’ modes of interest from the analysis and the mean size of all
clusters was adopted as a threshold.

2.3.6. Outlier Detection

As a result of adopting just the frequency as a measure of similarity, a possible effect is
that poles with different damping factors are grouped together in one cluster. As will be
presented in the results, the SSI method is usually able to identify one of the closely spaced
modes of the rotor (backward or forward) with an acceptable range of damping, whereas
the other mode is identified with a lower or higher (or simply different) damping ratio.
Given that these modes are closely spaced, it is possible that they end up grouped in the
same cluster. In order to eliminate the modes with lower or higher (or simply different)
damping, the outlier detection proposed by [5] is adopted. This approach was chosen
because of the lack of information about the probability distribution of the clusters, and
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the outlier detection based on the quartile’s information results in a more conservative and
effective method to remove outliers.

Furthermore, it is possible that a mode is identified in the stabilization diagram with
high dispersion or with poles that, due to the order, end up far from the average of the
mode. Aiming to maintain clusters with low frequency dispersion, the same approach
adopted to detect damping ratio outliers is considered to detect frequency outliers. Thus,
the outlier analysis is performed for both damping and frequency values.

2.3.7. Global Modes

Finally, each cluster mean frequency, mean damping ratio, and mean mode shape are
extracted to describe the global modes. The mean was adopted because an outlier analysis
was performed, but it is also possible to use the pole with median damping ratio, as done
by [6].

2.3.8. Agglomerative Hierarchical Clustering of Each Cluster

Since the MAC value was not employed in the similarity measure of the third step
and the mode shapes of each cluster were not evaluated in any other step of the algorithm,
it is possible that poles with inaccurate mode shapes were included in the results, which
would render the mean mode shape estimate also inaccurate. In order to remove these
poles from the clusters, the hierarchical clustering algorithm can be once again employed
as an additional step of the algorithm to improve the estimates, as described above.

In order to implement this step, the MAC value is computed between all poles within
each cluster, resulting in one MAC matrix for each global mode extracted by the algorithm.
The minimum value of each matrix is then identified and compared with the MAC limit
of the stabilization diagram, informed by the user in the first step of this algorithm. If
the minimum value of a cluster’s MAC matrix is above the limit (MACmin > limMAC), it
means that all mode shapes within this cluster have high correlation and, therefore, that
the mean mode shape computed in the last step is adequate to represent the mode shape
of that global mode. However, if the minimum value of a cluster’s MAC matrix is below
the limit (MACmin < limMAC), it means that not all mode shapes of this cluster have high
correlation and that the mean mode shape is not adequate to represent the cluster. In this
last case, another processing step is required to remove the poles with low correlation and
obtain another set of poles with mode shapes that have high correlation between them and
that can represent the mode shape of that global mode. In order to do that, hierarchical
clustering is employed with a similarity measure equal to the inverse of the MAC between
two poles of the global mode under analysis:

∆MACm,n =
1

MACm,n
. (14)

This way, the two poles that have low correlation (low MAC value) will be distant
from each other, whereas the two poles that have high correlation (high MAC value) will be
close to each other. For the threshold value, the inverse of the MAC limit of the stabilization
diagram is employed, so that the resulting clusters will comprise only the poles with MAC
values above the limit. Then, the biggest cluster is identified and only the poles from this
cluster are selected to represent the global mode.

Once this procedure is performed for all clusters from the previous step, the means of
the frequencies, damping ratios, and mode shapes are once more computed to represent
each global mode.

The resulting algorithm is summarized in Algorithm 1.

Algorithm 1: Proposed Algorithm.

Inputs: Stabilization diagram (frequency, damping ratio, and mode shape), damping ratio limits
(ζmin and ζmax), stabilization criteria (lim f , limζ and limMAC), and similarity measure
threshold (limD).
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Algorithm 1: Proposed Algorithm. Cont.

Output: Global modes

1. Classify as stable all poles that satisfy the stabilization criteria and as not stable all
remaining poles

2. Classify as spurious all poles with damping ratio lower than ζmin or higher than ζmax (Hard
Validation Criteria—HVC) or that do not appear with a complex conjugated pair

3. Extract the number of stable poles (nme)
4. Create a matrix of zeros D ∈ Rnme×nme

5. For m in [1, nme]:

5.1. For n in [1, nme]: Compute the distance between the poles m and n (dm,n) using the
relative distance between the natural frequencies of both poles and assign the result
to the matrix D in the position (m, n)

6. Apply agglomerative hierarchical clustering taking the distance matrix D as the method’s
similarity measure and consider the informed threshold (limD)

7. Extract the number of clusters obtained (nc)
8. For c in [1, nc]:

8.1. If cluster c has more than one pole of each order, remove all poles of each order but
one, and keep the one with the damping ratio closest to the cluster’s damping
ratio median

8.2. Store the number of poles and each modal parameter (natural frequency, damping
ratio, mode shapes and order) of the cluster c

9. Create a histogram of the number of poles in each cluster
10. Extract the mean size of the clusters
11. Select the clusters whose size is bigger than the mean size
12. Create a boxplot of the frequency and of the damping ratio
13. Remove the outliers:

- If ωn < Q1 f req − 1.5 IQR f req or ωn > Q3 f req + 1.5 IQR f req, remove the pole n because
it is a frequency outlier

- If ζn < Q1ζ − 1.5 IQRζ or ωζ > Q3ζ + 1.5 IQRζ , remove the pole n because it is a
damping ratio outlier

Being Q1 is the first quartile, Q3 the third quartile, and IQR the difference between the
upper and lower quartiles

14. Extract the parameters that represent the clusters: mean frequency, mean damping ratio,
and mean mode shape

15. Extract the number of global modes (ngm)
16. For i in

[
1, ngm

]
:

16.1. Extract the number of poles (np)
16.2. Create a matrix of zeros DMAC−i ∈ Rnp×np

16.3. For m in
[
1, np

]
:

16.3.1. For n in
[
1, np

]
:

Compute the MAC value between the poles m and n and assign the result to the
matrix DMAC−i in the position (m, n)

16.4. Extract the minimum value of the matrix DMAC−i (mini)
16.5. If mini < limMAC:
16.6. Create a matrix of zeros Di ∈ Rnp×np

16.7. For m in
[
1, np

]
:

16.8. For n in
[
1, np

]
:

16.9. Compute the distance between the poles m and n according to Equation (14) and
assign the result to the matrix Di in the position (m, n)

16.10. Apply agglomerative hierarchical clustering taking the distance matrix Di as the
method’s similarity measure and considering the informed MAC limit (1/limMAC)

16.11. Select the poles from the biggest cluster to represent the global mode i
16.12. Extract the parameters that represent the modal globe: mean frequency, mean

damping ratio, and mean mode shape
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2.4. Description of Datasets
2.4.1. Test Rig with Hydrodynamic Bearings

The first data set used in this work was taken from a test rig with a rotor sup-
ported by hydrodynamic bearings, displayed on Figure 2. The system is basically com-
posed of a rotating steel shaft (15 mm in diameter and 719 mm in length) supported by
two hydrodynamic bearings (31 mm diameter, 18 mm length, 90 µm of radial clearance,
and ISO VG32 oil at ambient temperature as working fluid) connected to an electric motor
through a flexible coupling. In addition, the system has a hard disk and an electromagnetic
actuator (used to insert different types of noise into the rotor). The experiments were carried
out with the rotor operating with an angular shaft velocity of 75 Hz and four accelerometers
installed in both bearings (two accelerometers for each bearing) were used to collect the
vibration on the Y and Z directions.
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During operation, rotating machines can be subjected to different types of excitation
conditions that can facilitate or hinder OMA’s application. In order to investigate it,
Ref. [25] performed the identification of a rotating system through OMA techniques and
revealed that different test conditions influence the extracted parameters, ranging from non-
identification to precise identification of modal parameters, which characterizes challenges
to the automatic algorithm proposed here. Hence, it was decided to use more than one test
condition. For that, the data was collected with different inputs and sampling frequencies,
and during different periods of time, resulting in the tests displayed in Table 1.

Table 1. Test conditions for the test rig with hydrodynamic bearings.

Test fs [Hz] Time [s] Excitation Direction Excitation

1 2048 240 Y White noise—medium intensity
2 2048 240 Y White noise—low intensity
3 2048 240 Z White noise and tapping
4 2048 240 Y Blue noise
5 1024 240 Y White noise—medium intensity
6 2048 120 Y White noise—medium intensity

An EMA analysis was also carried out though the Stepped Sine method to determine
the modal parameters of the rotor supported by hydrodynamic bearings, so that their
correct values were known for further validation of the proposed OMA algorithm. For this
test, the rotor’s speed was 75 Hz. Two sets of tests were carried out with a step of 0.25 Hz,
the first one with frequency range between 48 Hz and 58 Hz, in order to identify the first
rotor’s mode, and the second one with frequency range between 200 Hz and 220 Hz, in
order to identify the second rotor’s mode. To each test, 5 measurements were collected to
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compute mean values and diminish random errors. The results are displayed in Table 2. It
is important to emphasize that the Stepped Sine method was able to identify two pairs of
natural frequencies, each one containing the forward and the backward frequencies of the
rotor, whose occurrence is traced back to the gyroscopic effect.

Table 2. Modal parameters of the rotor supported by hydrodynamic bearings.

Mode
Backward Forward

Freq. [Hz] Damp. [%] Freq. [Hz] Damp. [%]

First 52.8 4.26 53.1 4.25
Second 212.6 2.45 212.2 2.48

During the experiments, it was found that modal information of the foundation was
transferred to the rotor’s dynamic response. A further modal analysis of the foundation was
required so that the modal parameters extracted through OMA could be properly assigned
to the system component that originated them. For the extraction of the foundation’s modal
parameters, EMA was applied to the foundation after the shaft removal and with the use of
FRF estimators and an impact hammer. The structure’s excitation was performed by means
of impulses applied to the bearing housings in the Y and Z directions and the responses
were measured using accelerometers mounted in the three directions (X, Y and Z) of the
bearing housings. Frequency Response Functions (FRFs) were estimated, gathered, and
evaluated only in the frequency range of interest (80 Hz to 320 Hz). The Least Square
Complex Exponential (LSCE) algorithm was employed to estimate the modal parameters
and the results are depicted in Table 3.

Table 3. Foundation’s modal parameters.

Mode Freq. [Hz] Damp. [%]

1 101.8 4.9
2 110.4 6.4
3 114.5 3.4
4 124.8 2.7
5 133.7 3.9
6 138.6 4.3
7 157.4 6.1
8 179.7 1.7
9 196.0 3.3
10 204.0 1.7
11 241.9 2.7
12 277.2 1.6
13 299.8 0.9

It is important to mention that although several foundation modes were identified,
not all of them are excited during the rotor’s operation, which causes only a few to appear
when applying modal analysis through the rotor’s vibration signals.

2.4.2. Test Rig with Rolling Bearings

The second data set employed in this work was taken from the same test rig presented
in Figure 2, replacing the hydrodynamic bearings by rolling bearings (15 mm inner diameter
NJ 202 by NSK®) and using different excitation conditions. There are only minor variations
in the positioning of each component due to the inherent inaccuracy of the assembly,
disassembly, and alignment process of the system. The goal of these tests was also to
evaluate the proposed algorithm in a system with lower damping, as expected for rolling
bearings when compared to hydrodynamic bearings. Four accelerometers installed in both
bearings (two accelerometers for each bearing) were again employed to collect the vibration
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on the Y and Z directions. The experiments were carried out with the rotor rotating in
30 Hz and under different operating conditions, resulting in the tests displayed in Table 4.

Table 4. Test conditions for the test rig with rolling bearings.

Test fs [Hz] Time [s] Excitation Direction Excitation

1 1024 60 Y White noise—medium intensity
2 1024 60 Y White noise—low intensity
3 1024 60 Y White noise and tapping
4 1024 60 Y Blue noise

In order to evaluate OMA’s results, an EMA analysis was also carried out through the
Stepped Sine method. For this test, the rotor’s speed was 30 Hz, and the test was carried
out with frequency range between 20 Hz and 75 Hz and a step of 0.25 Hz, with the aim
of evaluating only the first vibrating mode of the system. Two tests were carried out, one
where the excitation was applied in the Y direction and other where the excitation was
applied in the Z direction. The results are displayed in Table 5, where the values correspond
to the obtained averages.

Table 5. Modal parameters of the rotor supported by rolling bearings.

Mode
Backward Forward

Freq. [Hz] Damp. [%] Freq. [Hz] Damp. [%]

First 51.35 1.168 52.65 0.864

As before, the Stepped Sine method was able to identify a pair of natural frequencies,
containing the forward and the backward frequencies of the rotor. The significant reduction
in damping values is noted when compared to the system supported by hydrodynamic
bearings (compare Tables 2 and 5). Regarding the small variations in the natural frequen-
cies, these are more related to the inherent difficulty of positioning the components, as
previously mentioned.

3. Results

The proposed algorithm is applied to two different datasets: response measurements
of a test rig with a rotor supported by hydrodynamic bearings, and response measurements
of a test rig with a rotor supported by rolling bearings.

The results obtained through the test rig with the rotor supported by hydrodynamic
bearings are the first ones to be presented. To illustrate all steps of the algorithm, clarifying
the analyzes performed by them, test 1 of Table 1 is taken as the standard example and a
comprehensive explanation of its results is presented. Then, the algorithm is applied to all
other tests in Table 1 and the main results are presented and discussed in order to show the
algorithm’s robustness when different operating conditions are present.

Later, the test rig supported by rolling bearings, which has a higher stiffness and a
lower damping when compared to the first test rig, is analyzed to verify the algorithm’s
robustness to distinct systems. The results of all tests of Table 4 are briefly presented
and discussed.

The algorithm, as well as the SSI-DATA method, were implemented in the program-
ming language Python™.

3.1. Test Rig with Hydrodynamic Bearings

The stabilization limits considered in the following analysis were 0.2% for the fre-
quency variation, 2% for the damping ratio variation, and 95% for the minimum MAC
value, all of them conservatively chosen. The range [0.3%, 10%] was used as the damping
ratio limit. All stabilization diagrams were built with a maximum order of 100, with fixed
100 block rows.
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Figure 3 displays the stabilization diagram of the first test of Table 1, excitation with
white noise (medium intensity) and a sampling frequency of 2048 Hz. The diagram is
presented in the frequency range of 0 Hz to 256 Hz, the range of interest in this analysis.
From the diagram, one can observe that there are three alignments of spurious poles, the
first at 75 Hz (the rotor’s rotating speed), two at 150 Hz (first harmonic), and the last at
225 Hz (second harmonic). The identification of the rotating speed and its harmonics as
spurious was possible due to the HVC related to the damping ratio. In addition, several
mathematical poles were also classified as spurious and, therefore, will not enter the
following analysis. One can also observe that, close to the first rotor’s mode, two poles
are predominantly identified in each order, which could lead to the idea that both forward
and backward frequencies are identified. However, the second poles of each order are
mostly identified with a high damping ratio (>7%), being inadequate to represent any
rotor’s frequency.
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The MPC (computed as described in [26]) and the MPD (computed as described in [6])
values of each pole were computed to perform additional analysis. The MPC value ranged
from 63% to 99% for the first rotor’s mode, the highest ones (>86%) being outliers because
of the high damping ratio (>5%), as will be seen in a further outlier analysis. For the second
one, the range was 98% to 100%. For the foundation mode of 241.9 Hz, the values were
much more stable, ranging from 94% to 98%. The MPD value, in contrast, ranged from
8% to 35% for the first rotor’s mode, the lowest ones (<19%) being outliers because of the
high damping ratio (>5%). For the second one, the range was 3% to 6%. For the foundation
mode of 241.9 Hz, the range was 11% to 16%. Therefore, if any clustering algorithm or
HVC based on the MPC or MPD values were employed, the first rotor’s mode could be
identified due to its great dispersion as spurious, and the identification algorithm would
fail to provide reliable information.

After building the stabilization diagram and applying the HVC, the hierarchical
clustering was performed. For the selected threshold definition, the distance between the
known difference of closely spaced modes was employed. The difference between the
first and second frequencies of the first mode, according to Equation (13), is 0.006. For the
second mode, the difference is 0.002. Tests considering thresholds near these values were
evaluated, resulting in a selected threshold of 0.01. It is important to emphasize that this
threshold proved itself adequate for all other tests of Table 1, demonstrating how simple it
is to select a value that works in different operating conditions of the same system. Figure 4
displays the obtained dendrogram, in which each cluster is represented by a different color
in the bottom of the dendrogram and whose x-axis is organized with the frequency range
of 53 Hz to 250 Hz, distributed in an ascending order.
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Figure 5 displays the diagram of each cluster’s size, along with the limits proposed
by this paper and by [7] to remove small clusters. From Figure 5, one can see that if the
limit proposed by [7] was considered, the 6th and the 8th foundation modes would not be
identified by the algorithm. There are also cases in which the first rotor’s mode is below
the limit proposed by the authors, as the signals obtained from test 3 show. Therefore, the
limit defined by the mean size is justified.
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Figure 5. Test 1 (white noise—medium intensity) small clusters removal.

The outlier analysis was performed within the 10 clusters that remained from the
previous analysis. Figure 6 displays the boxplot of both frequency and damping ratio
values. Points out of the box range are considered outliers. Taking the first cluster as an
example, which represents the first rotor mode, there are outliers in both frequency and
damping ratio, although the first ones (53.16 Hz, 53.24 Hz, and 53.94) are less pronounced
than the last ones (all damping ratios above 4%). From Figure 6, it is possible to see that the
outlier analysis was adequate to remove outliers from all modes.
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Concluding all essential steps proposed by the algorithm, the averages of the frequen-
cies and of the damping ratios of the poles inside each cluster are extracted. The results are
displayed in Table 6, along with the standard deviation of these parameters, the difference
between the maximum and minimum values within the cluster that originated them, the
errors in relation to the EMA references, the size of the cluster, and the lowest value in the
MAC matrix, which will be further employed in the optional step to obtain sets of poles
with high correlation mode shapes. From Table 6, one can see that most of the identified
modes presented low standard deviations and low differences between maximum and
minimum, for both frequency and damping ratio, and bigger cluster sizes.

Table 6. Test 1 (white noise—medium intensity) test rig with hydrodynamic bearings global modes.

f [Hz] ζ [%]
Size MAC (Minimum)

Mean Std. ∆max,min Error Mean Std. ∆max,min Error

53.4 0.05 0.2 0.56% 3.81% 0.06% 0.28 11.55% 43 98%
114.5 0.26 0.9 0.00% 4.19% 0.18% 0.63 18.85% 30 99%
139.9 0.21 0.7 0.93% 2.84% 0.11% 0.37 51.41% 16 99%
158.1 0.18 0.7 0.44% 2.60% 0.23% 0.75 134.62% 28 73%
180.8 0.62 1.8 0.61% 2.65% 0.25% 0.71 35.85% 19 83%
191.5 0.53 1.5 2.35% 3.78% 0.30% 0.97 12.70% 15 91%
202.6 0.07 0.2 0.69% 0.87% 0.05% 0.20 95.40% 35 98%
212.2 0.10 0.4 0.00% 2.44% 0.04% 0.15 1.64% 37 99%
219.5 0.40 1.5 - 3.11% 0.26% 0.92 - 32 90%
243.1 0.16 0.7 0.49% 1.58% 0.18% 0.60 70.89% 53 97%

It is important to mention that, although the first two modes of the rotor are composed
by two frequencies, the backward and the forward ones (Table 2), the algorithm was not
able to identify both of them. Since the similarity measure encompasses only the frequency
difference between the poles, as presented in Equation (13), and considering the fact that the
frequency and the damping ratio of the backward and forward frequencies are significantly
close, it would be possible that both frequencies were grouped in the same cluster. However,
the minimum MAC value for this mode was 98%, indicating a high correlation between all
mode shapes within the cluster. Since some difference is expected from the mode shapes
of the forward and backward frequencies, it is more likely that only poles of one of these
frequencies are present in the cluster, indicating that the proximity of these two frequencies
lead the SSI method to identify only one of them.
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It is also important to mention that not only the rotor’s modes were identified, but
also several modes from the foundation. Comparing Table 6 with Table 3, one can see that
the modes identified with the OMA algorithm do not have the exact same parameters as
the modes identified by EMA (but are relatively close). However, one must also recall that
the EMA test was performed without the shaft and this variation of the modal parameters
was already expected. Comparing the foundation’s results with the rotor’s results, one can
observe that the errors were similar, highlighting the algorithms’ ability to extract accurate
modal parameters for both the rotor and the foundation.

Moreover, Table 7 displays the errors between the EMA values and estimated values of
the rotor’s modal parameters using the proposed algorithm, in which all but one parameter
presented a low error. The highest error was on the damping factor of the first mode,
whose occurrence can be traced back to the SSI method’s ability to estimate this parameter.
Tables 6 and 7 demonstrate the proposed algorithm’s capability of extracting the modal
parameters of a rotating machine.

Table 7. Test 1 (white noise—medium intensity) rotor mode’s error.

Parameter
First Mode Second Mode

EMA OMA Error EMA OMA Error

f [Hz] 52.8
53.4

1.14% 212.6
212.2

0.19%
53.1 0.56% 212.2 0.00%

ζ [%] 4.26
3.81

10.56% 2.45
2.44

0.41%
4.25 10.35% 2.48 1.61%

With the clusters of each global mode and the lowest value in their MAC matrices,
the additional step of the algorithm can be performed. The modes of 53.4 Hz, 114.5 Hz,
139.9 Hz, 202.06, 212.2 Hz, and 243.1 Hz presented good results, since the minimum values
on their MAC matrix were greater than the MAC limit of the stabilization diagram (95%), an
expected value from poles from the same mode. Therefore, no alteration will be performed
in the clusters of these modes. However, the other modes (158.1 Hz, 180.8 Hz, 191.5 Hz
and 219.5) presented values lower than the MAC limit of the stabilization diagram. Hence,
hierarchical clustering based on the MAC values was performed, obtaining, for each mode,
a new set of poles from which the mean, the standard deviation, and the difference between
the maximum and minimum values of the modal parameters were computed. The results
are displayed in Table 8, from which one can verify that the minimum MAC value of all
modes is now at least 95%, indicating that the obtained clusters present mode shapes with
high correlation and, therefore, the mean of the mode shapes of each cluster is adequate to
represent these modes. It is also possible to verify that no significant alteration occurred
on the mean values of the modal parameters. In addition, the standard deviation and the
difference between the maximum and minimum of most of the clusters achieved lower
values (values highlighted in green), whereas only two modes exhibited an increase in
standard deviation (values highlighted in red).

Table 8. Test 1 (white noise—medium intensity) test rig with hydrodynamic bearings global modes
after hierarchical clustering based on the MAC value.

f [Hz] ζ [%] MAC
(Minimum)Mean Std. ∆max,min Mean Std. ∆max,min

157.9 0.17 0.5 2.61% 0.13% 0.38 96%
180.6 0.81 1.8 2.62% 0.12% 0.41 95%
190.9 0.34 0.8 3.73% 0.18% 0.38 97%
219.6 0.52 1.5 3.28% 0.23% 0.64 95%

After these analyzes, the proposed algorithm, ignoring the additional step, was applied
to all tests of Table 1 and the results obtained for the rotor’s modes are displayed in Table 9.
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As Table 9 shows, the proposed algorithm was able to extract the rotor’s modes from all
tests, these having a small standard deviation and with mean values close to the values
selected via EMA. It is important to mention that the main reason for the high errors in the
damping ratio estimations is the low magnitude of this parameter. Moreover, the estimation
of damping ratios is a challenge even when well consolidated EMA techniques are used
for the modal identification, and high errors are also obtained when the results of different
EMA techniques are compared. In this context, the estimations displayed in Table 9 are
very good.

Table 9. Rotor’s global modes for the test rig with hydrodynamic bearings.

Mode
First Mode Second Mode

f [Hz] ζ [%] f [Hz] ζ [%]

Test Mean Std. Error Mean Std. Error Mean Std. Error Mean Std. Error

EMA (backward) 52.8 - - 4.26 - - 212.6 - - 2.45 - -
EMA (forward) 53.1 - - 4.25 - - 212.2 - - 2.48 - -

1 53.4 0.05 0.56% 3.81 0.06 10.35% 212.2 0.10 0.00% 2.44 0.04 1.61%
2 53.7 0.09 1.13% 3.94 0.10 7.29% 211.9 0.05 0.14% 2.34 0.03 5.65%
3 52.5 0.09 1.13% 3.63 0.12 14.59% 211.6 0.15 0.28% 2.64 0.05 6.45%
4 53.1 0.05 0.00% 3.52 0.08 17.18% 211.8 0.19 0.19% 2.37 0.07 4.44%
5 52.9 0.12 0.38% 3.77 0.08 11.29% 211.8 0.11 0.19% 2.44 0.04 1.61%
6 53.1 0.02 0.00% 3.48 0.04 18.12% 211.9 0.15 0.14% 2.48 0.06 0.00%

As occurred in Test 1, the application of the proposed algorithm to the remaining
tests of Table 1 also enabled the identification of several foundation modes. In order
to summarize the results, Figure 7 displays all modes estimated through the proposed
algorithm as black dots, all rotor modes as continuous lines, and all foundation modes
estimated by EMA as dashed lines. The frequency is presented in the x-axis and the data
used to estimate the modes is presented in the y-axis. As indicated by Figure 7, most
foundation modes were identified. Recalling the stabilization diagram of Figure 3, obtained
with the data with medium intensity white noise, one can see that there are some frequency
ranges in which the stabilization is irregular. Therefore, the absence of some foundation
modes can be, once more, associated with the challenges in the SSI method.

Sensors 2022, 22, x FOR PEER REVIEW 19 of 26 
 

 

summarize the results, Figure 7 displays all modes estimated through the proposed 
algorithm as black dots, all rotor modes as continuous lines, and all foundation modes 
estimated by EMA as dashed lines. The frequency is presented in the x-axis and the data 
used to estimate the modes is presented in the y-axis. As indicated by Figure 7, most 
foundation modes were identified. Recalling the stabilization diagram of Figure 3, 
obtained with the data with medium intensity white noise, one can see that there are some 
frequency ranges in which the stabilization is irregular. Therefore, the absence of some 
foundation modes can be, once more, associated with the challenges in the SSI method. 

 
Figure 7. Foundation’s modes identified through the proposed algorithm. 

With these analyses, an investigation was performed to evaluate the differences 
between dividing the hierarchical clustering in two steps, one based only on the frequency 
difference between the poles, and other based only on the MAC value, as proposed in this 
paper, and applying the hierarchical clustering in one single step, considering both the 
frequency difference and the MAC value, as proposed by other papers in the literature. In 
this case, the third step of the algorithm was modified so that the similarity measure 
comprised the frequency difference and the MAC value. Then, it was applied to all tests 
of Table 1, without the additional step, and considering four different threshold values 
(0.04, 0.06, 0.08 and 0.1). The results are displayed on Figure 8, along with the results from 
the proposed algorithm with the additional step to facilitate the comparison. In some 
cases, the modified algorithm identified global modes with very close frequencies. Due to 
the frequency range of Figure 8, these cases would not be visible. Therefore, the icons 
representing them have been modified, and are represented with solid icons rather than 
hollow ones. 

From Figure 8, one can see that most of the frequencies identified by the proposed 
algorithm were also identified by the modified one. However, there are several cases in 
which two very close frequencies are identified, especially when the threshold of 0.04 is 
used. Analyzing the frequency range of the first rotor;s mode, one can see that the 
threshold of 0.04 identified two frequencies of approximately 53 Hz for Tests 1, 4, 5, and 
6, and the thresholds of 0.06, 0.08, and 0.1 performed the same for Test 6. When the 
stabilization diagram of Figure 3 was analyzed, it was verified that this frequency range 
indeed presented  the stabilization of two different modes. However, the damping factor 
of one of them made it inadequate to represent any rotor’s frequency. That is also the case 
for all other tests. Therefore, the identification of two frequencies near the rotor modes by 
the modified algorithm represents a disadvantage of using one single hierarchical 
clustering with similarity distance that comprises both the frequency difference and the 
MAC value.  

Figure 7. Foundation’s modes identified through the proposed algorithm.

With these analyses, an investigation was performed to evaluate the differences be-
tween dividing the hierarchical clustering in two steps, one based only on the frequency
difference between the poles, and other based only on the MAC value, as proposed in this
paper, and applying the hierarchical clustering in one single step, considering both the
frequency difference and the MAC value, as proposed by other papers in the literature.
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In this case, the third step of the algorithm was modified so that the similarity measure
comprised the frequency difference and the MAC value. Then, it was applied to all tests
of Table 1, without the additional step, and considering four different threshold values
(0.04, 0.06, 0.08 and 0.1). The results are displayed on Figure 8, along with the results
from the proposed algorithm with the additional step to facilitate the comparison. In some
cases, the modified algorithm identified global modes with very close frequencies. Due
to the frequency range of Figure 8, these cases would not be visible. Therefore, the icons
representing them have been modified, and are represented with solid icons rather than
hollow ones.
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From Figure 8, one can see that most of the frequencies identified by the proposed
algorithm were also identified by the modified one. However, there are several cases in
which two very close frequencies are identified, especially when the threshold of 0.04
is used. Analyzing the frequency range of the first rotor;s mode, one can see that the
threshold of 0.04 identified two frequencies of approximately 53 Hz for Tests 1, 4, 5, and
6, and the thresholds of 0.06, 0.08, and 0.1 performed the same for Test 6. When the
stabilization diagram of Figure 3 was analyzed, it was verified that this frequency range
indeed presented the stabilization of two different modes. However, the damping factor of
one of them made it inadequate to represent any rotor’s frequency. That is also the case for
all other tests. Therefore, the identification of two frequencies near the rotor modes by the
modified algorithm represents a disadvantage of using one single hierarchical clustering
with similarity distance that comprises both the frequency difference and the MAC value.

Evaluating other frequency ranges, it is possible to identify the same phenomenon
in some foundation modes (124.8 Hz, 138.6 Hz, 157.4 Hz, 196.0 Hz and 204.0 Hz), mostly
in the results from the modified algorithm (only the foundation modes of 124.8 Hz and
138.6 Hz of test 5 for the proposed algorithm). Analyzing each stabilization diagram, it
was observed that most pairs of close frequencies were identified because poles from a
single physical mode happened to be divided into more than one cluster by the algorithms
due to irregularities in the stabilization diagram. The exceptions were the frequencies near
124.8 Hz of Tests 4 and 5, since the stabilization diagrams of these tests really present the
alignment of two modes. However, it is possible that one of the alignments is actually
an alignment of spurious modes rather than a closely spaced mode of the foundation, as
occurred for the first rotor’s frequency.
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Furthermore, there are some cases in which a foundation mode was identified by one of
the algorithms and not by the other. These cases occurred 16 times, for both algorithms and
all thresholds, and occurred for the foundation modes of 124.8 Hz (Tests 1 and 6), 157.4 Hz
(Tests 1 and 3), and 196.0 Hz (Tests 4, 5 and 6). In five of these cases, the employed algorithm
was the modified one with a threshold of 0.08. The modified algorithm with thresholds
of 0.06 and 0.10 were responsible for three cases each, and the modified algorithm with
a threshold of 0.04 was responsible for two cases. The proposed algorithm, in turn, was
responsible for three cases.

Moreover, when the modified algorithm is employed, there is no guarantee that the
minimum MAC value between the poles of a global mode is above the limit established
for the stabilization diagram. Considering the global modes identified in all tests, when
the threshold of 0.04 is used, 7 of the 74 identified global modes presented MAC values
below 95%, with the minimum being 91%. When the threshold of 0.06 is used, 21 of the
66 identified global modes present values below 95%, with a minimum of 88%. When the
threshold of 0.08 is used, 30 of the 62 identified global modes present values below 95%,
with a minimum of 80%. Finally, when the threshold of 0.10 is used, 32 of the 64 identified
global modes present values below 95%, with a minimum of 80%.

Considering the results presented here and that only one threshold value was selected
for all tests of the proposed algorithm, some findings must be summarized. When the
modified algorithm with low thresholds is used, there is a tendency to increase the division
of poles belonging to the same physical mode into more than one cluster, which represents a
disadvantage to the modal identification. If the threshold increased, the tendency decreases,
but even when the threshold of 0.10 was used, the number of times that the division
happened was higher than when the proposed algorithm was used. In addition, the
increase of the threshold value proved to increase the number of global modes with a
minimum MAC value below the limit of the stabilization diagram, and decrease these
minimum values, which could lead to inaccuracies in the mode shapes’ mean. As to the
non-identification of some foundation modes, both algorithms performed in the same
manner. However, considering that the objective of this paper is the correct identification
of the rotor’s modes, the identification of a spurious global mode near the first rotor’s

Frequency, along with the other findings, demonstrated the superiority of the proposed
algorithm’s performance.

3.2. Test Rig with Rolling Bearings

To verify the robustness of the proposed algorithm, a distinct system will be analyzed.
All data presented in Table 4 will be verified and the results will be briefly presented here,
with focus on the identification of the rotor’s modes.

For the construction of the stabilization diagrams, the same stabilization and damping
ratio limits and stabilization diagram parameters were considered throughout the results
showed in this section. Figure 9 displays the stabilization diagram of Test 1 as an example.
When compared to the one of Figure 3, this stabilization diagram shows fewer well-
defined alignments of stable poles and more poles classified as not stable. However, it is
also possible to identify in Figure 9 two well-defined alignments of stable poles near the
rotor’s modes (Table 5), which, unlike the stabilization diagram of Figure 3, have modal
parameters that make them adequate to represent both backward and forward frequencies.
These particularities characterize this data set as a source of information about the modal
parameters of closely spaced modes and as a real challenge to the identification of the
foundation’s modes.

After building all stabilization diagrams, the algorithm follows by considering the
threshold of 0.01 for the hierarchical clustering of all data sets, and the same one is used in
the analyses from the previous section, demonstrating again how easy it is to select this
threshold. The additional step was also considered to generate the results of the test rig
supported by rolling bearings. The results for the rotor’s modes are displayed in Table 10,
from which one can see that, even with unfavorable excitation conditions, the algorithm
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can extract representative global modes for the rotor, with low standard deviations and
modal parameters close to the ones estimated by EMA.
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Table 10. Rotor’s global modes for the test rig with rolling bearings.

Mode
Backward Forward

f [Hz] ζ [%] f [Hz] ζ [%]

Test Mean Std. Error Mean Std. Error Mean Std. Error Mean Std. Error

EMA 51.35 - - 1.168 - - 52.65 - - 0.864 - -
1 51.12 0.03 0.45% 1.628 0.017 39.38% 52.43 0.00 0.42% 0.682 0.006 21.06%
2 52.07 0.12 1.40% 1.362 0.201 16.61% 53.55 0.02 1.71% 1.027 0.048 18.87%
3 51.04 0.04 0.60% 1.346 0.087 15.24% 52.62 0.01 0.06% 0.607 0.014 29.75%
4 51.06 0.03 0.56% 1.573 0.065 34.67% 52.51 0.04 0.27% 0.733 0.036 15.16%

Comparing Tables 9 and 10, one can observe that the estimation’s errors are really
close to each other, demonstrating the algorithms’ robustness to different datasets.

As mentioned in the previous section, it is expected that the forward and backward
frequencies present different mode shapes. Since the test rig supported by rolling bearings
provided good results for both frequencies, their mode shapes were compared. Test 1 of
Table 4 was once more taken as an example and the MAC value was computed between
the mode shapes of all poles from the backward frequency and the mode shapes of all
poles from the forward frequencies, producing a MAC matrix of 75 × 68 (the number of
poles from the clusters of the backward and forward frequencies, respectively). The mean,
maximum, and minimum MAC values of the matrix were 75%, 82%, and 67%, confirming
the expected difference.

Moreover, in order to evaluate the ability of the proposed algorithm to extract the
foundation’s modes when a different system is considered, Figure 10 displays the extracted
modes as black dots, the rotor’s modes as continuous lines, and the foundation’s modes as
dashed lines. From Figure 10, one can see that the algorithm was able to extract several
of the foundation’s modes from the data of Test 1. When data from different tests are
employed, only a few foundation’s modes are identified, which could be associated to
unfavorable test conditions, and some modes out of the investigated frequency range
(80 Hz to 320 Hz) appear. Moreover, the algorithm identifies some extra modes near the
foundation mode of 157.4 Hz when data from Tests 1 and 2 are employed. Investigations
performed with the same test rig by [25] detected a mode associated to the bearings housing
near the frequency of 155 Hz, which would explain these extra identified modes. Therefore,
the proposed algorithm demonstrated a good ability to identify the foundation’s modes.
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As already mentioned, the results of this section were generated considering the
additional step; however, the algorithm considering only the essential steps would also be
capable of identifying accurate frequencies and damping ratios of all rotors’ modes, which
was also observed in the results from the test rig supported by hydrodynamic bearings.
Hence, the additional step is recommended when a higher precision in the mode shapes
estimation is required or when a MAC criterion inside each cluster needs to be respected.

4. Conclusions

In this paper, a new automated algorithm to carry out modal parameter identification
on rotating machinery through OMA is proposed. The novelty of the work is precisely
the fact that it was developed for the identification of the rotor’s modes, and tested for
unideal operating conditions that are usually present in the operation of rotating machines.
The algorithm was applied through two datasets: vibration signals from a test rig with a
rotor supported by hydrodynamic bearings and vibration signals from a test rig with a
rotor supported by rolling bearings. Each step of the algorithm was presented, explained,
and illustrated, highlighting the differences to other algorithms proposed in the litera-
ture, which were mainly developed to deal with signals from structures rather than from
rotating machines.

The test in which the operating rotor supported by hydrodynamic bearings is excited
by the white gaussian noise of medium intensity was used to illustrate each step of the
algorithm. From the results, it was possible to verify that some of the measures proposed
by other papers to differentiate physical poles from mathematical and spurious poles are
inadequate when the system under analysis is a rotating machine. The results of this
data set and of the data sets with other excitation conditions also demonstrated that the
proposed algorithm can extract from the stabilization diagram representative and accurate
frequencies and damping ratios for both the rotor’s and the foundation’s modes, even
when unfavorable test conditions are present.

Moreover, investigations were carried out to evaluate the performance of the algorithm
when the additional step is implemented to the group, with hierarchical clustering and
poles with high MAC values within each global mode. From the test with white gaussian
noise of medium intensity excitation, the results showed that the additional step can
find sets of poles with mode shapes of high correlation. The additional step was also
compared with an algorithm that considers a single hierarchical clustering with similarity
measure comprising both the frequency difference and the MAC value, as proposed by some
previous authors. The results showed that the algorithm proposed in this paper, considering
the additional step, presented better results than previous algorithms, especially when the
correct identification of the rotor’s modes is considered.

When applied to a different system (a rotor supported by rolling bearing), the algo-
rithm was also able to extract from the stabilization diagram representative and accurate
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frequencies and damping ratios for both the rotor’s and the foundation’s modes. These
results demonstrated that the proposed algorithm maintained its robustness even when a
different system was employed. In addition, the backward and forward frequencies of the
first rotor’s mode were identified and the mode shapes extracted for each one confirmed
that some difference between them is expected.

Therefore, the proposed algorithm proved to be an adequate and promising tool to
extract modal parameters of rotating machines in operation. Further investigations are
required to improve the extraction of representative mode shapes and the differentiation of
the rotor’s backward and forward frequencies.

The results were obtained by applying the proposed algorithm to data from test rigs.
However, it is expected that it also works on more complex systems. The aim of the ongoing
works is to test it in more complex systems, such as engines and compressors, to identify
modes from both the rotor and the foundation. Once the algorithm’s robustness to more
complex equipment is verified, the goal is to use it to monitor the modal parameters of the
system and identify failures, given that variations in the modal parameters may be caused
by them. With that, one can enable the SHM via OMA.
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List of Abbreviations

Abbreviation Description
CVA Canonical Variate Algorithm
EMA Experimental Modal Analysis
FDE Frequency Domain Editing
FRF Frequency Response Function
HVC Hard Validation Criteria
IOMAC International Operational Modal Analysis Conference
LSCE Least Square Complex Exponential
MAC Modal Assurance Criterion
MPC Mode Phase Collinearity
MPD Mode Phase Deviation
ODD Order Domain Deletion
OMA Operational Modal Analysis
PCA Principal Component Analysis
SHM Structural Health Monitoring
SSI Stochastic Subspace Identification
SSI-COV Covariance Driven SSI
SSI-DATA Data Driven SSI
SVD Singular Value Decomposition
UPC Unweighted Principal Components
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List of Variables

Variable Description Unit
fs Sampling Frequency Hz
f Natural Frequency Hz
ζ Damping Ratio -
ϕ Mode Shape -
Q1 First Quartile Engineering Unit
Q3 Third Quartile Engineering Unit
IQR Difference between the upper and lower quartiles Engineering Unit
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