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Abstract: Perception and localization are essential for autonomous delivery vehicles, mostly estimated
from 3D LiDAR sensors due to their precise distance measurement capability. This paper presents
a strategy to obtain a real-time pseudo point cloud from image sensors (cameras) instead of laser-
based sensors (LiDARs). Previous studies (such as PSMNet-based point cloud generation) built the
algorithm based on accuracy but failed to operate in real time as LiDAR. We propose an approach
to use different depth estimators to obtain pseudo point clouds similar to LiDAR to achieve better
performance. Moreover, the depth estimator has used stereo imagery data to achieve more accurate
depth estimation as well as point cloud results. Our approach to generating depth maps outperforms
other existing approaches on KITTI depth prediction while yielding point clouds significantly faster
than other approaches as well. Additionally, the proposed approach is evaluated on the KITTI stereo
benchmark, where it shows effectiveness in runtime.

Keywords: computer vision; depth perception; pseudo-LiDAR; self-supervised learning

1. Introduction

Understanding the three-dimensional structure of the environment is possible for
humans due to biological vision. Depth perception using computer vision technology is
still one of the unsolved problems and most challenging issues in this research field. More
significantly, proper depth perception is required for an autonomous system such as an
autonomous delivery vehicle. It is possible to obtain such perception from the LiDAR
point cloud; however, LiDAR is a very costly technology. It will drastically increase the
production cost of a delivery robot system [1]. Without a doubt, a depth-predicting system
is required to find an obstacle location and avoid a collision. Many researchers have already
discussed the idea of alternative LiDAR solutions due to cost and over-dependency leading
to safety risks. For example, the PSMNet model defined in the pseudo-LiDAR paper [2]
is an image-based approach. The model architecture is too heavy, requiring more time to
produce depth estimation. Therefore, the corresponding point cloud generation will be
slower (average 1–6 Hz depending on the resolution) than LiDAR hardware (10 Hz). Our
approach uses self-supervised stereo Monodepth2 [3] as the starting point and improved it
to perform network training with stereo pairs in KITTI benchmark [4] datasets. Then, we
used the generated disparity information to create the point cloud (shown in Figure 1). The
main contributions of this paper are:

• Adopting a U-Net-based [5] encoder–decoder architecture as a depth network instead
of the heavy PSMNet model to increase real-time performance

• Modifying the encoder network for the training step. The final result outperforms all
the modes used by Monodepth2 [3] in terms of depth prediction.

It might be challenging to achieve a good balance between precision and latency. In
order to solve this significant issue, this work suggests an optimal approach using self-
supervised learning. In-depth experiments are also carried out by the authors to verify the
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proposed answer in comparison to earlier research. To evaluate our claim, we used a similar
evaluation benchmark and produced a result that shows superior performance of depth
estimation. Additionally, the result is compared on KITTI stereo matching benchmark.
Then, we used the model to generate the point cloud and calculated the processing time
it took to generate the depth map. Clearly, the results show that the approaches we took
provide sufficient FPS to execute the whole operation in real time. Related works, methods,
results, and conclusions are presented in Sections 2–5, respectively.

Figure 1. Point cloud generation from the depth map. (Top image): input to the pipeline-rectified
stereo images from KITTI [4]; (middle image): estimated depth map using U-Net-based depth
network; (bottom image): pseudo point cloud generation from the disparity.

2. Related Works

Image-based depth estimation to perform perception or localization tasks can be
achieved using monocular vision [6] or stereo vision [2]. An algorithm such as DORN [7]
achieves lower depth estimation errors than other previous works on monocular depth
estimation [8–10]. On the other hand, stereo-based depth prediction systems [2] show
more precision in estimating disparity. However, a promising solution requires a real-
time operating speed with more efficiency. The BTS architecture [11] for depth estimation
has a guided local planner layer in the decoding network. The method outperformed
some of the evaluation metrics. However, the work does not provide the computational
processing time against generating point cloud formation. Since the base networks have
49.5 million or more parameters, the network (ResNet50 or others) is very computationally
expensive. In contrast to our proposed encoder module, the trainable parameters are
around five times higher.

Recent studies are leveraging deep neural networks to learn model priors using picto-
rial depth, such as texture density or object perspective, directly from the training data [12].
Several technical breakthroughs in the past few years have made it possible to improve
depth estimation based on the ground truth depth dataset. If ground truth depth is not
available, a possible alternative is to train models using image reconstruction. Here, the
model is fed either monocular temporal frames or stereo pairs of images as input. The
model is trained by reducing error in image reconstruction by imitating the depth and
projecting it into a nearby view. Stereo pair is one form of self-supervision. Since stereo
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pair of data is available and easy to obtain, a deep network can be trained to perform
depth estimation using synchronized stereo pairs during training. For the problem of
novel view synthesis, the authors proposed a model with discretized depth [13] and a
model predicting continuous disparity [6]. Several advancements have also occurred in
stereo-based approaches, including generative adversarial networks [14] and supervised
datasets [15]. Moreover, there are approaches to predicting depth with minimized photo-
metric reprojection error with use of relative pose from a source image with respect to a
target image [3]. In their stereo approach, the authors used stereo pairs to calculate losses;
however, the neural architecture does not obtain features of other image pairs.

A stereo group-wise correlation method [16] computes the cost volume and divides
the left and right features into groups along the channel dimension. Each group’s corre-
lation maps are calculated to obtain several matching cost suggestions packaged into a
cost volume. X. Guo et al. proposed an improved 3D stacked hourglass network to reduce
the computation cost [16]. The RAFT-Stereo [17] architecture employs multi-level convo-
lutional GRUs for accurate real-time inference and provides cutting-edge cross-dataset
generalization results. CasStereoNet [18] presented a cost volume based on a feature pyra-
mid encoding geometry and context at smaller scales to improve stereo matching, ranking
first in the DTU benchmark [19] at the time of publication. A network based on Cascade
and fused cost volume [20] is used to increase resilience of a stereo matching network
by decreasing domain disparities and balancing the disparity distribution across datasets.
StereoDRNet’s depth architecture [21] predicts view-constant disparity and occlusion maps,
which aids the fusion system in producing geometrically consistent reconstructions. EPE
(0.98) and FPS (4.3) outperform PSMNet [2]. LEAStereo [22], a deep stereo matching ar-
chitecture, establishes an outperforming result on the KITTI [4,23,24] test dataset with
fewer parameters and significantly shorter inference time. ACVNet [25], a stereo match-
ing network, presents outperforming results in both quantitative and qualitative aspects.
However, the runtime for these algorithms is very high.

We demonstrate that the existing depth estimation model can be adapted to generate
higher-quality results by combining the stereo pair in input layers rather than using the
pair to calculate relative pose loss only. Moreover, we used the modified model to generate
point clouds in real time.

3. Method

This section introduces the architecture of our modified deep network and then
presents the strategy for splitting, point cloud generation, post-processing steps, and
evaluation techniques used for comparison. The proposed pipeline is shown in Figure 2,
and the modules are discussed in detail in this section.

Figure 2. The proposed pipeline to generate pseudo-point-cloud-like LiDAR. From the stereo images,
depth map prediction is completed using a modified stereo depth network, then back-projecting
the pixel to 3D point coordinate system cloud generation from the depth map. (Left image): input
to pipeline-rectified stereo images from KITTI [4]; (middle image): estimated depth map using
U-Net-based depth network; (right image): pseudo point cloud generation from the disparity.

3.1. Stereo Training Using Depth Network

The proposed architecture is encoder–decoder-based classic U-Net (shown in Figure 3).
The encoder is a pre-trained ResNet model [26], and the decoder converts the sigmoid
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output to a depth map. The primary network for training, U-Net architecture, merges
various scale features with varying receptive field sizes and concatenates the feature
maps after upsampling them by pooling them into distinct sizes. The ResNet encoder
module usually accepts single RGB images as input. In the proposed method, the input is
designed to take the image pair as input and provide estimation based on it. Therefore, the
modified network works both for training and inference. The ResNet encoder is modified
to accept a pair of stereo frames, or six channels, as input for the posture model. As a
result, instead of the ResNet default of (3, 192, 640), the ResNet encoder uses convolutional
weights in the first layer of shape (6, 192, 640). The depth decoder is a fully convolutional
network that takes advantage of feature maps of different scales and concatenates them
after upsampling. There is sigmoid activation at the last layer that outputs a normalized
disparity map between 0 and 1. Table 1 shows the output total number of trainable
parameters for encoder are 11,185,920 for (192,640) size of image input, whereas, for single-
image-layer-based encoder, it would be 11,176,512. The ResNet encoder has 20 Conv2d
layers, 20 BatchNom2D layers, 17 ReLU, 1 MaxPool2D layer, and eight basic blocks in total.
The decoder layer has the same block, kernel size, and strides.

Figure 3. The modified approach with stereo pair in the encoder architecture. Losses are calculated
based on the correct target frame from pair.

Table 1. Model summary for encoder module.

Layer (Type: Depth-idx) Output Shape Param

Conv2D:1–1 [1, 64, 96, 320] 18,816
BatchNorm2d: 1–2 [1, 64, 96, 320] 128
ReLU: 1–3 [1, 64, 96, 320] –
MaxPool2d: 1–4 [1, 64, 48, 160] –
Sequential: 1–5 [1, 64, 48, 160] –
BasicBlock: 2–1 [1, 64, 48, 160] 73,984
BasicBlock: 2–2 [1, 64, 48, 160] 73,984
Sequential: 1–6 [1, 128, 24, 80] –
BasicBlock: 2–3 [1, 128, 24, 80] 230,144
BasicBlock: 2–4 [1, 128, 24, 80] 295,424
Sequential: 1–7 [1, 256, 12, 40] –
BasicBlock: 2–5 [1, 256, 12, 40] 919,040
BasicBlock: 2–6 [1, 256, 12, 40] 1,180,672
Sequential: 1–8 [1, 512, 6, 20] –
BasicBlock: 2–7 [1, 512, 6, 20] 3,673,088
BasicBlock: 2–8 [1, 512, 6, 20] 4,720,640

Total params: 11,185,920
Trainable params: 11,185,920
Non-trainable params: 0

In monocular mode, Monodepth2 authors used temporal frame in Posenet [3] instead
of stereo pair to calculate the extrinsic parameter of the camera and the pose of the image
frame. Our approach will not rely on temporal frames for self-supervised prediction. The
reprojection loss is calculated using SSIM [27] between prediction and target in stereo
mode in stereo training. Metric reprojection error Lp is calculated from relative pose
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Ts→t of source view denoted as Is with respect to its target image It. In our training, the
other stereo pair will provide relative position Ts→t of source image Is. This rotation and
translation information will be used to calculate mapping from the source frame to the
target frame. Simultaneously, the ResNet architecture is fed with both image pairs (shown
in Figure 3). The other can be considered the stereo pair of source images by considering
one as the primary input. The target image is reprojected from the predicted depth and
transformation matrix from the stereo pair using the intrinsic matrix. Then, the method
used bilinear sampling to sample the source image from the target image. This loss aims to
minimize the difference between the target picture and the reconstructed target image, in
which depth is the most crucial factor. Instead of averaging the photometric error across all
source frames, the method utilized the minimum at each pixel. The equation of photometric
loss Lp can be represented [3] as in the following Equation (1)

Lp = min
s

RE(It, Is→t) (1)

Here, RE is the metric reconstruction error. It′→t is obtained [28] from the projected
depth D, intrinsic parameter K, and relative pose, as in the following Equation (2). 〈〉 is the
bilinear sampling operator and prj() denotes 2D-cordinate of projected image.

Is→t = Is〈prj(K, D, Ts→t)〉 (2)

On the other hand, edge-aware smoothness loss Ls is also calculated between the
target frame and mean-normalized inversed depth value. It boosts the model to recognize
sharp edges and eliminate noises. The reprojection loss requires to have correct output
image and target frame. Therefore, the method is designed to choose the proper target
frame from the image pairs. The following Equation (3) is the final training loss function,
which is the function used in [3]

L = µLp + λLs (3)

where µ is the mask pixel value, which is µ ε {0, 1}, obtained from the auto-masking
method [3], and λ is the smoothness term, which is 0.001. Learning rate 10−4, batch size
12, epochs size 20 is used while training model size of both 640× 192 and 1024× 320. The
edge-aware smoothness [3] can be described as following Equation (4)

Ls = |∂xd∗t |e−|∂x It | +
∣∣∂yd∗t

∣∣e−|∂y It | (4)

where d∗t = dt/dt is the mean-normalized inverse depth [29] to discourage the estimated
depth’s shrinking.

3.2. Dataset Splitting

We use the data split of Zhou et al. [28], which has 39,810 datasets for training and
4424 for validation. The intrinsic parameter provided by KITTI [4], which includes focal
length and image center, is normalized with respect to image resolution. A horizontal
translation of fixed size is applied to the horizontal transformation between stereo frames.
The neural network is fed the image from the split file along with the corresponding pair.
However, the rest of the calculation is based on the first taken from the split dataset, not
the pair image. In stereo supervision, median scaling is not needed as the camera baseline
can be used as a reference for scale.

3.3. Point Cloud Back-Projection

The depth (z) can be obtained from a stereo disparity estimation system that requires
pair of right–left images with a horizontal baseline b. The depth estimation system will
consider the left image as a reference and save the disparity map d with respect to the right
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image for each pixel (x, y). Considering the focal length of the camera, f, the following
Equation (5) of depth transformation can be obtained,

z(x, y) =
b× f

d(x, y)
(5)

Point clouds have their own 3D coordinate with respect to a reference viewpoint and
direction. Such 3D coordinate can be obtained by back-projecting all the depth pixels to a 3-
dimensional coordinate system that will contain the point coordinates as [(Xn, Yn, Zn)]

N
n=0;

N is the number of total points generated from the depth pixel. The back-projection was
performed on the KITTI dataset images using their project matrices. The 3D location of
each point can be obtained using the following Equations (6)–(8) with respect to the left
camera frame reference, which can be calculated from the calibration matrices.

width, X(x, y) =
z× (x− cx)

fx
(6)

height, Y(x, y) =
z×

(
y− cy

)
fy

(7)

depth, Z(x, y) = z (8)

where f is the focal length of the camera and
(
cx, cy

)
is the center pixel location of the image.

Similar steps of back-projection are used to generate a pseudo-LiDAR point cloud [30].

3.4. Post-Processing Step

The method can adopt a post-processing step while training to achieve a significant
accurate result in the evolution benchmark step. This adaption does not have any sig-
nificance on the actual method. It is presented to compare with similar benchmarks that
adopted these post-processing steps. Due to augmentation in the post-processing steps,
the model tends to improve the estimation result. In order to obtain the model with the
post-processing step, the stereo network is trained with the images two times, flipped and
un-flipped. A threshold parameter randomizes this flip feature during training. Therefore,
the model can be prepared both with and without post-processing steps. The flip feature
occurs both in the image and its intrinsic parameters, including the baseline of the pairs. An
unsupervised depth estimator introduces this type of two-forward pass-through network
technique to improve the result [6].

3.5. Evaluation Metric

The evaluation benchmark primarily illustrated the errors between ground truth and
prediction. The presented errors are mean absolute error (Abs Rel), squared error (Sq Rel),
linear root mean squared error (RMSE), and logarithmic root mean squared error (RMSE
log), respectively. These values indicate the lower, better result. On the other hand, δ < x
denotes the ratio prediction and ground truth between x and 1/x. The results that are closer
to 1 are better results. Instead of LiDAR reproject, ground truth depth from the KITTI depth
prediction dataset [31] is used to evaluate the prediction method. During evaluation of our
method, we used the same ground truth mentioned by Monodepth2 [3] while using stereo
images as input in the encoder’s input layer. Moreover, KITTI stereo 2015 benchmark is
also used for comparison.

4. Experiment and Results

Figure 4 presents the qualitative results on a specific KITTI scene. The first-, second-,
and seventh-row results show that our method adequately recognizes the pole. Moreover,
other results show that size of pedestrians (for example, the result in row 9), shape of
objects (for example, the results in rows 6 and 8), and buildings (for example, the results
in rows 5 and 7) are more aligned with the original image. From this visual result, it
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is evident that our depth estimator can predict some of the features, such as poles or
street signs, moving objects, and objects at far distances. Comparison is performed with
other Monodepth2 modes: monocular only (M), stereo only (S), and both (MS), along
with other self-supervised models presented in the paper [3]. Table 2 shows that our
method (highlighted with bold font) outperforms all the variants, including self-supervised
methods, except DORN [32]. Here, D refers to depth supervision, D* refers to auxiliary
depth supervision, M refers to self-supervised mono supervision, S refers to self-supervised
stereo supervision, and PP refers to post-processing. The other data were collected for
comparison from [3]. The result achieving higher accuracy is due to introduction of stereo
pairs in the input layer of ResNet architecture. Table 3 shows a comparison with the KITTI
stereo benchmark since stereo pairs are introduced, which presents a satisfactory runtime
for the proposed model. For stereo comparison, the disparity generated from the model is
a scale with a scale faction and image width since the model was normalized to the image
width. We used a common system to compare average processing speed (11th Gen Intel
i7-11800H, 2.30 GHz, NVIDIA GeForce RTX 3070 Laptop GPU-8 GB, Ubuntu 18.04, Torch
1.10.0, CUDA 11.3). The Supplementary Materials section contains information to access
the footage of the result. The results in Table 4 with ** show increase in FPS than other
image resolutions. If the model resolution and image solution size are similar, the process
does not use functional interpolation to resize the depth metrics to the image resolution.
Therefore, it requires less time to predict the final output. Other resolutions present low
FPS due to computationally expensive rescaling of the depth map. The processing time for
PSMNet requires much longer than U-Net-based architecture. The overall steps to produce
the point cloud are presented in Algorithm 1.

Algorithm 1. The overall steps: image to point cloud generation.

Input: Image pair input
Output: The 3D point cloud of the environment
1: Initialize the encoder and decoder model
2: Initialize the proper model and input size
3: Initialize the calibration parameter, such as intrinsic and projection matrix.
4: while image frames are available, do
5: Read image pairs
6: Convert to torch tensor
7: Concatenate the image pairs
8: Extract the features using the encoder network
9: Depth output using decoder network
10: Functional interpolation of result if the size is different
11: Squeeze the output to the array
12: Project the disparity to points
13: Convert to point field for visualization
14: end

Table 2. Quantitative results with all variants of Monodepth2 [3] and other self-supervised methods
on the KITTI 2015 dataset.

Method Train Input Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

AdaDepth 2018 [10] D* 0.167 1.257 5.578 0.237 0.771 0.922 0.971
Kuznietsov 2017 [33] DS 0.113 0.741 4.621 0.189 0.862 0.96 0.986
DVSO 2018 [34] D*S 0.097 0.734 4.442 0.187 0.888 0.958 0.98
SVSM FT 2018 [15] DS 0.094 0.626 4.252 0.177 0.891 0.965 0.984
Guo 2018 [32] DS 0.096 0.641 4.095 0.168 0.892 0.967 0.986
DORN 2018 [35] D 0.072 0.307 2.727 0.12 0.932 0.984 0.994
Zhou 2017 [28] M 0.183 1.595 6.709 0.27 0.734 0.902 0.959
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Table 2. Cont.

Method Train Input Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Yang 2018 [7] M 0.182 1.481 6.501 0.267 0.725 0.906 0.963
Mahjourian 2018 [36] M 0.163 1.24 6.22 0.25 0.762 0.916 0.968
GeoNet 2018 [37] M 0.149 1.06 5.567 0.226 0.796 0.935 0.975
DDVO 2018 [29] M 0.151 1.257 5.583 0.228 0.81 0.936 0.974
Ranjan 2019 [38] M 0.148 1.149 5.464 0.226 0.815 0.935 0.973
EPC++ 2020 [39] M 0.141 1.029 5.35 0.216 0.816 0.941 0.976
Struct2depth 2019 [40] M 0.141 1.026 5.291 0.215 0.816 0.945 0.979
Monodepth2 w/o
pretraining 2019 [3] M 0.132 1.044 5.142 0.21 0.845 0.948 0.977

Monodepth2 (640 ×
192), 2019 [3] M 0.115 0.903 4.863 0.193 0.877 0.959 0.981

Monodepth2 (1024 ×
320), 2019 [3] M 0.115 0.882 4.701 0.19 0.879 0.961 0.982

BTS ResNet50, 2019 [11] M 0.061 0.261 2.834 0.099 0.954 0.992 0.998
Garg 2016 [41] S 0.152 1.226 5.849 0.246 0.784 0.921 0.967
Monodepth R50 2017 [6] S 0.133 1.142 5.533 0.23 0.83 0.936 0.97
StrAT 2018 [42] S 0.128 1.019 5.403 0.227 0.827 0.935 0.971
3Net (VGG), 2018 [43] S 0.119 1.201 5.888 0.208 0.844 0.941 0.978
SuperDepth & PP, 2019
[44] (1024 × 382) S 0.112 0.875 4.958 0.207 0.852 0.947 0.977

Monodepth2 w/o
pretraining 2019 [3] S 0.13 1.144 5.485 0.232 0.831 0.932 0.968

Monodepth2 (640 ×
192), 2019 [3] S 0.109 0.873 4.96 0.209 0.864 0.948 0.975

Monodepth2 (1024 ×
320) 2019 [3] S 0.107 0.849 4.764 0.201 0.874 0.953 0.977

Monodepth2 w/o
pretraining, 2019 [3] MS 0.127 1.031 5.266 0.221 0.836 0.943 0.974

Monodepth2 (640 ×
192), 2019 [3] MS 0.106 0.818 4.75 0.196 0.874 0.957 0.979

Monodepth2 (1024 ×
320), 2019 [3] MS 0.106 0.806 4.63 0.193 0.876 0.958 0.98

Ours w/o pretraining
(640 × 192) S 0.083 0.768 4.467 0.185 0.911 0.959 0.977

Ours (640 × 192) S 0.080 0.747 4.346 0.181 0.918 0.961 0.978
Ours (1024 × 320) S 0.077 0.723 4.233 0.179 0.922 0.961 0.978
Ours (1024 × 320) + PP S 0.075 0.700 4.196 0.176 0.924 0.963 0.979

Table 3. Comparison of stereo matching methods on the KITTI stereo 2015 benchmark.

Methods
NOC

Runtime (s)
D1-bg (%) D1-fg (%) D1-All (%)

SED [45] 24.67 39.95 27.19 0.68
Raft-3D [46] 1.34 3.11 1.63 2
Mono-SF [47] 13.72 26.36 15.81 41
LEAStereo [22] 1.29 2.65 1.51 0.3
ACVNet [25] 1.26 2.84 1.52 0.2
CFNet [20] 1.43 3.25 1.73 0.18
monoResMatch [48] 21.65 19.08 21.23 0.16
PBCP [49] 2.27 7.71 3.17 68
PSMNet [2] 1.38 3.45 1.72 0.41
Ours (1024 × 320) 7.00 12.53 7.84 0.03
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Table 4. Average processing speed.

Method Image Resolution FPS (Avg.)

PSMNet [2,30]

720 × 480 2.857
1080 × 720 1.298
640 × 256 6.25

1024 × 320 3.125

Stereo Depth Estimation,
Monodepth2 (640 × 192) [3]

720 × 480 40.6
1080 × 720 21.7
640 × 192 60.9 **

1024 × 320 42.9

Ours (640 × 192)

720 × 480 32.1
1080 × 720 19.1
640 × 192 57.2 **
1024 × 320 34.2

Ours (1024 × 320)

720 × 480 23.1
1080 × 720 15.64
640 × 192 26.6

1024 × 320 31.9 **
** indicates the leading FPS performance on specific image resolution from specific models.

Figure 4. Qualitative results on the KITTI scene. (a) the primary image input; (b) generated result
from the stereo depth estimator by Monodepth2 [3]; (c,d) are our results generated from 640 × 192
and 1024 × 320 models, respectively.
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The main module responsible for FPS is depth prediction network. We presented the
result with models 640 × 192 and 1024 × 320 in Table 4. The result includes processing
of point cloud projection, whereas Table 3 provides only the runtime of depth estimation.
Point cloud back-projection does not require extra time when the model architecture’s
input size and the input image size are the same. Since it does not require using functional
interpolation, the runtime for the whole algorithm is low and almost the same when the
same model input and image input are used. Therefore, the computational process varies
when the model input size and image input are different. Using stereo model 1024 × 320,
we can obtain higher accuracy in real time. Figure 5 shows the point cloud visualization
result on KITTI scenes. We used ROS converted bag of KITTI dataset and RViz to visualize
the point cloud data. The point cloud visualization shows the perception of pedestrians,
bicycles, cars, and traffic signs in 3D space.

Figure 5. Visualization of point cloud generated from the depth estimation; the first column is the
input pairs to the neural network, the second column is depth prediction, and the third column
presents the point cloud result.

5. Conclusions

In this paper, we have presented a strategy aimed at reducing the gap between point
clouds from real LiDAR devices and image-based point clouds. We presented performance
results for operating the model with U-Net architecture. Both versions of our resolution
(average 57.2 and 31.9 FPS, respectively) indicate real-time operating performance. More-
over, we improved the network input layer by introducing stereo pairs to the input layer.
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Improvement in the stereo-based network is due to stereo information that helps the net-
work to conceive more perceptions regarding moving and standstill objects. The final result
shows more accurate results on the 1024 × 320 model and post-processing-based training
on 1024 × 320. The improvement we achieved from the modified network is comparatively
greater than its previous versions. Initially, we took a different approach to introduce more
pixel features to the model. We tried to concatenate the temporal frames in the input layers;
however, the result was poor. Later, we adopted the approach of stereo pairs since the
model has no experience with stereo pairs. Since the work used stereo pairs, it is not techni-
cally suited for mono depth estimation. Due to use of stereo pairs, the computing process
also increased. On the other hand, the LiDAR device is the most expensive commercial
component for delivery vehicles. The image-based approach is the way to close this gap in
cost. The proposed pipeline is entirely dependent on depth estimation’s accuracy, and poor
depth estimation will result in erroneous point cloud data. Our approach aims to obtain an
increase in FPS to generate fast pseudo-LiDAR. The model is trained with the KITTI raw
dataset, which consists of 39,810 unrectified datasets for training and 4424 for validation.
Therefore, it is not equally possible to compare the result with the KITTI stereo benchmark.
However, the stereo benchmark is used for comparison with stereo matching algorithms,
such as RAFT-3D [46], PSMNet [2], LEAStereo [22], CFNet [20], or ACVNet [25]. The result
outperforms in terms of runtime. The outcome of this work does not raise any privacy
issues or fairness issues. We do not believe our work or its possible applications pose any
major concerns of security threats or human rights violations. In future work, we also aim
to perform 3D object detection and SLAM algorithm over the point cloud achieved from
depth prediction.

Supplementary Materials: The real-time result footage is available here (https://www.xianke-lin.
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