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Abstract: Given its advantages in low latency, fast response, context-aware services, mobility, and
privacy preservation, edge computing has emerged as the key support for intelligent applications
and 5G/6G Internet of things (IoT) networks. This technology extends the cloud by providing inter-
mediate services at the edge of the network and improving the quality of service for latency-sensitive
applications. Many AI-based solutions with machine learning, deep learning, and swarm intelligence
have exhibited the high potential to perform intelligent cognitive sensing, intelligent network man-
agement, big data analytics, and security enhancement for edge-based smart applications. Despite its
many benefits, there are still concerns about the required capabilities of intelligent edge computing to
deal with the computational complexity of machine learning techniques for big IoT data analytics.
Resource constraints of edge computing, distributed computing, efficient orchestration, and syn-
chronization of resources are all factors that require attention for quality of service improvement
and cost-effective development of edge-based smart applications. In this context, this paper aims to
explore the confluence of AI and edge in many application domains in order to leverage the potential
of the existing research around these factors and identify new perspectives. The confluence of edge
computing and AI improves the quality of user experience in emergency situations, such as in the
Internet of vehicles, where critical inaccuracies or delays can lead to damage and accidents. These are
the same factors that most studies have used to evaluate the success of an edge-based application. In
this review, we first provide an in-depth analysis of the state of the art of AI in edge-based applications
with a focus on eight application areas: smart agriculture, smart environment, smart grid, smart
healthcare, smart industry, smart education, smart transportation, and security and privacy. Then,
we present a qualitative comparison that emphasizes the main objective of the confluence, the roles
and the use of artificial intelligence at the network edge, and the key enabling technologies for edge
analytics. Then, open challenges, future research directions, and perspectives are identified and
discussed. Finally, some conclusions are drawn.

Keywords: Internet of things; edge computing; artificial intelligence; machine learning; deep learning;
swarm intelligence; big data analytics; bioinspired metaheuristic algorithms; resource management;
edge analytics

1. Introduction

The adoption of new emerging technologies such as the Internet of things (IoT),
wireless sensor networks (WSNs), cloud/edge computing, and 5G/6G communication
networks in various fields (such as healthcare, agriculture, education, transportation, etc.),
can bring many opportunities in improving people’s quality of life, thereby building
intelligent systems that deliver high-quality, innovative services to the consumers. In the
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IoT environment, a large number of interconnected devices, such as sensors, mobiles, etc.,
lead to voluminous, heterogeneous, highly noisy, spatiotemporal-correlated and real-time
data streams that need intelligent learning for efficient data analysis and meaningful insight
extraction [1]. The success of any intelligent application can be attributed to the quality of
the data collected, the effectiveness of data processing, storage, retrieval process, and the
degree of accuracy and robustness of the data analysis results.

In conventional IoT solutions, the large amount of IoT data generated by the IoT
devices is uploaded to the cloud via a wide area network (WAN) for further analysis to
provide end-user feedback [2]. As the number of devices increases immensely, the commu-
nication costs, bandwidth, and latency become more expensive, which makes it unsuitable
for real-time and time-sensitive applications. Furthermore, IoT has structured and unstruc-
tured, heterogeneous data that require advanced tools for its management. Fortunately,
AI provides powerful tools for extracting valuable information to make accurate decisions
in real-time [3]. Bringing AI closer to the edge offers a promising solution for achieving
high system performance and improving quality of service (QoS) and quality of experience
(QoE) for delay-sensitive applications.

Many AI-based solutions integrating machine learning (ML), deep learning (DL),
and swarm intelligence (SI) have revealed a strong beneficial power to IoT applications
in intelligent sensing [4], network management [5], resource management [6], big data
analysis [7], and security system improvement [8]. New opportunities have emerged by
adapting AI technologies to address the diverse characteristics of big IoT data features
including volume, variety, velocity, veracity, and variability. DL models generate high-level
abstraction and actionable insights that provide feedback through IoT systems to enhance
their services [7]. The limitations of big data processing in the cloud and IoT systems, such
as poor scalability, security issues, task allocation, fault tolerance, and low performance in
conventional computing frameworks, can be resolved in a promising way by bioinspired
computing [9].

Cloud-based infrastructures are considered the best suited to provide the needs of
services and resources. Nevertheless, sending the massive data generated to the cloud poses
some challenges, such as high latency, network congestion, and privacy issues. Fortunately,
edge computing has emerged as a promising paradigm that enables computation at a
location closer to the data source, which decreases the workload to the cloud, reduces
latency, and improves privacy and the quality of service of smart applications and the
user experience.

Edge computing is a distributed computing paradigm that extends cloud services to
the edge of the network by deploying computational capabilities and storage between the
terminal and the cloud devices. It addresses the limitations of cloud-based architecture by
reducing bandwidth consumption, improving response time, and providing mobility and
context-aware services. Fog computing, mist, cloudlet, and mobile edge computing (MEC),
are all solutions belonging to the wider concept of edge computing [10].

The integration of edge computing along with artificial intelligence has the potential
to gather, store, and process large amounts of IoT data, maximize the potential for rapid,
real-time data analysis and decision-making, and deliver a variety of decentralized, low-
latency, reliable, intelligent, and time-sensitive application services. Given the feature of
resource-constrained and dynamic changes in edge computing, AI-based ML is considered
the most suitable solution to maximize resource utilization, offload, and schedule computa-
tional tasks adaptively, dynamically, in real-time, and on-demand at the edge nodes, and
meet application requirements in terms of time sensitivity and energy efficiency during
computational task-sharing [11,12].

Several review papers have investigated the integration of AI in edge-based applica-
tions. In [13], Haddaji et al. present a comprehensive survey of AI techniques for security
challenges in the Internet of vehicles (IoV). In this work, the authors evaluate the impact of
AI on security in IoV. However, authors did not consider the enabling technologies and
big data analytics. In [14], Laroui et al. cover the various use cases of IoT with edge and
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fog computing, job scheduling in edge computing, merging software-defined networking
(SDN) and network function virtualization (NFV) with edge computing, security and
privacy effort, and blockchain in edge computing. However, the authors did not consider
the application of AI with the enabling technologies in smart applications. In addition,
Chang et al. explore in [3] the combination of IoT and AI by using edge computing and the
cloud. The authors focus on seven representative IoT application scenarios and specifically
examine the techniques that enable the effective and efficient deployment of AI models.
However, the authors did not consider the use of techniques of AI and the purpose and
opportunities of applying AI in edge-based applications scenarios. On the other hand,
Deng et al. concentrate in [15] on developing inference and training frameworks, by adapt-
ing models and hardware acceleration to support AI. Unfortunately, the authors did not
consider the confluence of AI and edge computing in the different application domains
of IoT. In [16], Xu et al. investigate the concept of edge intelligence from four axes: edge
caching, edge training, edge inference, and edge offloading. In this review, the authors did
not cover the confluence of AI and edge computing in the different application domains
of IoT. In [17], the authors review ML techniques that are associated with three aspects of
fog computing: management of resources, accuracy, and security. However, the authors
did not consider the key enabling technologies for the deployment of AI models. In [18],
the authors analyze the role of AI algorithms and the challenges of the application of
these algorithms for resource management. However, the authors did not consider the
key enabling technologies for the deployment of AI models. The authors in [19] provide a
systematic review of nature-inspired approaches for resource management (task allocation,
task scheduling, offloading) in cloud and edge computing. However, they do not address
big data analytics.

In contrast to these reviews, our work investigates the confluence of AI and edge in
many application domains by using different characteristics: AI, big data analytics, resource
management, smart application, and enabling technologies. Table 1 shows a comparison
of the existing surveys with our work. This table summarizes whether the corresponding
surveys considered or not the characteristics used for the comparison.

Table 1. Qualitative comparison of related works.

Year Reference AI Category Big Data
Analytics

Resource
Management

Key Enabling
Technologies

Application
Domains

2021 [14] No No Yes No Yes
2022 [13] Yes No No No IoV
2021 [3] Yes No Yes Yes yes
2020 [15] yes No Yes Yes NO
2020 [16] Yes Yes Yes Yes No
2019 [17] Yes Yes Yes No Yes
2020 [19] Yes No Yes No No
2022 [18] Yes No Yes No Yes
2023 Our paper Yes Yes Yes Yes Yes

Edge computing has become a promising solution for time-sensitive applications.
However, the distributed, heterogeneous, and resource-constrained characteristics of edge
computing pose many challenges and limitations in the design of on-device, distributed,
and parallel computing in the edge infrastructure. This motivates us to write this review
with a focus on exploring the proposed AI-based algorithms and their applicability in edge-
based applications, investigating how AI can be used in edge-based IoT applications and
how the confluence of edge and AI can improve QoS/QoE for many application domains,
and highlighting the latest research and new technologies around this confluence.
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In this paper we considered several points, which can be summarized as follows.

• We reviewed 114 related papers that have been published from 2019 to present.
• To help readers understand the value and potential of implementing edge-based IoT

infrastructure and to address cloud-based applications issues, we present an in-depth
analysis of the state of the art of edge-based applications focusing on eight application
areas: smart agriculture, smart environment, smart grid, smart healthcare, smart
industry, smart education, smart transportation, and security and privacy.

• We present a qualitative comparison of related works in the eight aforementioned
application areas. In this comparison we used eight characteristics: use case (the scope
of application of AI for each application area), AI role (the potential of AI use), AI
technique (AI-related algorithms), the used dataset, AI placement (on edge, cloud, or
edge/cloud), employed technologies (technologies for running AI at the edge), the
platform used for the implementation, and performance metrics. Three other columns
are used to illustrate: the main contributions, benefits of edge-AI, and drawbacks of
the reviewed works.

• We present a critical analysis of the presented state of the art by (1) exploring the cur-
rent difficulties and limitations associated with the development and implementation
of AI models and (2) investigating how AI can be used to overcome the difficulties
presented by massive data in IoT systems and to improve the effectiveness of services
on decentralized edge platforms.

• Based on the synthetic results, we suggest future trends for addressing the challenges
of edge-based application deployment regarding big data analytics, scalability, re-
source management, security and privacy, and ultralow latency requirement.

The remainder of the paper is organized as follows. In Section 2, we review and
qualitatively compare intelligent edge-based related works in eight application areas (i.e.,
smart agriculture, smart environment, smart grid, smart healthcare, smart industry, smart
education, smart transportation, and security and privacy). Then, in Section 3, we present
a discussion of the related works presented in Section 2. After that, we present in Section 4
current issues and future trends. We conclude the paper in Section 5. Figure 1 illustrates a
schematic overview of the paper’s organization structure.
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Paper Structure

Section 1: Introduction

Background

Motivations

Contributions

Section 2: Literature review

2.1. Taxonomy of reviewed papers

2.2. Discussions and comparisons

2.2.1. Smart environment

2.2.2. Smart grid

2.2.3. Smart agriculture

2.2.4. Smart eductaion

2.2.5. Smart industry

2.2.6. Smart healthcare

2.2.7. Smart transportation

2.2.8. Security and privacy

Section 3: Discussions of related works

The relevance of using AI-edge in IoT-based application

The potential use of AI at the network edge

Enabling technologies for AI -edge for data analytics

Performances metrics

Frameworks, platforms, and tools

The convergence of AI-edge with other technologies

Section 4: Open issues and future directions

Big data analytic issues

Scalability

Resource managment

Security and Privacy

Ultra low latency requirment

Section 5: Conclusion

Figure 1. A schematic overview of the paper organization structure.

2. Artificial Intelligence in Edge-Based IoT Applications: Literature Review

Artificial intelligence techniques such as DL, ML, and bioinspired algorithms in IoT-
based applications are necessary to manage the amount of data generated by various IoT
devices, to process and analyze these data and, hence, to transform them into insights and be
able to retrieve the knowledge required to make predictions, monitor, and make decisions.

In this section, we review the recent works on intelligent edge-based IoT applications.
Furthermore, we present a qualitative comparison of the existing works in eight different
application areas: smart agriculture, smart environment, smart grid, smart healthcare, smart
industry, smart education, smart transportation, and security and privacy. The qualitative
comparison is structured in tables by using several important characteristics: use case,
main contributions, AI role, AI algorithm, dataset, AI placement, employed technologies,
platforms and tools, performance metrics, benefits of the AI-Edge, and drawbacks. Table 2
shows the categorization of the reviewed works according to their application domain.
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Table 2. Taxonomy of the reviewed works.

AI-edge based
applications

Smart
environment

AQM [20–24]
WQM [25–27]
SWM [28]
UM [29–32]

Smart
grid

LDF [33–40]
DSM [41–43]
LAD [44–49]

Smart
agriculture

WP [50,51]
LM [52,53]
SI [54,55]
CMDD [56–58]
MHSAM [59,60]

Smart
education

SEM [61–65]
SA [66–68]

Smart
industry

FI [69,70]
CI [71]
MMM [72–76]
PQMP [77–79]

Smart
healthcare

DHM [80,81]
AAL [82–86]
HAR [87–92]
LDP [93–100]
DD [101–110]

Smart
transport

SPM [111–113]
TMP [114–118]
ITM [119–121]

Security
and

privacy

PP [122–124]
AA [8,125]
ID [126–133]

2.1. Smart Environment

Intelligent environmental monitoring aims to establish a full system that incorporates
several types of sensors and IoT devices designed to measure various indications of the
environment, such as temperature, humidity, and the concentration of pollutants in the air
or the water. The integration of artificial intelligence and edge computing is essential to
meet the requirements related to the complexity and the huge amount of environmental
data that can be collected in this context. In the following, we first review and classify
related works into four categories: air-quality monitoring (Section 2.1.1), water-quality
monitoring (Section 2.1.2), smart water management (Section 2.1.3), and underwater moni-
toring (Section 2.1.4); then, we qualitatively compare these related works according to the
aforementioned characteristics (see Table 3).
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Table 3. Qualitative comparison of smart environment-related works.

Use
Case

Ref Contribution AI Role
(At the Edge)

AI
Algorithm

Dataset AI
Placement

Employed
Technology

Platform Metrics Benefits
AI-Edge

Drawbacks

Sm
ar

te
nv

ir
on

m
en

t

A
Q

M

[20] Predicting of future
indoor status of
PM10 and PM2.5

Prediction LSTM Data from
Seoul, Korea

Edge device,
cloud

Federated
learning

TensorFlow
Keras

RMSE Minimize load
Hight accuracy

Does not con-
sider all fac-
tors in predic-
tion

[21] Green energy-based
wireless sensing net-
work for air-quality
monitoring

Prediction LSTM Airbox system
dataset

Edge device,
cloud

Federated
learning

Not men-
tioned

MAE-loss RMSE
Energy threshold
saving, ratio error
rate

Communication ef-
ficiency
Preserving data pri-
vacy
Low computational
complexity

Slightly lower
accuracy

[22] Location aware
environment sens-
ing

Prediction k-means,
LSTM, CNN
(ResNet)

WA dataset
Outdoor image
datasets

Edge device,
cloud

Distributed
computing
cluster

Federated
learning

Accuracy, avg. sum
of squared errors,
silhouette coeffi-
cient

High accuracy Homogeneous
nodes only
considered

[23] Distributed data
analysis
for air prediction

Preprocessing K-means
SVM, MLP,
DT, KNN,
NB

U.S. Pollution
Data Kaggle

Edge de-
vices, cloud

Distributed
computing

IFogSim
toolkit-
YAFS-

Accuracy
Precision recall
F1-Score

Data reduction
Low response time
reduction

Not consider
mobility of
nodes

[24] On-device air-
quality prediction

Prediction CNN, LSTM Dataset from
University of
California–Irvine
(UCI) Machine
Learning Reposi-
tory page

Edge de-
vices(RPi3B+,
RPi4B)

Posttraining
quantization
Hardware
accelerator

TensorFlow
Lite

RMSE, MAE
execution time

Low-complexity
model latency

Accuracy
degradation

W
Q

M

[25] Onboard sensor
classifier for the
detection of contam-
inants in water

Classification EA PCA Real-world
dataset

Edge device
(sensors)

Low-cost
model

Not men-
tioned

Accuracy F-score
TP TN FP FN

High accuracy Low accuracy
for unlabeled
data

[27] Online water-
quality monitoring

Prediction BPNN Real-world
dataset

Edge gate-
way

Low-cost
model

Not men-
tioned

Data transmission
response time

Low-complexity
model accuracy,
data transmission
reduction

Accuracy
needs to
improved
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Table 3. Cont.

Use
Case

Ref Contribution AI Role
(At the Edge)

AI
Algorithm

Dataset AI
Placement

Employed
Technology

Platform Metrics Benefits
AI-Edge

Drawbacks

W
Q

M

[26] Real-time water-
quality monitoring

Preprocessing
prediction

PCA LR
MLP SVM
SMO Lazy-
IBK, KStar
RF RT

Data of sewage
water-treatment
plant
of the institute,
data collected
from river Ganga

Edge device
(Raspberry
Pi)

Transfer
learning

Python,
Weka

Correlation coeffi-
cient MAE RMSE-
RAE RRSE
Edge response time

Less response time Communication
cost not con-
sidered

SW
M [28] Smart water saving

and distribution
Prediction
Decision
making

FFN MDN Real-world
dataset

Edge server SofT com-
puting
blockchain

Python MSE accuracy Effective decision-
making

Accuracy
needs to be
enhanced

Sm
ar

te
nv

ir
on

m
en

t

U
M

[29] Reduce data and im-
prove data quality
or underwater

Data
(fusion,
reduction)

BPNN evi-
dence theory

Western Pacific
measurement
information

Fog gateway
Cloud

Edge pre-
processing

Not men-
tioned

Time consumption
Redundant data
volume
R, MAE, MSE
SMAPE

Low communica-
tion cost
High accuracy

High delay

[30] Real anomaly detec-
tion
errors in underwa-
ter
vehicles

Network
manage-
ment,
data re-
duction
classification,
decision-
making

YULO
(CNN), RL

Real-world
dataset

Edge device
(Raspberry
Pi)
Fog gateway

Hardware
accelerator,
pretrained
CNN

Not men-
tioned

Accuracy, latency,
recall

High accuracy, less
latency

Accuracy de-
graded

[31] Low delay for
Seawater quality
prediction

Data re-
duction
Prediction

PCA RVM Real-world
dataset

Mobile edge
computing

Low-cost
model

Not men-
tioned

CD MAE RMSE Higher prediction
Low time consump-
tion

High-cost
model

[32] Downlink through-
put performance en-
hancement

Resource
allocation
Classification

DRL DNN Real-world
dataset

Edge de-
vice (IoUT
devices)

Federated
learning

Not men-
tioned

Downlink through-
put channel usage
Convergence rate

Low complexity –
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2.1.1. Air Quality Monitoring (AQM)

For the optimal utilization of cloud resources and the improvement of computational
power, a distributed fog computing framework for air-quality monitoring was developed
in [23] by applying data preprocessing and clustering techniques to identify outliers on the fog
layer by using the K-means algorithm and feeding only the relevant information to the cloud
for the classification phase. This approach achieves 95% accuracy with SVM compared to a
multilayer perceptron (MLP), decision tree (DT), K-nearest neighbor (KNN), and naive Bayes
(NB), and reduces the amount of data sent to the cloud still improving the response time.

In order to improve the computational efficiency and model performance of the
environmental monitoring system considering regional characteristics when distributing
various site monitoring models, the authors in [22] proposed a new framework called
federated region-learning based on edge computing for PM2:5 air-quality monitoring. The
authors first applied a regionalization algorithm that divides the monitoring locations
into a set of subregions, each designed by microclouds in which the regional model is
selected by the model that has the highest accuracy and, subsequently, the global model is
aggregated by using two types of aggregation strategies to target the different bandwidth
requirements better. The evaluation of the platform has been tried by using recurrent neural
networks (RNNs) and convolutional neural networks (CNNs). It has been proven that the
FRL approach improves the computational efficiency compared to the centralized training
mode and normal federated learning (FL) [2].

In [24], Wardana et al. designed a distributed short-term air-quality prediction system
for hourly PM2.5 concentrations based on a hybrid deep learning model composed of 1D
CNN and long short-term memory networks (CNN-LSTM). They conceived an efficient
posttraining quantization method to optimize the LSTM model and make it usable by
resource-constrained edge devices wherein a one-dimensional CNN is used as a feature
extractor. Through the results, the authors claim that the model has proven its performance
in reducing execution time and latency.

In order to ensure privacy and reduce network traffic, the authors in [20] designed an
efficient collaborative edge/cloud framework to predict the future concentration of fine
particles in an individual space by selecting the best predictive model for the local edge
based on its characteristics. The edge selects from the cloud the model with the highest
correlation for a specific factor instead of choosing the model with the best performance.
The performance of the system is validated with the LSTM algorithm for indoor PM10 and
PM2.5 status prediction.

For efficient data generation and data privacy preservation for PM2.5 predictions,
Putra et al. in [21] proposed a federated compressed learning based on an edge computing
framework for massive-scale WSNs. This approach used compressed sensing techniques
at the sensor level to reduce network data traffic. Then, at the fog layer, the data is
trained distributively. After that, the global model is constituted by aggregating the local
training models at the cloud layer. The evaluation is performed by using LSTM for PM2.5
concentration prediction and shows the efficiency of the compression sensing in reducing
the data at the computation efficiency of the proposed model.

2.1.2. Water Quality Monitoring (WQM)

In order to continuously monitor water quality in a distributed manner by using
low-cost, cost-effective sensors, the authors of [25] developed an on-board sensor classifier
for the detection of water pollutants. First, they used principal component analysis (PCA)
algorithm to simplify and transform the original sensed data into a 3D space. Then, an
adaptive classification scheme is employed on the transformed space to distinguish the
contaminants by using a simple geometric model, the paramaters of which are learned by
using a generational evolutionary algorithm (EA).

Authors in [26] developed a soft sensor model for real-time water-quality monitoring
through intelligence at the edge to estimate the value of the biological oxygen demand. An
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edge/cloud platform is designed wherein the instance-based learning (IBK) algorithm is
selected after a comparative study between different ML algorithms.

In [27], the authors proposed an online water-quality monitoring and early warning
model based on edge computing. The authors proposed an improved backpropagation
neural network (BPNN) by using a hybrid optimization method based on the Nelder–Mead
simplex method and cuckoo search algorithm to optimize the weight and deviation of
the BPNN.

2.1.3. Smart Water Management (SWM)

In [28], the authors designed an efficient framework for water conservation based on
blockchain technologies, soft computing, and machine learning. At the edge nodes (house
nodes) a feed-forward neural network (FFNN) trained by symbiotic organism search is
used to forecast the water consumption of each house. Then, the forecast value is compared
to the historical value obtained by using a randomized probability distribution model for
neural networks called the mixture density network (MDN). Based on these two calculated
values, an incentive system is prepared in the blockchain to assign a good incentive to
houses using less water than the historical value and applies a penalty to houses using more
water than expected. Several factors were used such as (i) the number of people, (ii) the
average income of the family, (iii) the profession of the members, and (iv) previous water
demands. Results show the effectiveness of the approach for optimal water management.

2.1.4. Underwater Monitoring (UWM)

Regarding marine environment monitoring, Yang et al. designed in [29] a fog/cloud-
based framework for the effective management of ocean data and real-time monitoring of
the marine environment. They introduced a fog layer to support data processing by using
a numerical gradient-based method for data cleaning and an improved algorithm based on
the evidence theory. This latter is used for multisensory information fusion with the aim of
reducing the data volume and improving the data quality. In the cloud layer, a predictive
model with BPNN is implemented. Authors argue that the framework can improve the
efficiency of data use, improve the processing speed of ocean data and reduce the time delay.
In [30], Lu et al. introduced a cognitive ocean network called motor anomaly detection
system and detection of marine organisms. The proposed system consists of two methods:
the first is deployed in the edge layer by using deep reinforcement learning and Raspberry
Pi to prevent the default of underwater vehicles, and the second is deployed in the fog
layer to detect marine organisms by using YOLO-based underwater method. Kwon et al.
proposed in [32] a distributed DL approach based on federated learning with underwater
IoT devices in the ocean environment. They used a multiagent deep deterministic policy
gradient based on reinforcement learning (RL) to solve the problem of joint cell association
and resource allocation in a way that improves the DL throughput of underwater IoT
devices in underwater FL.

Regarding seawater quality prediction, Sun et al. developed in [31] a multivariate pre-
diction model supported by edge computing for seawater quality assessment based on the
combination of a PCA and relevance vector machine (RVM). Results show that the proposed
model has higher prediction ability and less time consumption than other approaches.

2.2. Smart Grid

The integration of new technologies, such as IoT and artificial intelligence, into the
power grid system allows (1) the design of a smart decision system support by developing
an electricity distribution network. This offers the possibility of remotely measuring the
state of the energy usage status online and thus enables the control of energy consumption
and its further adjustment to the consumers’ energy needs. It also allows (2) the identifi-
cation of abnormal behaviors in the consumption or production of electrical energy, and
(3) the prediction of future electricity demand and energy consumption in an intelligent
way based on the data acquired by the smart meters.
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In this section, we present the recent works that use AI in edge-based smart grids and
classify them into three categories: load/demand forecasting (Section 2.2.1), demand-side
management (Section 2.2.2), and load-anomaly detection (Section 2.2.3). Moreover, we
qualitatively compare the presented related works in Table 4.

2.2.1. Load/Demand Forecasting (LDF)

Taïk and Cherkaoui proposed in [33] an edge-based, short-term individual load-
forecasting framework. They used a distributed computation that uses an FL approach
with the aim of addressing the challenges presented by the stochastic nature of consumption
profiles and privacy in the smart grid. The realized simulations show that the approach
outperforms the centralized model in terms of reducing the network load while preserving
the privacy of the consumption data. This work does not solve the problem of detecting
anomalies in the power consumption profile, which affects the accuracy of the model.

The authors in [34] proposed an edge-based short-term load-forecasting framework
that uses an FL approach to enhance the prediction performance and reduce prediction
errors. They proposed to group energy customers into similar users based on socioeconomic
aspects or consumption similarities by using clustering techniques. This grouping of users is
efficient, more effective than other trivial privacy-preserving schemes, and more adaptable
to rapidly changing consumption patterns. In comparison with the centralized system,
the proposed approach is more efficient in terms of model learning time, scalability, and
inherently privacy-friendly alternatives. Furthermore, the communication overhead is
reduced when energy-consumption measurements are recorded at a fine granularity.

Li et al. proposed in [35] a fog computing-based incremental learning for real-time
day-ahead prediction of building energy demands. In order to choose the most suitable
incremental machine learning model to address the high-speed real-time requirements
of fog computing and generate good and fast edge intelligence, the authors compared
two incremental learning algorithms, namely the swarm decision table (SDT) and the
classical decision Hoeffding tree. Both combined with swarm feature selection to deal
with the complexity of aggregated IoT and select only the significant features for efficient
incremental machine learning. Results show the effectiveness of the proposed model.

Li et al. also proposed in [36] a fog computing-based platform for real-time prediction
of electricity demand. First, a clustering algorithm is used to categorize users based on
their total electricity consumption. Then, according to the characteristic of users’ historical
electricity consumption, a predictive model using XGBoost or ARMA was selected. The
accuracy of the proposed approach is 20% higher in comparison to classical models.

In [37], Rabie et al. proposed a fog-based framework for accurate and fast electrical
load forecasting in smart grids. First, a data summarization is performed on the collected
data by applying several rules enabling the fog to send only the relevant data to the cloud by
using fuzzy rank combined with a wrapper feature selection method and outlier detection.
Then, an NB classifier is used to train the model and evaluate feature selection-based data
processing techniques. Results show the effectiveness of the fog-based framework for
accurate and fast load forecasting.
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Table 4. Qualitative comparison of smart grid related works.

Use
Case

Ref Contribution AI Role
(At the Edge)

AI
Algorithm

Dataset AI
Placement

Employed
Technology

Platform Metrics Benefits
AI-Edge

Drawbacks

Sm
ar

tg
ri

d

LD
F

[33] Short-term energy
consumption fore-
casting

Prediction LSTM Pecan Street
Inc’s Dataport
site

Edge, cloud Federated
learning

Python,TensorFlow
Federated 0.4.0
Tensorflow 1.13.1
backend

RMSE, MAPE High accuracy Heterogeneous
data unsolved

[34] Short-term energy
consumption fore-
casting

Prediction,
classification

LSTM, K-means Energy com-
pany UK Power
Networks

Edge device,
cloud

Federated
learning

Python, Tensor-
Flow

RMSE, training
time

High accuracy,
heterogeneous
data solved

Privacy still low

[35] Day-ahead predic-
tion of building en-
ergy demands

Prediction,
Feature selec-
tion

Ant-bee, cuckoo, ele-
phant, flower, genetic
harmony, PSO, rhino,
wolf, DT, HT

Ornl-research-
house-3

Edge server
(Raspberry
Pi)

Low-cost
model

Keras, Python Accuracy, time,
speed, MAE

High accuracy,
low training time

Low interpretabil-
ity

[36] Short-term electric-
ity demand

Prediction,
classification

XGBoost, K-means Tianchi under li-
cense

Edge server
(PC)

Low-cost
model

Not mentioned Training time,
accuracy, cross-
entropy loss

High accuracy Data distribution
unsolved

[37] Short-term electric-
ity demand

Outlier detec-
tion, Feature
selection, pre-
diction

NB, wrapper FS, Fil-
ter FS

EUNITE dataset Fog nodes Matlab Accuracy, er-
ror, precision,
sensitivity/recall

High accuracy,
reliability, re-
silience, stability

High complexity
of model

[38] Online short-term
energy prediction

data pre-
processing,
prediction

DNN Real-world
dataset

Edge server,
edge devices,
cloud

Collaborative
learning

Not mentioned Flexibility, accu-
racy

Flexibility, high
accuracy, dy-
namic data, IoT
addressed, real-
time prediction

Less scalability

[39] Load forecasting
for optimal energy
management

Prediction CNN IHEPC dataset Edge devices / TensorFlow, Keras MAPE, RMSE Low complexity Heterogeneous
data, uncertain-
ties, privacy is not
addressed

[40] Online short-term
residential load
forecasting

Prediction STN Ohta-AMPds
datasets

Edge device Low-cost
model-
reservoir
computing

Not mentioned RMSE, MAE Low complexity,
high accuracy

Heterogeneity not
addressed
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Table 4. Cont.

Use
Case

Ref Contribution AI Role
(At the Edge)

AI
Algorithm

Dataset AI
Placement

Employed
Technology

Platform Metrics Benefits
AI-Edge

Drawbacks

D
.S

.M

[41] Demand-side
management

Resource
manage-
ment

RL Real-world
dataset

Edge server
(Raspberry
Pi)

– Real implemen-
tation

Not mentioned / Less scalability

[42] Demand-side
management

Classification LDA REFIT project Edge server Low-cost
model

Not mentioned MAPE, RMSE

[43] Managing pro-
sumers over
wireless net-
works

Data prepro-
cessing, pre-
diction

LSTM Pecan Street
Inc.’s Data-
port site

Edge server Federated
learning

TensorFlow RMSE, data
transmitted

Heterogeneous
data addressed,
high accu-
racy low-
communication
cost

Single-point
failure not
addressed

LA
D

[44] Detection of
anomalous
power consump-
tion at household

prediction GBR, RFR, LR,
SVR

IHEPC
dataset

Edge server,
fog

/ Not mentioned MAPE, RMSE Load reduction Communication
cost still high

[45] Anomaly detec-
tion in smart-
meter data

resource allo-
cation, classi-
fication

SDA, GA, kNN IHEPC
dataset

Edge server / Not mentioned Accuracy, execu-
tion time, energy
consumption

– –

[46] Electric energy
fraud detection

Dimensionality
reduction,
prediction

DTR, LR D1C database Edge server
Raspberry
Pi model

– Not mentioned MAPE – –

[47] Anomaly de-
tection con-
sumption smart
grid

Classification DNN, HDBSC K-
means, KNN

Midwest
region

Edge server,
Raspberry
Pi

/ Not mentioned Testing time, fre-
quency, model
size

Low com-
plexity, high
accuracy

–

[48] Energy theft de-
tection

Feature-
extraction
classification

VAE-GAN, K-
means

GEF Com
2012 public
dataset

Edge server / Not mentioned ROC curve, run-
ning efficiency

Adaptive
model, high
accuracy

-

[49] Energy theft de-
tection

Classification (SGCC) dataset Edge devices Federated
learning

Flower RMSE, log loss
accuracy, preci-
sion F-measure

Privacy Low accuracy
compared with
the centralized
model
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Luo et al. proposed in [38] a short-term energy prediction-based edge computing
platform. It consists of four stages: (1) data acquisition and fusion performed on edge nodes
to support redundant multisource heterogeneous IoT by using a semantic information
model, (2) event data generating stage performed in the routing nodes to deal with the
weak semantics of IoT data, (3) local aggregation performed on edge nodes in order to
aggregate data based on its spatiotemporal semantics, and (4) a prediction model built
in the central server by using an online deep neural network model which updates the
prediction model in real time over the stream of data instances to accommodate the changes
in the IoT environment.

The uthors of [39] proposed a short-term energy consumption forecasting model
named Energy-Net, optimized for the deployment on resources constrained devices.
Energy-Net uses a deep learning approach that exploits the spatial and temporal learning
capability for the prediction of energy consumption.

In [40], the authors proposed a framework based on edge computing for short-term
residential electricity demand forecasting by using online learning and reservoir computing
by state network architecture to avoid high computational costs considering the nonlinear
and dynamic behavior of demand time series improve the accuracy of the prediction model
by continuously tracking the dynamically changing demand characteristics.

2.2.2. Demand-Side Management (DSM)

Cicirelli et al. proposed in [41] an edge-based energy management system to reduce
the energy cost of daily household appliances. They proposed a load appliance scheduling
algorithm that exploits reinforcement learning. It takes into account time variable profiles
regarding energy cost, production of energy, and energy consumption of the appliances.
The approach is validated through the implementation of a real-world use case that shows
convincing results.

Tom et al. used in [42] a fog-based IoT architecture to design a smart energy manage-
ment system and build a solution for demand reduction of individual houses in a locality
during peak hours. They used autoregressive integrated moving average (ARIMA) to pre-
dict consumer utilization by studying consumers’ daily usage patterns and a discriminant
analysis to find the appliances playing a significant role.

Taik et al. proposed in [43] a multilevel prodecision framework based on federated
learning for intelligent decision-making in energy markets. It prioritizes individual pro-
sumer decisions supported by the 5G wireless network for rapid coordination between
community members. Each prosumer forecasts energy production and consumption to
make proactive business decisions taking into account collective-level demands. The result
achieves high accuracy for different energy resources with low communication costs.

2.2.3. Load Anomaly Detection (LAD)

For providing real-time anomaly detection for solving big data issues in the power
consumption domain, Jaiswal et al. [44] proposed a hierarchically distributed fog comput-
ing architecture for smart meter data analysis in households by using an ensemble method
consisting of four lightweight regression models: linear regression (LR), support vector
regression (SVR), random forest regression (RFR), gradient boosting regression (GBR).

Liu et al. designed a distributed fog computing platform for detecting smart meter
data anomalies [45]. They used a stacked denoising autoencoder and KNN classifier
deployed on the fog nodes. At the same time, an adaptive elitist GA is used to optimize the
required computational task for supporting the model in the fog nodes and minimizing the
communication cost.

Olivares–Rojas et al. proposed a detection of electric energy fraud supported by
edge computing [46]. First, a dimensionality reduction by the PCA algorithm is used.
Then, prediction techniques based on previously established patterns of energy consump-
tion/production by LR, DT, neural networks, and MLP are performed.
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Utomo and Hsiung developed in [47] a multitiered solution for efficient and fast
real-time anomaly detection. They use a clustering model based on the combination of
the K-means and hierarchical density-based spatial clustering of applications with noise
(HDBSCAN) for data reduction. Then, the oversampling mechanism SMOTE is used to
cover the imbalanced dataset. The authors compare support vector regression (SVR), KNN,
and DNN to choose the best detector anomalies classifier.

In [48], Zhang et al. proposed a framework supported by the edge for energy theft
detection. The detection passes through three stages: (1) feature learning based on load
profile for energy consumption analysis is implemented by using VAE-GAN, (2) k-means
clustering is used to determine the representative features of normal load profiles, and
(3) abnormality degree is calculated by using a threshold-based abnormality detector.

In [49], the authors proposed a federated voting classifier for energy theft detection.
The authors used a majority voting for the three classifiers (i.e., RF, KNN, and bagging
classifier (BG)). Results show the effectiveness of the model compared to the centralized
cloud model in terms of privacy.

2.3. Smart Agriculture

The integration of IoT technologies and edge computing creates great opportunities
for the agricultural field. It makes up a support system that is able to monitor, capture
and analyze information about crops and livestock in real time. It may include early plant
disease prevention, better soil monitoring and management, livestock management, and
reduction of environmental impacts by climate change prediction. The use of artificial
intelligence improves the production process, maintains the highest levels of crop quality,
and reduces costs and waste.

In this Section, we review and classify related works into five categories: weather pre-
diction (Section 2.3.1), livestock management (Section 2.3.2), smart irrigation (Section 2.3.3),
crop monitoring and disease detection (Section 2.3.4), and monitoring the health status
of agriculture machines (Section 2.3.5); then, we qualitatively compare them in Table 5
according to the aforementioned characteristics.
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Table 5. Qualitative comparison of smart agriculture related works.

Use
Case

Ref Contribution AI Role
(At the Edge)

AI
Algorithm

Dataset AI
Placement

Employed
Technology

Platform Metrics Benefits
AI-Edge

Drawbacks

Sm
ar

ta
gr

ic
ul

tu
re

W
P

[50] Timely prediction of frost
in crops

Prediction LSTM Real-world dataset Edge device (Nvidia
Jetson)

Hardware accelera-
tor

TensorFlow 1.10.1 Keras 2.2.4 Power consumption, execution
time, RMSE, MAE, memory us-
age, PCC R2

Less execution time Less scalability
complexity of model
causes overlearning and
slightly increased error

[51] Drought prediction Feature extraction ANN, PCA, GA Drought attribute dataset Fog gateway, cloud Preprocessing edge Matlab Amazon EC2 Accuracy sensitivity specificity,
precision, F-measure

Reduction of load to cloud
High accuracy

High Communication
cost

LM

[52] Livestock surveillance Feature extraction CNN Google ImageNet Pix-
abay

Edge device (Nvidia
Tegra) Cloud

Splitting DNN Caffe Accuracy
Reduction rate

Load reduction
High accuracy

High communication cost

[53] Early lameness detection in
dairy cattle

Feature extraction K-means, KNN Real-world dataset Fog gateway (PC),
cloud

Edge preprocess-
ing

Python Reduction rate
Accuracy

High accuracy High communication cost

SI

[54] Prediction models of soil mois-
ture

Missing-data imputa-
tion, prediction

GDR, LSTM, BiLSTM Coconut, Cashew
datasets

Single-board com-
puter (Raspberry Pi 4
Model B)

Hardware accelera-
tor

TensorFlow CPU RAM usage, MAE Data quality improvement
High accuracy

Accuracy must be im-
proved

[55] Intelligent irrigation system Prediction LSTM GRU Historical Hourly
Weather Data 2012–2017

Edge devices Hardware accelera-
tor/software

Pytorch, TensorFlow, Tensor-
Flow Lite

RMSE, MSE, MAE Reliability Overhead computation

C
M

D
D

[56] Timely diagnosis of crop dis-
ease

Prediction CNN Real-world dataset Edge device
(STM32F746G-disco
board)

Quantization TensorFlow Lite Accuracy, memory usage, infer-
ence time, energy consumption

High accuracy
Low memory usage

Accuracy may degrade

[57] Timely recognition of crop Dis-
eases

Classification CNN Real-world dataset Mobile edge device Transfer learning Python Accuracy High accuracy
Less recognition time

High computational cost

C
M

D
D

[58] Intelligent sensing in the entire
crop life cycle

Preprocessing network
management

Fuzzy Gath–Geva clustering,
Tkagi–Sugneo-fuzzy neu-
ral network, KNN, BPNN

Real-world dataset Edge server – Not mentioned AFE CC accuracy Sensing time,
communication rate

Data collection times reduction
Less energy consumption
Sensed data quality improve-
ment
High accuracy

–

M
H

SM

[59] Timely vehicle health monitor-
ing

Prediction ANN GA Not mentioned Smartphone Lightweight model MATLAB 2019b Accuracy, ROC curve, misclassi-
fication rate, MSE

High accuracy Complexity reduction
still recommended

[60] Vehicle health recognition Classification DCNN Levy flight Real-world dataset Smartphone Lightweight DL Not mentioned Accuracy ROC, precision recall,
F1-score

Low complexity High training time
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2.3.1. Weather Prediction (WP)

Guillén et al. consider in their work [50] the construction of an automated decision-
making framework for precision agriculture. In such problems, constraints including
low-bandwidth connectivity and energy consumption must be addressed. To this end, the
authors proposed an edge-based platform for the early identification of frost on crops by
estimating the low temperatures through an LSTM model on edge devices. This helps
farmers to obtain a temperature prediction in real time. The proposed model is evaluated
in terms of performance and power consumption of edge devices.

In [51], Kaur and Sood proposed a framework for drought forecasting. At the fog
layer, a dimensionality reduction method based on PCA is used, although the classification
of drought severity is performed on the cloud layer by using ANN with genetic algorithms
(GA). After a fixed interval of time, the predicted values of drought severity are used by
the ARIMA model for future drought forecasting.

2.3.2. Livestock Management (LM)

The authors of [52] suggested strategies for offloading computation from cloud to
fog to assist the huge quantity of multimedia data from IoT devices in smart agriculture.
They process more deep learning tasks at the fog layer by assigning the maximum number
of layers on each fog node with the aim to (1) reduce the amount of data transferred to
the cloud, (2) utilize resources efficiently, and (3) reduce network congestion. The authors
show, through experiments, that the proposed strategies had satisfactory results in terms of
bandwidth, number of deep learning tasks for each node, and the data volume transferred
to the cloud compared with existing methods.

For accurate and early detection of lameness in smart dairy farming, Taneja et al.
developed in [53] an application based on fog/cloud computing to collect activity data,
monitor the cattle in real time, and identify lame cattle at an early stage. They employed a
K-means algorithm at the fog layer for data processing, and classification was done on the
cloud by using the KNN algorithm. Results show that the application can detect lameness
three days before it can be visually captured by the farmer with high accuracy and minimal
communication cost.

2.3.3. Smart Irrigation (SI)

To improve irrigation water, Cordeiro et al. have proposed in [54] a fog-based frame-
work for soil moisture forecasting. First, a KNN data imputation is used for the missing
values to increase data reliability. Subsequently, an LSTM is used for the prediction by
employing a small single-board computer.

In [55], authors proposed a low-cost intelligent irrigation system based on edge com-
puting to forecast environmental factors. They used an LSTM/gated recurrent units
(GRU)-based model for a comparative analysis by using many frameworks. Results show
the reliability of LSTM and GRU for the prediction of environmental factors.

2.3.4. Crop Monitoring and Disease Detection (CMDD)

Identifying crop diseases is one of the most difficult tasks in smart agriculture. We
present below some recent and relevant related works.

A timely detection on crops to stop diseases from spreading was presented in [56].
The authors proposed a model named deep leaf, a coffee plant disease detector based on
edge computing. It detects the main biotic stresses affecting crops. The proposed model
uses a dynamic compression algorithm based on K-means for the reduction of a model
footprint to reduce the complexity of the CNN model and run it on devices with limited
hardware capabilities.

Likewise, the authors of [57] proposed an IoT monitoring framework for detecting
tomato diseases. First, a pretraining model is constructed on the cloud by using VGG
networks. Then, in order to fit the model on embedded mobile platforms, a depth-wise
separable convolutional network is used to reduce the parameters of the model and calcu-
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lation of model feature extractor. The experimental results show that the framework can
accurately detect crop diseases in less time.

Zhang and Li proposed in [58] an adaptive sensing strategy for the crop life cycle
based on edge computing. First, the growth stage of the crop is divided by the Gath–Geva
fuzzy clustering for the sensing nodes. Then, data-driven algorithms are used in the edge
server to extract and optimize the key parameters corresponding to the growth stage in
order to increase the data values by reducing redundancy and improving the correlations
between the sensing data. Finally, a neural network-based crop growth stage prediction
model is performed.

2.3.5. Monitoring the Health Status of Agriculture Machines (MHSAM)

Gupta et al. proposed in [59] an edge-based framework for agriculture vehicle health
monitoring by using ANN. To decrease the model’s complexity in terms of computing and
develop a lightweight one that can be deployed on a smartphone, two levels of optimization
using a genetic algorithm for ANN are conducted.

In [60], Rajakumar et al. proposed a framework to identify the health condition of the
vehicles. They design a fault-detection algorithm by using a deep convolutional neural
network (DCNN) on smartphones. The authors used the Levy flight optimization algorithm
(LFOA) to optimize the network structure of the DCNN, minimize the number of neurons in
the DCNN hidden layer, minimize the number of input features from the audio recordings,
and enhance the classification accuracy.

2.4. Smart Education

Smart education is defined as the integration of IoT devices with learning that can
establish location information, motion sensing, and visual recognition tools. IoT devices in
combination with other technologies such as artificial intelligence and cloud computing are
used to evaluate educators’ engagement and skills and improve the teaching and learning
expertise in the field. Using edge computing in smart education: (1) reduces the delay,
(2) improves the level of service delivery for learners by protecting information transmitted,
(3) and guarantees that every communication process is managed effectively [134]. In this
section, we review and classify related works into two categories: student engagement
monitoring (Section 2.4.1) and skill assessment ( Section 2.4.2); then, we present a qualitative
comparison of related works in Table 6.
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Table 6. Qualitative comparison of smart education related works.

Use
Case

Ref Contribution AI Role
(At the Edge)

AI
Algorithm

Dataset AI
Placement

Employed
Technology

Platform Metrics Benefits
AI-Edge

Drawbacks

Sm
ar

te
du

ca
ti

on

S.
en

ga
ge

m
en

tm
on

it
or

in
g

[61] Attention detection
of participants

CNN Prediction (DAiSEE) Edge ( pc) Pretrained
model

Python Accuracy - Accuracy needs
to improve

[62] Improve long-
distance education

Classification ResNet-50 Fer2013 emo-
tion dataset

Mobile edge
computing

Hardware
accelerator

/ Confusion matrix ac-
curacy

High accuracy Accuracy needs
to improve

[63] Real-time interven-
tion in negative
emotional conta-
gion in a smart
classroom

Classification CNN Fer2013 emo-
tion dataset

Edge prepro-
cessing

Hardware
accelerator

JavaScript, Tensor-
Flow, OpenCV

Accuracy Less response time Accuracy needs
to improve

[64] Multimodal en-
gagement analysis

Prediction DL Real-world data Edge server
(PC)

/ JIFF, JavaScript li-
brary, TensorFlow

Average perfor-
mance impact on
edge device /server

Scalability Computational
overhead

[65] Student stress
monitoring and
real-time alert
generating

Prediction VGG16, BiLSTM,
NB

Real-world data
Kaggle dataset

Fog cloud Cloud train-
ing

Not mentioned Specificity, sensi-
tivity, accuracy,
F-measure

High accuracy Eliminate histor-
ical record

Sk
ill

as
se

ss
m

en
t

[66] Monitors the aca-
demic/skill of stu-
dents for timely em-
ployability classifi-
cation of gradua-
tion.

Resource man-
agement

K-means, PCA,
KNN

Real-world
dataset

Fog nodes / iFogSim toolkit Mean absolute
percentage error
(MAPE)

Scalability Processing over-
head

[67] Education quality
evaluation

ANFIS Bayesian be-
lief network (BBN)

Environmental
datasets, staff-
related dataset,
physical dataset,
students’
academic-
related histori-
cal dataset

Raspberry Pi
v3 is

/ Weka Precision, specificity,
sensitivity, BBM, ac-
curacy, RMSE, MAS

Stability, reliability Accuracy needs
to be improved

[68] Ideology and poli-
tics education eval-
uation in 5G

Resource man-
agement data
caching

PSO Edge devices Not men-
tioned

- / Energy consump-
tion, latency

Scalability, low en-
ergy consumption,
low latency

-
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2.4.1. Student Engagement Monitoring (SEM)

Umarale et al. proposed in [61] an edge computing-based deep learning technique
for detecting and identifying the attention level of learners within online learning sessions.
They employed, on edge devices, a lightweight CNN model that uses facial image data to
determine the attention level. The output is further processed on the cloud to derive an
attention average of the participants. Then, the attention average is reported to the host,
helping the teachers to obtain information about the students’ performances and further
helping them identify the students who were inattentive during the session.

Li et al. designed in [63] a real-time intervention system for negative emotional
contagion in the classroom based on edge computing infrastructure. The system integrates
an emotional contagion model with a deep learning algorithm. To achieve multiperson
emotional recognition, an embedded device is used to process images to recognize the
emotions of all the students in the classroom and locate the source of the negative emotion
to take real-time intervention actions through visual emotion identification.

In [64] Preuveneers et al. introduced a learning management system for engagement
monitoring by using a collaborative edge-cloud framework. They combine FL with secure
multiparty computation to process users’ behavior data to analyze student involvement
and increase the online learning system to the next level.

In [62] to enhance students’ independence in resolving difficult engineering problems
and boost their marketability, authors created an experimental open-source distance learn-
ing platform based on edge computing and artificial intelligence that is well-suited for
distance learning.

The authors in [65] proposed a framework for monitoring student stress and generating
real-time alerts to predict student stress. The authors used Visual Geometry Group (VGG16)
for facial expression, bi-LSTM for speech texture analysis, and multinomial NB techniques
to generate emotion scores and classify stress events as normal or abnormal.

2.4.2. Skill Assessment (SA)

Sood and Singh proposed in [66] an e-learning framework with multiple functional
aspects. The proposed framework helps in enhancing the skill set of students. The first
aspect is that of monitoring the academic skill data of learners in order to classify their
employability at the early stage of graduation. The second aspect consists of skill-set
assessment based on clustering to improve their required skill set through e-learning.
Finally, an adaptive resource usage elasticity prediction is made. Experimental results show
that the proposed approach achieves 96.45% accuracy of classification.

By utilizing the information gathered by IoT devices to make smart decisions about
the quality of education and the academic environment, Ahanger et al. [67] developed
an intelligent framework based on hybrid cloud/fog infrastructure for education quality
assessment. They proposed a model based on the Adaptive Neuro-Fuzzy Inference Sys-
tem (ANFIS) for decision modeling based on the education quality scale determined by
classification at the fog layer. Results show the effectiveness and reliability of the model
with good accuracy about the quality of education access compared to the most recent
decision models.

The authors of [68] presented a particle swarm optimization (PSO)-driven edge com-
puting method that might aid in the cooperation and optimization of various ideological
and political course resources in a mobile edge computing 5G network for intelligent
education assessment on ideology and politics. The authors define the optimization is-
sue as reducing the worst-case energy consumption in task offloading, as well as the
decision-making and resource allocation of task offloading supported by edge caching.
The outcomes of the experiment show that the suggested method achieves a high level of
experience and energy conservation.
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2.5. Smart Industry

Edge computing and AI play an effective part in the automation of large-scale in-
dustrial processes by providing efficient distribution of applications and an intelligent
deployment strategy that provides ideal service delivery to users and customers. For the
intelligent industry, fast and real-time detection of machine malfunction and preservation
of product quality are very important. In addition to providing high-quality commercial
operations in the industrial sector, the management of product provides suitable actions
to prevent wastage of the products and high service delivery, whereas in the field of the
finance industry, by constructing a smart financial technology application, banks and finan-
cial institutions may provide quality services to their consumers via individualized virtual
supervision [69]. We first review and classify related works into four categories: financial
industry (Section 2.5.1), commercial industries (Section 2.5.2), machine malfunction moni-
toring (Section 2.5.3), and product quality monitoring and prediction (Section 2.5.4); then,
we present a qualitative comparison of related works in Table 7.

2.5.1. Financial Industry (FI)

Manusami et al. developed in [69] designed a ranking-based strategy to classify
financial tasks arriving at the edge according to their priority as risky and nonrisky tasks.
So as to minimize network energy consumption, the ranked financial tasks are assigned
to appropriate computing devices for further analysis by using a service-deployment
mechanism based on a perfect matching theorem in graph theory. Subsequently, SVM
is used to analyze the ranked tasks at the edge networks for immediate prediction and
detection of fraud.

An early warning model for financial risk prediction of the enterprise based on MEC
is proposed in [70]. The authors used an optimized BPNN with an edge service preloading
optimization model which is applied based on the information obtained about the geo-
graphical information related to points of interest and BPNN. Then, according to the user’s
location feature vector, the probability of the user’s next service is predicted. Results show
that the service preloading optimization based on the geographic information points and
BPNN improves the response speed.

2.5.2. Commercial Industries (CI)

In [71], Neelakantam et al. designed a fog computing framework for product de-
mand forecasting and decision-making. They used PCA and K-means for clustering
products based on product demand and grouped products into three categories, namely,
low, medium, and high demand. Then, the reinforcement learning model is used for
product distribution decision-making.

2.5.3. Machine Malfunction Monitoring (MMM)

The authors in [72] proposed a framework based on fog computing to analyze and
classify the machine sounds in order to monitor and identify the malfunctioning machines.
To extract the important features of the audio signal, the authors used linear prediction
coefficients (LPC) and melfrequency cepstral coefficients (MFCC). Then, they used su-
pervised machine learning models (such as RF, SVM, AdaBoost Classifier, and MLP) to
detect and classify the malfunctioning machine sounds as normal and abnormal. These
models showed their performance in detecting low-level sound from the audio signal and
enhancing the service time.

Syafrudin et al. proposed in [73] an edge-based fault detection by using density-based
spatial clustering for outlier detection and for covering the imbalanced data issue. The
oversampling SMOTE method is used, whereby an RF algorithm is applied in prediction.
The proposed method achieves higher accuracy and fast fault detection.
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Table 7. Qualitative comparison of smart industry related works.

Use
Case

Ref Contribution AI Role
(At the Edge)

AI
Algorithm

Dataset AI
Placement

Employed
Technology

Platform Metrics Benefits
AI-Edge

Drawbacks

Sm
ar

tI
nd

us
tr

y

FI

[69] Financial data anal-
ysis

Prediction SVM (Credit card fraud,
credit card risk,
Customer Churn,
Insurance Claim)
dataset

Edge devices,
cloud

Low-cost
model
task offload-
ing

Simulator
(Not mentioned )

Task assignment over
delay power consump-
tion precision recall F1-
score

High accuracy Communication
overhead

[70] Early-warning of fi-
nancial risks

Prediction BPNN Real-world
dataset

MEC Quantization
HARDWARE-
CPU

Matlab Accuracy, hit rate Less response time Accuracy needs
improvement

C
.I

[71] Locality-based
product demand
prediction and
decision making

Feature selec-
tion, classifica-
tion, decision-
making

RL, PCA, K-means Kaggle open data Edge device
(GPU NVIDIA-
SMI)

Low-cost
model

Scikit-learn Python Clustering score maxi-
mum/average cumula-
tive reward execution
time

Outperform others exist-
ing methods

Stability not
tested

M
M

M

[72] Machine malfunc-
tion monitoring

RF SVM Adab
LR MlP

(MIMII dataset Fog (con-
troller unit
(ICU)/Microdata
center)

Hardware
accelerator

Lightweight
model

Not mentioned Time complexity, accu-
racy, precision, FScore

Response time reduction –

[73] Abnormal events
detection during
assembly line pro-
duction

Outlier detec-
tion
prediction

RF, DBSCAN Real-world
dataset

Edge devices
(Raspberry Pi)

Low-cost
model

MongoDB Python Accuracy recall F1-
score precision

High accuracy Dynamic of
IoT data not
addressed

[74] Fault detection in a
hydraulic system

Data reduction
classification

LSTM, AE, GA Real-world
dataset

Edge server Transfer
learning

TensorFlow Complexity DL accu-
racy detection time,
data reduction

Reduction of load to
cloud
Low detection time
Robust to noisy data

Communication
overhead

Sm
ar

tI
nd

us
tr

y

M
M

[75] Faults of machine
detection

Classification LSTM Real-world
dataset

Edge device
(Raspberry Pi)

Lightweight
model

Keras Python Accuracy Low-cost model
Short fault detection

Memory usage
overhead

[76] Fast manufacture in-
spection

Feature extrac-
tion classifica-
tion

CNN Real-world
dataset

Fog gateway Early exit-
DNN split-
ting

Not mentioned ROC curve running ef-
ficiency

High accuracy High communica-
tion cost

PQ
M

P

[77] Fast prediction of as-
sembly quality

Feature selec-
tion, prediction

RF Adaboost Real-world
dataset

Edge server
(PC)

Transfer
learning

Python Accuracy Efficacy flexibility com-
plexity reduction

Online learning
not improved

[78] Fast tool wear mon-
itoring and predic-
tion

Feature extrac-
tion classifica-
tion

CNN LSTM BiLSTM Real-world
dataset

Edge server
(PC)

Transfer
learning

Python TensorFlow Response time, net-
work bandwidth, data
transmission RMSE
MAPE

High monitoring accu-
racy, low-cost model,
low response latency

Accuracy loss

[79] Scheduling tasks
production for
smart production
line

Task scheduling,
resource alloca-
tion

PSO, ACO Not mentioned Fog gateway - Matlab Completion time, en-
ergy consumption, reli-
ability

Solves the problem
of limited comput-
ing resources, high
energy consumption,
real-time/efficient pro-
cessing

Does not consider
heterogeneity of
IoT devices.
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In [74], Fawwaz and Chung proposed an edge-cloud framework for real-time fault
detection based on combined LSTM-AE algorithms. This handles both multivariate time
series and noisy data. First, a novel correlation and redundancy-aware feature selection
(CRFS) approach by a genetic algorithm is implemented. Then, a pretrained model is
conducted on the cloud with the combination of LTSM and AE. Secondly, the pretrained
model is transferred to the edge for real-time fault detection. Experimental results show
the effectiveness of the model by achieving shorter detection times, better accuracy, and
more robust performance in the presence of noisy data.

Park et al. [75] developed a model for real-time machine fault detection in smart
manufacturing. A lightweight LSTM is developed for an edge device and a Raspberry Pi
for implementation. Results show that the model outperforms the existing models.

Li et al. [76] designed collaborative fog-cloud computing for inspection manufacturing
by using CNN with offloading strategies. These latter offload the low layer of CNN to the
fog nodes. For fast detecting defects in a product and identifying its degree, an early exit
strategy is used. The proposed method reduces the data transmitted to the cloud and hence
can perform real-time detection.

2.5.4. Product quality monitoring and prediction (PQMP)

Feng et al. [77] proposed an edge-based assembly quality prediction in an industrial
IoT environment. They used an RF for feature selection while the SMOTE–Adaboost
method with jointly optimized hyperparameters was used for imbalanced classification.
The experimental findings demonstrate that, in terms of predicting assembly quality, the
suggested technique is more accurate than existing classification methods.

In [78], the authors proposed a fog-based framework for tool wear monitoring and
prediction. First, the authors used both CNN and LSTM to extract tool wear temporal
features on fog nodes. Then, a bidirectional LSTM model (BiLSTM) is performed on the
cloud for tool wear prediction based on the features extracted by the MCLSTM model.
Results show the effectiveness of the model in terms of high monitoring accuracy and low
response latency.

For real-time and efficient processing tasks in smart production lines, Wang and Li [79]
proposed a hybrid heuristic algorithm, an improved particle swarm optimization (IPSO)
algorithm, and the improved ant colony optimization (IACO) for task scheduling in fog
computing in order to solve the problem of end devices with low computational power
and significant energy use.

2.6. Smart Healthcare

IoT, AI, and edge computing paradigms are considered major keys to the new revolu-
tion in healthcare by providing an intelligent system that aims at improving the quality of
care services such as (i) remote physical patient monitoring, and (ii) automatic diagnosis
and detection of diseases at early stages. In this section, we present the existing recent
works in intelligent edge-based healthcare applications. In particular, we review and clas-
sify related works into five different categories: diet health management (Section 2.6.1),
ambient assisted living (Section 2.6.2), human activity recognition (Section 2.6.3), location-
based disease prediction (Section 2.6.4), and disease diagnosis (Section 2.6.5; then, we
qualitatively compare them in Table 8.
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Table 8. Qualitative comparison of smart healthcare-related works.

Use
Case

Ref Contribution AI Role
(At the Edge)

AI
Algorithm

Dataset AI
Placement

Employed
Technology

Platform Metrics Benefits
AI-Edge

Drawbacks

Sm
ar

th
ea

lt
hc

ar
e

D
H

M

[80] Food recognition Classification
Storage

DRCNN Food 101Image Smartphone Quantization, GPU
accelerator

TensorFlow Lite Accuracy loss values, computa-
tional power

Low response time Loss of accuracy over
time

[81] Food recognition Classification prepro-
cessing

GoogLeNet UEC-256 UEC-100 Food-
101

Smartphone Pretrained CNN Caffe Response time, accuracy, com-
putational power

Low response time Loss of accuracy over
time

A
A

L

[82] Accurate and timely fall detec-
tion

Classification LSTM/GRU SisFall dataset IoT, gateway (fog) Virtualization Docker
HDFS-Apache
Kafka-MongoDB
Tensorflow

Accuracy, sensitivity, precision,
inference

Scalability, flexibility Memory consumption
needs to be optimized
Mobility not considered

[83] Online/offline monitoring el-
derly patients suffering from
chronic disease

Prediction NB-FA Vital signs, behavioral
data environmental data

Cloud, edge Transfer learning Weka, classifier, Spark job Accuracy, sensitivity, precision,
inference time

Accurate, fault-tolerant, fast de-
cisions

High computational cost

[84] Real-time fall detection Preprocessing, predic-
tion

LDA KNN SVM SisFall datasets Raspberry Pi 3 B + Real-time test Low-cost model Response time High accuracy, low response
time

Accuracy and generaliza-
tion still improved

[85] Multimodal fall detection Prediction PCA linear regression MLP SisFall data set Mist, fog, cloud, edge Not mentioned Low-cost model CC, MAE RMSE, RAE, RRSE re-
sponse time

High accuracy, less inference
time

Generalization needs to
be solved

[86] Real-time in-home health mon-
itoring

Prediction GCAE MobiAct dataset Cloud, edge Federated learning Not mentioned Accuracy communication
rounds scalability

Heterogeneity of data and com-
munication cost solved

Data privacy issues

Sm
ar

th
ea

lt
hc

ar
e

H
A

R

[87] Real-time abnormal human ac-
tivities

Prediction PCA -CNN UniMiB DATASET Edge device Transfer learning Python 3.6 Process time Low energy consumption, less
computational cost

Lack of security

[88] Real-time, human activity
recognition

Prediction DRNN WISDM dataset Raspberry Pi3 (edge
devices)

Virtualization TensorFlow Accuracy F1-score recognition
time

Less recognition time, high accu-
racy

High computational cost

[89] Energy-efficient, human-
activity recognition

Training, prediction CNN Opportunity dataset, w-
HAR dataset

Edge devices Transfer learning Not mentioned Accuracy, precision, recall,
weighted, F1-score

Less memory overhead, high ac-
curacy

Stability not tested

[90] Human activity recognition classification SVM KTH Dataset Holly-
wood2 Action Dataset

Edge/cloud Transfer learning
Blockchain

TensorFlow Accuracy High accuracy multiclass classi-
fication

Less scalability

[91] Multiaccess physical monitor-
ing system

Classification BDN Real-world dataset Wearable IoT Transfer learning Not mentioned Accuracy data transmission
time RMSE

Less energy consumption, high
accuracy

Lack of data privacy, less
scalability

[92] Physical instance-based irregu-
larity recognition

Classification CNN LSTM NTU RGB dataset Fog nodes Transfer learning Python-Pillow, OpenCV,
Numpy libraries

Rate of latency analysis High accuracy, less latency Environmental changes
and model generalization
not considered

Sm
ar

th
ea

lt
hc

ar
e

LD
P

[93] Monitoring and predicting
COVID-19 outspread

Prediction
visualisation

FCM T-RNN SOM - Fog nodes MATLAB-Ifogsim Preprocessing Latency time, response delay, ac-
curacy, precision

reliability, high accuracy Lack of security

[94] Location-aware monitoring
and preventing encephalitis

Prediction
visualisation

FCM- T-RNN, SOM Cloud, edge UCI-repository data Preprocessing MATLAB Latency time, response delay, ac-
curacy, precision

Reliability, high accuracy, loca-
tion aware, data management

Lack of security

[95] Early detection of Kyasanur
forest disease and control the
disease outbreak

Classification ANN KFD dataset Fog/cloud Lightweight model Not mentioned Accuracy, sensitivity, specificity,
RMSE MAE

High accuracy High computational cost

[96] Continuous monitoring and
early detection of mosquito-
borne disease

Classification FNN, SNA graph UCI-repository data Fog node Lightweight model Not mentioned Accuracy, sensitivity, specificity High accuracy Data integrity and secu-
rity not considered

[97] Automatic diagnosis of
COVID-19

Classification K-MEANS -VGG16 X-ray ultrasound datasets Edge devices Pretrained model TensorFlow RMSE, MAE Cope with data heterogeneity Less accuracy, lack of se-
curity

[99] Remote COVID-19 diagnosis classification RF GAN GNB Generated dataset Fog nodes Open-source lan-
guage R iFogSim

Accuracy response time, re-
call

High accuracy High energy consumption, lack
of security
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Table 8. Cont.

Use
Case

Ref Contribution AI Role
(At the Edge)

AI
Algorithm

Dataset AI
Placement

Employed
Technology

Platform Metrics Benefits
AI-Edge

Drawbacks

Sm
ar

th
ea

lt
hc

ar
e

LD
P

[99] Remote COVID-19 diagnosis Classification Mobile-Net V2 Chest CT scan image
dataset

Transfer learning Edge devices TensorFlow Sensitivity specificity precision
F1-score

High accuracy, less response Not tested for large
datasets, accuracy needs
to be improved

[100] Low delay in prediction of
health status of COVID-19 pa-
tients

Preprocessing
prediction

eRF COVID-19 dataset Edge devices Lightweight model TensorFlow Training time, accuracy, preci-
sion, recall, MAE, RMSE

High accuracy High computational cost

D
D

[101] Early lung cancer diagnosis Preprocessing,
feature selection
Classification

FCM, CS, SVM (ELCAP) dataset Fog nodes Lightweight model MATLAB 2013a Accuracy, sensitivity, specificity,
MCC, F-measure, ROC curves,
computational cost

Less training time, high accu-
racy

High cost of model for fog
implementation

[102] Intelligent monitoring of car-
diomyopathy patients

Intelligent sensing FHHO, FL Real-world dataset Fog nodes – Not mentioned Execution time, accuracy, preci-
sion, recall, F-measure

High accuracy, low time cost Lack of security, high en-
ergy consumption

[103] Real-time monitoring patients
with chronic diseases

Classification NB-WOA Clinical dataset, Physio
Bank-MIMIC II database

Fog nodes, cloud Transfer learning Weka, Spark Accuracy, recall, precision Higher accuracy, high response
time

High complexity of
model, lack of security

[104] Early heart disease prediction data fusion
prediction

CFS, KRF UCI repository data Fog nodes Lightweight model – Accuracy, training time, scalabil-
ity

Scalability, accuracy Quality of the data de-
pends on the number of
sensors, improved accu-
racy is required

Sm
ar

th
ea

lt
hc

ar
e

D
D

[105] Early detection of Parkinson’s
Disease

Prediction ANFIS GWO PSO UCI University of Califor-
nia

Fog nodes Distributed com-
puting

TensorFlow RMSE, MAE High accuracy Lack of security

[106]
Diabetic cardio disease predic-
tion

Prediction Rule-based clustering, CRA,
ANFIS

(Heart disease, diabetes)
dataset

Edge devices Blockchain Java Purity NMI accuracy execution
time

Efficient grouping medical data,
high accuracy, secure data shar-
ing, good training with uncer-
tainty

Low accuracy

[107]
Remote cardiac patient moni-
toring

Classification 1D-CNN MIT-BIH Arrhythmia Fog nodes (single-
board computer),
cloud

Transfer learning Not mentioned RMSE MAE CPU usage accu-
racy loss recall precision F1-
score

High accuracy, low computa-
tional overhead, low resource
usage, low response time

Scalability not considered

[108]
Timely disease diagnosis of
health conditions

Data preprocessing
classification

AE HMWWO UCI-repository data Edge devices Lightweight model Not mentioned Latency, F-measure time com-
plexity sensitivity

High sensitivity,
improved accuracy Minimum
time complexity and latency
scalability

Small dataset used for
evaluation, lack of data
protection

[109] Real-time physiological param-
eter detection

Preprocessing predic-
tion, load balancing

RK-PCA HMM MoSHO
SpikQ-Net

UCI repository data Edge devices, fog
nodes

Lightweight model iFogSim Execution, time accuracy, la-
tency

Stability, scalability, low execu-
tion, time, low latency, low com-
plexity

Lack of security

[110] Real-time blood glucose Prediction GRU (OhioT1DM ABC4D
ARISES) datasets

Edge device
(Smartphone)

Hardware accelera-
tor

TensorFlow Lite RMSE, MSE Low energy consumption, good
training with uncertainty

Less sensitivity
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2.6.1. Diet Health Management (DHM)

One of the main reasons for health damage is an unhealthy diet. To tackle the automa-
tion of dietary assessment, authors in [80] proposed a food-recognition model with a deep
residual convolutional neural network, which determines whether the food photos include
enough vegetables. In order to make predictions on a mobile device without connecting to
a cloud server, the authors quantized the network weights of the proposed model by using
posttraining quantization methods into low-bit fixed-point representations.

Likewise, Liu et al. [81] proposed a DL-based food recognition for assessing diets.
Taking into account the limited computation resources and low battery life on mobile
devices, the preprocessing and segmentation of food images have been performed on edge
devices (smartphones). At the same time, the classification with a pretrained GoogLeNet
model for feature extraction and softmax classifier was done on a cloud server. The model
exceeds other works in terms of accuracy, with a quicker response time and reduced energy
use, according to experimental results.

2.6.2. Ambient Assisted Living (AAL)

For accurate and timely fall detection, the authors of [82] developed an intelligent
system based on fog/cloud computing architecture. The cloud data analysis resources
are used to train the hybrid DL model (GRU/LSTM), whereas the DL model inference is
implemented on a fog smart gateway for real-time fall detection and alert notification to
caregivers’ smartphones. To overcome the complex challenges of resource limitations on
the fog for DL inference, an efficient and automatic deployment is performed by using
virtualization technologies. Results show how well the system works for providing quick,
precise responses and enhancing customer service.

For elderly patients with chronic disease monitoring, Hassan et al. proposed in [83] a
fog/cloud framework. A firefly algorithm (FA) was used to optimize the NB classifier by
selecting the minimal features that yield the highest accuracy. The framework collected
data from the elderly patient by using ambient and biological sensors, fused the data into
contextual states, and utilized context-aware algorithms to forecast the patient’s health
status in real time. The introduced framework includes a five-phase classification method
to handle huge datasets that are unbalanced as a result of elderly patients being followed
for an extended period of time.

In [84], authors proposed a framework for real-time fall incident monitoring by using
ML algorithms based on fog computing. First, they used linear discriminant analysis (LDA)
to reduce the dimensionality of extracted features. Then, they employed SVM and KNN
for classification.

Divya et al. [85] proposed a fall detection framework. It consists of four layers: edge
devices, mist, fog, and cloud. The edge consists of a smart camera, which deploys a compressed
DNN model for fall detection. Basic data filtering and rule-based decision-making are handled
by the mist. Images are transmitted to the cloud storage only when a fall is detected, and the
edge detection output is only delivered to the higher fog layer if a fall is observed. Xtreme
gradient boosting and RF methods are used to build the model in the cloud.

The authors of [86] designed a cloud/edge-based federated learning framework for
in-home health monitoring named FedHome. The authors used a lightweight convolu-
tional generative autoencoder to deal with the unbalanced and non-ID distribution health
monitoring data with high accuracy in predictions.

2.6.3. Human Activity Recognition (HAR)

The authors of [87] introduced a light DL framework that uses SMOTE to solve the
problem of imbalance labels and implemented a CNN embedding feature (CNNEF) to
understand abnormal human activities through the sensor data in edge nodes to predict
the user’s behavior, detect anomalous activities, and offer more accurate, efficient, and real-
time services. Then, the extracted high-level embedding features from CNNEF are given to
the classical ML algorithms, such as logistic regression, KNN, DT, NB, RF, and SVM.
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A brand-new DL-based human activity recognition framework for edge computing
termed DL-HAR was suggested in [88]. The proposed framework seeks to accelerate
decision-making. It employs a DL algorithm to cut down on communication with the cloud
servers, cutting down on potential delays and round trips. In order to detect the activity
time-series data coming from sensors or smartphone devices, the framework first trains the
DRNN model on the server side because of its high capacity and then transmits the image
of the learned DRNN model to Docker containers on Raspberry Pi3 edge devices.

In [89], the authors proposed an edge-based framework for human activity recognition
designed for wearable edge devices. The authors design an energy-efficient solution by
using an adaptive CNN that selects a portion of the baseline architecture to use during the
inference phase instead of using the full architecture.

The authors of [90] proposed a blockchain based on a fog monitoring system to iden-
tify human activities as an interface of e-healthcare services. The proposed framework
categorizes and classifies the video frames based on patient activities by using the SVM al-
gorithm. Videos of various human activities are retrieved by using a multiclass cooperative
categorization approach to increase the activity classification accuracy in video features,
which are then processed into action vocabulary for efficiency and accuracy. In a similar
manner, an SVM based on the error-correction output codes (ECOC) architecture is used to
classify activities.

A Bayesian deep learning network, which aids in inferring and accurately identifying
various physical data acquired from individuals to track their physical activities, was
examined by the authors of [91] by utilizing edge computing. The effectiveness of this
wearable Internet of things system with multimedia technology is then assessed by using
the results of some experiments and analyzed in terms of accuracy, efficiency, mean residual
error, delay, and energy consumption.

In order to anticipate health conditions in real-time based on an individual’s physical
postures, the authors of the paper in [92] developed a fog/cloud system. In this study, they
use the continuous time series policy to store anticipated activity ratings on the cloud and
give future health references to accredited medical professionals. The physical abnormality
that is predicted and the level of health severity are closely correlated with the issuance
of the warning. Clear benefits of fog analytics over cloud-based monitoring systems
include an improvement in the recognition rate of up to 46.45% for 40 FPS and 45.72%
for 30 FPS. By attaining high activity prediction accuracy and low latency, the computed
results demonstrate why the proposed fog analytics monitoring system is preferable to
other cloud-based monitoring solutions.

2.6.4. Location-Based Disease Prediction (LDP)

Ahanger et al. developed in [93] a fog/cloud framework to forecast COVID-19
cases, employ user-held devices, and track the disease’s spread. First, to identify con-
taminated individuals and areas, the authors used fuzzy C-mean classification. Then, in
order to predict the possibility of COVID-19 symptoms in the geographical patterns, the
authors used a temporal recurrent neural network. The self-organization mapping (SOM)
method is used to present data on geolocations for COVID-19 dynamical behavior over
spatial–temporal domains.

The authors of [94] proposed a fog-cloud framework for remote diagnosis of ENCPH
spread based on the patient’s health symptoms and the surrounding environment. The fog
layer analyzes a patient’s category based on parameters from health-related data by using a
fuzzy C-Means classifier. At the same time, the prediction model based on spatiotemporal
domains that use T-RNN is used to manage the medical resources. A SOM technique is
used for outbreak geographic visualization.

A novel fog computing-based e-Healthcare framework was presented by Majum-
dar et al. in [95] to monitor KFD-infected patients throughout the early stages of infection
and manage the disease epidemic. A new extremal optimization tailored neural network
classification technique has been created by employing the hybridization of the extremal
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optimization with the feed-forward neural network in order to guarantee a high prediction
rate. A location-based alert system has also been recommended to give each KFD-infected
user’s location information based on their GPS location as well as the locations of risky
areas as soon as possible in order to prevent the epidemic.

A fog-assisted cloud-supported healthcare system was created by Vijayakumar et al.
in [96] for the real-time identification and prevention of illnesses spread by mosquitoes.
The categorization of illnesses spread by mosquitoes has been done based on symptoms.
The registered user is divided into infected and uninfected groups by using a fuzzy KNN
algorithm. Social network data is examined to identify risky regions. Alert messages have
been sent to registered users in an attempt to avoid an epidemic so they may stay away
from risky locations.

The authors of [97] designed an edge-cloud collaborative learning framework for the local
diagnosis of COVID-19 by using the VGG16 algorithm. The authors used a clustering federated
learning approach in order to solve the heterogeneity and the divergence in the data distribution.

Singh et al. developed in [98] a fog-based QoS framework to monitor the state of health
of citizens and prevent and ensure safety from COVID-19. The fog layer provides real-
time processing of users’ health data in order to predict COVID-19 infection. The unique
patient identification, which is made up of patient data and geographical information, is
then transferred to the cloud layer for further processing when the diagnosis is positive.
The results of the experiments show that the proposed model is very efficient for remote
diagnosis of COVID-19 infection and may be utilized as a time-saving substitute for labor-
intensive clinical diagnostic procedures.

Singh et al. developed in [99] a collaborative edge/cloud framework for remotely
diagnosing COVID-19. For the purpose of easy deployment on low-powered mobile de-
vices and devices and quick diagnosis, they used an optimized DL model inspired by
the MobileNet V2 model architecture. The model was first trained on the cloud; then its
backup was sent to edge devices to perform the diagnosis of COVID-19 infection. Finally,
when the diagnosis is positive, the unique patient identifier composed of patient informa-
tion and location information is sent to the cloud layer for further action. Experimental
results demonstrate that the proposed model is very effective for remote diagnosis of
COVID-19 infection and can be used as an efficient alternative to time-consuming clinical
diagnostic tests.

In [100], the authors proposed an intelligent health monitoring framework, iCovidCare
for the prediction of coronavirus disease based on an ensemble RF model. First, a rule-based
approach is employed at the local device to diagnose the coronavirus disease based on the
temperature sensor data. Then at the cloud server, the feature selection, and fusion are
applied for COVID-19 disease prediction.

2.6.5. Disease Diagnosis (DD)

In order to achieve an early and accurate diagnosis and detection of lung cancer while
maintaining privacy, low latency, and mobility, Prabukumar et al. developed in [101] a
fog-based system for the diagnosis of lung nodules. First, fuzzy hybrid C-Means and region-
growth segmentation algorithms were used for image segmentation and feature extraction.
Then, cuckoo search and SVM were used for feature selection and classification, respectively.

A paradigm for intelligent patient monitoring of cardiomyopathy patients by using
sensors and wearable technology is presented by the authors in [102]. By relocating sensors
in the monitored region, a fuzzy Harris hawks optimizer (FHHO) is first utilized to expand
the coverage of monitored patients, and then a wearable sensing data optimization (WSDO)
algorithm is employed for heart rate detection. The experimental findings show that
the optimized model is successful in terms of the number of sensors used, accuracy, and
response time, as well as sufficient patient coverage.

A real-time smart remote monitoring system for patients with chronic illnesses was
suggested by the authors in [103]. Four layers make up the suggested framework: the sensing
layer for data collection, the edge device layer for offline preprocessing, the edge server layer,



Sensors 2023, 23, 1639 29 of 49

and the cloud layer for further online operations. For the purpose of forecasting the patient’s
health status in dispersed emergency occurrences, the offline classification techniques are
trained in the cloud. The whale optimization algorithm (WOA) and NB are used in the
suggested technique to choose a small collection of features with a high level of accuracy.

The authors of [104] proposed an ensemble approach based on data fusion in fog
computing by using medical data from body sensor networks (BSNs) for heart disease
prediction. For their classification technique, they included a number of temporal and
frequency domain characteristics into a kernel RF ensemble. To create higher quality data
that is input to the ensembles for heart disease prediction, data from many sensors is fused.

The authors of [105] proposed an adaptive neuro-fuzzy inference system model for
Parkinson’s disease prediction. The fog takes a prominent role in feature extraction from
IoT sensors and provides the principal functions. Then, the parameters of the model are
adjusted through grey wolf optimization (GWO) and PSO. Results show that the proposed
model succeeds in predicting Parkinson’s disease with good accuracy.

Shynu et al. developed in [106] a fog computing-based framework for disease pre-
diction. First, for the protection and effective data storage and data sharing, a blockchain
in the fog nodes is used. The patient data for patients with diabetes and cardiovascular
disease are then initially grouped by using a rule-based clustering method. Finally, a
feature selection-based adaptive neuro-fuzzy inference system is used to predict diabetes
and cardiovascular illnesses (FS-ANFIS).

In order to provide low-latency responses in identifying emergency situations for
cardiac patients, Cheikhrouhou et al. proposed in [107] a remote cardiac patient monitoring
based on hybrid fog-cloud architecture for analyzing ECG signals captured from IoT
wearable devices. Results show that the proposed approach based on a one-dimensional
CNN approach for arrhythmia cardiovascular disease detection could achieve an accuracy
of 99% with 25% improvement in the overall response time.

Similarly, for real-time physiological data analysis, the authors in [109] designed a
framework for health monitoring based on fog computing. The system consists of three
layers. The first is the wearable layer wherein an RK-PCA is used to eliminate erroneous
data. A fog layer, which consists of an onlooker node is used to eliminate redundant
data generated by wearable devices and health status prediction. Then fog nodes for
health status detection. Finally, there is a cloud layer for data storage. In addition, a
multiobjective optimization algorithm is used to solve fog overloading in smart healthcare
applications. Experimental results show the stability of the system compared to the cloud-
based approach, while less latency, execution time, a high detection accuracy are improved.

In [108], the authors proposed a deep learning model to be supported by edge com-
puting and investigated it in the diagnosis for identification of heart disease from the
data collected by using IoMT devices. The proposed effective training scheme for DNN
(ETS-DNN) model incorporates a modified hybrid water wave optimization technique to
tune the parameters of the DNN structure.

To improve the detection of impending hypoglycemia, the authors of [110] developed
an embedded deep-edge learning model by using evidential regression and attention-based
recurrent neural network for real-time blood glucose.

2.7. Smart Transportation:

The use of IoT and AI technologies in the transportation field consists of collecting
information about vehicles, drivers, and roads with the objective of creating a real-time
traffic management system by performing traffic road condition monitoring, detecting
events in real time for traffic safety, and preventing perturbations that impact on traffic
flow and parking availability.

In this Section, we review and classify related works into three categories: smart
parking management (Section 2.7.1), traffic monitoring/prediction (Section 2.7.2), and
intelligent transportation management (Section 2.7.3); then, we qualitatively compare them
in Table 9.
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Table 9. Qualitative comparison of smart transportation-related works.

Use
Case

Ref Contribution AI Role
(At the Edge)

AI
Algorithm

Dataset AI
Placement

Employed
Technology

Platform Metrics Benefits
AI-Edge

Drawbacks

Sm
ar

tt
ra

ns
po

rt
at

io
n

SP
M

[111] Real-time prediction
Bike charging at each station
Reduce load to cloud

Prediction RT
SOM

Kaggle competition, Lon-
don shared bike data

MEC Lightweight model
(ML)

Not mentioned RMSE
RMSLE

High accuracy
Generalization

Multivariate data not sup-
ported
security

[112] Real-time parking
occupancy surveillance
Reduce load to cloud

Classification Mobile-net
SSD, BG, SORT

MIO-TCD Edge device
Raspberry Pi 3B,

Transfer learning TensorFlow Lite Accuracy Flexibility
Reliability
Online and high accuracy

Accuracy needs to be en-
hanced (=95),
security

[113] Privacy preserving
Parking space estimation

Prediction,
decision making

LSTM
DRL
Game theory

Birmingham parking
dataset

Fog nodes Federated learning Not mentioned MSE Computation offloading
in nonstatic environment,
improve security,
flexibility,
high accuracy

Less convergence speed

T.
M

.P

[115] Timely citywide traffic predic-
tion,
context data management

Data aggregation CNN,
LTSM

Beijing taxicabs data NYC
bike data

Fog nodes Transfer learning IFogSim Complexity,
training time, prediction time,
accuracy

Reduce network congestion,
increase energy efficiency,
less training/prediction times

Cloud inference,
non-real-time prediction

[114] Forecast the overall traffic,
adjust the redirected flow

Prediction DBN-SVR Caltrans PeMS Fog nodes / MATLAB Scalability, processing time, ac-
curacy

Scalability,
security

Accuracy needs
to be enhanced

[116] Privacy preservation
Traffic flow prediction

Prediction GRU, k-means PeMS database Edge nodes Federated learning Not mentioned MAE, MSE, RMSE, MAPE Low communication overhead
Statistical heterogeneity solved,
high accuracy

Spatiotemporal correla-
tion not solved

[117] Timely traffic flow prediction Prediction SVM PSO Guiyang City dataset Fog nodes Lightweight ML Matlab 2014a MSE Low time overhead,
faster processing,
adaptability,
good prediction

Model complexity high

[118] Spatial traffic flow prediction Prediction GCNs TaxiBJ TaxiNYC dataset Edge nodes Federated learning Not mentioned RMSE, MSE, MAPE High accuracy Less scalability

IT
M

[88] Driver distraction identifica-
tion

prediction VGG1-CNN -k-means Kaggle’s state farm,
distracted driver chal-
lenge

Edge device
Raspberry Pi

Transfer learning KERAS Accuracy, precision, recall, F1-
score

High accuracy Securityless scalability

[119] Driving behavior evaluation Prediction CNN-LSTM ToN UCI knowledge dis-
covery, archive database

Fog nodes Transfer learning TensorFlow Accuracy-loss curves High accuracy,
generalization

Less scalability,
security

[120] Real-time fault diagnosis Prediction SAES-DNN,
knowledge graphs

ToN UCI knowledge,
discovery archive
database

Edge device
NVIDIA Jetson TX2

Transfer learning Python Loss rate accuracy High accuracy Model complexity,
accuracy degraded for
large
dataset
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2.7.1. Smart Parking Management (SPM)

The authors of [111] suggested an edge computing-based shared bicycle system, with
a hybrid ML model (SOM-RT) and a self-organizing mapping network to assemble the
original samples in the form of clusters, and each cluster was built as an RT to forecast the
necessary number of bikes at each station. Experiments outperformed other methods in
terms of prediction accuracy and generalization.

The authors of [112] developed a camera-based object-detection solution for parking
surveillance. They used a single-shot multibox detector (SSD) and background-based
detection method in pipeline at the edge to reduce the data transmission volume and ensure
efficient updates, whereas the detection results are combined on the server to perform
parking occupancy detection in extreme lighting conditions and occlusion conditions with
a tracking algorithm for vehicle tracking in parking garages.

In [113], Huang et al. created the fedparking federated learning framework for the
management of parked vehicle-assisted edge computing (PVEC). Fedparking uses feder-
ated learning with LSTM to estimate parking space. Fedparking enables many parking
lot operators to jointly develop a model to forecast the availability of free parking spots
in a parking lot in real time for traffic management. For PVEC, they utilized an incentive
system. A multiagent deep reinforcement learning strategy was utilized to progressively
attain the Stackelberg equilibrium in a distributed yet privacy-preserving way while taking
into account the dynamic vehicle arrivals and time-varying parking capacity limitations.
High convergence accuracy is obtained by this method.

2.7.2. Traffic Monitoring/Prediction (TMP)

To solve the dynamic traffic changes issue in smart transportation for accurate traffic
prediction and for identifying the abnormal situation in real time, the authors of [114]
proposed a model for collaborative optimization of intelligent transportation systems.
Installing monitoring sites at various traffic crossings allows for data collection from each
intersection. The DBN-SVR approach is used to anticipate traffic conditions and predict the
overall traffic flow of the road network. Advanced computer technology was employed
to process the information signals produced by the crossings after the model was used to
determine the traffic flow of a few chosen intersections.

For accurate real-time traffic flow prediction, a framework named AAtt-DHSTNet
based on fog computing is proposed in [115]. The authors used an aggregation method
based on an attention mechanism to eliminate redundant data acquired by sensors in over-
lap regions, along with a spatial and temporal correlation-based DHSTNet model, which
dynamically manages spatial and temporal correlations through CNN and LSTM models.

For real-time urban traffic prediction, a short-term traffic flow prediction model based
on edge computing is introduced in [116]. The authors used a smooth support vector
machine optimized by a chaotic particle swarm optimization algorithm.

The authors of [117] proposed a federated learning approach to predict the number of
vehicles in an area. First, they used clustering to group participants. Then, they trained
a global model for each cluster. They used a joint-announcement protocol in the model
aggregation mechanism to reduce the communication overhead of the algorithm.

In [118], the authors proposed an edge computing-based graph representation learning
approach for short and long traffic flow prediction. The authors used a federated learning
approach. Each model at the edge consists of three components: (1) recurrent long-term
capture network (RLCN) module, (2) attentive mechanism federated network (AMFN)
module, and (3) semantic capture network (SCN) module for spatiotemporal information
in each area. The authors used an additive homomorphic encryption approach based on
vertical federated learning (VFL) to share the model.
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2.7.3. Intelligent Transportation Management (ITM)

In [121], the authors introduced a system based on edge/cloud computing for real-
time driver distraction detection by using a custom DCNN model and a VGG16 (namely,
visual geometry group-16)-based model.

A driving behavior evaluation technique built on a vehicle edge-cloud architecture
is taken into account by Xu et al. in the work at [119]. When a car is operating on the
road, its telematics box transmits data displaying the autopilot/driver behaviors to the
edge networks. The driving behavior evaluation model built by the cloud server is used
by the edge networks, which then communicate the behavior rankings back to the cars.
The driving behavior evaluation model is continually trained and optimized on the cloud
server by using vehicle data, and the model is periodically sent to the edge networks
for updates. The suggested scheme’s robustness and feasibility are demonstrated by
experimental findings.

A methodology for diagnosing railway faults based on edge and cloud collaboration
is created in [120]. The model first uses a SAES-DNN for the fault recognition method on
the cloud. Then, for a real-time fault diagnosis, a transfer learning strategy is used to assign
the task on the edge.

2.8. Security and Privacy in Edge-Based Applications

With the recent exponential sophistication of attacks and unauthorized access and
in order to ensure and improve the privacy and security of edge-based IoT applications,
putting an AI-based solution at the edge of the network is necessary.

In this section, we review and classify AI-based security solutions at the network edge
for IoT-based applications into three categories: those that provide early detection of mal-
ware and intrusions before the data is delivered to the cloud (Section 2.8.1), unauthorized
access solutions (Section 2.8.2), and privacy-preserving solutions to help keep sensitive
information safe during data sharing (Section 2.8.3); then, we compare them in Table 10.

2.8.1. Privacy Preservation (PP)

Kumar et al. [122] suggested two techniques for privacy preservation: blockchain and
deep learning implemented on the fog nodes in the Collaborative Intelligent Transportation
System. The blockchain and the smart contract-based module are used at the first level to
support the exchange of nonmutable data. The deep learning module LSTM-AE is used to
encode the C-ITS data into a novel format to prevent attacks. Finally, an attention-based
RNN is employed for attack detection.

Similar to this, Kumar et al. [123] proposed an integrated safe privacy-preserving
architecture for smart agricultural drones that integrates blockchain and DL methods. The
framework uses two levels of privacy. A blockchain-based ePoW and smart contracts are
included in the first level, and an SAE approach to transform data into a new encrypted
format is included in the second level. It uses a stacked short-term memory (SLSTM)
anomaly detection engine.

Authors in [124] proposed a model based on differential privacy, called differential
privacy fuzzy convolution neural network framework (DP-FCNN). First, they used the
addition of noise to protect sensitive information by using a fuzzy CNN with a Laplace
mechanism, then secured data storage, and encryption with a lightweight encryption
algorithm named PICCOLO before uploading it to the cloud.
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Table 10. Qualitative comparison of security and privacy in edge-based applications.

Use
Case

Ref Contribution AI Role
(At the Edge)

AI
Algorithm

Dataset AI
Placement
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Technology

Platform Metrics Benefits
AI-Edge
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[122] Privacy-preserving-
based secure C-ITS

Data encoding,
prediction

LSTM-AE, RNN ToN-IoT/CICIDS-
2017

Fog nodes Transfer
learning

TensorFlow library,
Keras

FAR-Accuracy-DR-
PR, F1

Low communication
overhead, low compu-
tation overhead, pri-
vacy preservation

Less scalability

[123] Privacy-preserving-
based secure smart
agriculture

Data encoding,
Prediction

SAE, LSTM ToN-IoT, IoT Botnet Fog nodes Transfer
learning

TensorFlow library,
Keras-

FAR-Accuracy-DR-
PR, F1

Privacy preservation Less scalability

[124] Improve the privacy
of the user data

classification,
adding noise

FCNN ToN UCI knowl-
edge discov-
ery Archive database

Fog nodes Transfer
learning

Java Development
toolkit (JDK) version
1.8, Weka

Scalability, process-
ing time, accuracy

Higher scalability and
efficiency

Fault tolerance

A
A

[8] Enhance the secu-
rity of MEC

Classification DNN Not mentioned MEC Transfer
learning

Not mentioned Computational cost,
convergence speed

High convergence
speed, low computa-
tional overhead

–

[125] Gait-based authenti-
cation to enhance se-
curity of mobile de-
vices

Feature
extraction-
classification

CNN-LSTM Matteo Gadaleta et
al. dataset

Edge
node/mobile

Transfer
learning

Not mentioned Complexity, accu-
racy

High accuracy Energy con-
sumption, mem-
ory not tested,
limited dataset
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iv
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[126] Distributed attack
detection for IoT
networks

Prediction GRU-LSTM-CNN-
DNN

NSL-KDD Cloud, edge Federated
learning

TensorFlow F1-score recall, de-
tection time

Low response time,
high accuracy, mul-
ticlass classification,
scalability

Difficult retrain-
ing model at
fog

[127] Real-time intrusion
detection

Prediction LSTM, GRU, CNN CIDDS-01 Fog nodes Transfer
learning,
SDN

Python Accuracy, precision,
recall, F1-score

Low accuracy,
low response time, ac-
curacy time,
scalability

[128] Real-time intrusion
detection

AE, IF NSL-KDD Fog, cloud Transfer learn-
ing

Python Accuracy, precision,
recall, F-measure
value

High accuracy –

[129] Low-cost intrusion-
detection system

Classification SAE, mutual informa-
tion (MI), C4.8 wrap-
per

Aegean WiFi In-
trusion Dataset
(AWID)

Edge device Lightweight
model

Not mentioned FAR, accuracy, DR-
PR, F1, MCC, TTB

High accuracy Generalization
not approved

[130] Real-time intrusion
detection

Classification DNN, PCA BoT-IoT data set Edge gateway
(Raspberry
Pi)-Cloud

Centralized,
federated
learning

Python CPU usage, RAM
usage, precision, F1-
score, complexity

High accuracy,
low complexity

Generalization
not approved

[131] Real-time intrusion
detection

Classification Salp, LSTM NSL-KDD, KYOTO,
CICIDSCICIDS
(AWS)

Fog gateway Low-cost
model

MATLAB Accuracy High accuracy, com-
putational complexity

–

[132] Shamoon attack de-
tection

Classification,
feature extraction

K-means, KNN, PSO Shamoon attack
dataset

Fog nodes Lightweight
model

Not mentioned Accuracy Low computational
cost

–

[133] Real-time attack de-
tection

Classification,
feature extraction

SVM, GWO Opcode dataset Edge server
(PC)

/ TensorFlow Computation time High accuracy, high
convergence

–
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To prevent leakage of users’ privacy-sensitive data, authors in [135] proposed a fed-
erated learning with a blockchain-based crowdsourcing framework. The authors used
differential privacy to protect the privacy of customers’ data. The model updates are ac-
countable for preventing malicious customers or manufacturers from using the blockchain.

2.8.2. Authentication and Authorization (AA)

The authors of [8] presented a DL-based physical layer authentication strategy that
takes advantage of channel state information to improve the security of MEC systems by
spotting spoofing attacks in wireless networks. The DL-based multiuser authentication
method put forward in this research can successfully distinguish between trustworthy edge
nodes, malicious edge nodes, and attackers, greatly enhancing the security of MEC systems
in the IoT.

In order to achieve high efficiency and the most effective use of computing resources,
the study in [125] presents an effective implicit authentication system called edge computing-
based mobile device implicit authentication (EDIA). The gait data from the built-in sensors
are processed in an optimum manner, and the model is based on the concatenation of CNN
and LSTM. By transforming the gait signal into an image, data preprocessing is utilized
to extract the characteristics of the signal in a two-dimensional space. A hybrid approach
using CNN and LSTM is used for user authentication, with CNN serving as a feature
extractor and LSTM serving as a classifier. The technique of authentication also achieves
excellent authentication accuracy with modest datasets, demonstrating that the model is
appropriate for mobile devices with limited battery and processing resources.

2.8.3. Intrusion Detection (ID)

Samy et al. proposed in [126] a distributed fog framework for IoT cyberattacks by
using the LSTM model. First, with the aim of achieving the scalability of the system, a
clustering-based mechanism is applied to the fog nodes to balance the network load and
increase network scalability and secure the exchanged traffic between the fog and the cloud.
The proposed framework has proven its effectiveness in terms of response time with a high
detection accuracy compared to cloud-based attack detection systems.

In [127] authors proposed a fog-based framework for the detection of attacks by using
a hybrid DL model CNN-LSTM with the use of centralized controller SDN to reduce
computation overhead with a highly cost-effective dynamic.

In [128] an IDS is proposed based on the DL approach by using AE and isolation forest
(IF) in a fog environment. After identifying the attack and separating it from data from
regular network traffic, AE uses an isolation forest to find the outlier data points.

The authors of [129] proposed a lightweight algorithm for resource-constrained mobile
devices for attack detection by using a stacked AE, mutual information (MI), and wrapper
for feature extraction and SVM for the detection.

In [130], Huong et al. proposed an IoT platform that uses edge and cloud computing
for attack detection based on multilayer classification and federated learning. A feature
extraction-based PCA coupled with an optimized neural network is implemented for a
low-complexity model and good accuracy. However, there is a limitation in the model,
which consists of the imbalanced distribution of the data on fog nodes. This limitation
decreases the accuracy of detection for some types of cyberattacks.

In [131], Gavel et al. designed a fog-based model for intrusion detection in an IoT
network. The model is based on a combination of the Kalman filter and the salp swarm
algorithm. First, the Kalman filter is used as a data fusion technique that reduces the
redundant data at the fog node. Then, the salp swarm algorithm is used to select the
optimum number of features. Finally, the features selected are used to train the model
using the kELM classifier. Results achieve highly reduced data, and high detection accuracy
with reduced computation time.

An investigator digital forensic algorithm was proposed in [132] to detect and catego-
rize advanced persistent and Shamoon attacks in a fog environment. The model consists of
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two steps. The first one allows the extraction of the relevant features and the prediction of
the best-weighted features with FPSO (frequencies PSO). In the second step, these latter are
clustered by using K-means and classified with the KNN.

The authors of [133] introduced a threat detection model at the edge layer based
on multikernel SVM. A feature selection module based on GWO is applied to minimize
the computational costs of the proposed model by selecting the relevant features. The
proposed model achieved high accuracy and outperforms DNN and fuzzy-based IoT
malware-hunting techniques. Moreover, it significantly reduces the computational cost and
training time.

3. Discussions of Related Works: Findings and Insights

In this section, we discuss the works reviewed in Section 2 through different points:
(1) the relevance of integrating AI and edge computing in IoT-based applications (Section 3.1);
(2) AI technologies (Section 3.2); (3) AI use at the network edge (Section 3.3); (4) enabling
technologies and strategies that provide analytic services at the edge (Section 3.4); (5) plat-
forms and software tools (Section 3.5); (6) performance metrics (Section 3.6); and (7) the
convergence of AI-edge with other technologies (Section 3.7).

3.1. The Relevance of Integrating AI and Edge Computing in IoT-Based Applications

The chart in Figure 2 shows a statistical distribution of the domains considered in
this review, which means that smart healthcare is the most studied domain, whereas the
distribution in the other domains is almost equal except for smart education, which is the
lesser one with 6% of the total number of studies.

From the reviewed works, we have drawn several conclusions considering the benefits
of the integration of AI and the edge in the eight reviewed domains (see Table 11).

3.2. AI Technologies

Figure 3 shows the classification of the different AI techniques used in the reviewed
works. Although Figure 4 shows the percentage of the use of convolutional ML and deep
learning algorithms in the reviewed works.

3.3. AI Use at the Network Edge

We show in Figure 5 a categorization, which summarizes the use of the AI at the
edge of the network. The AI is used for (1) data preprocessing (aggregation, filtering,
imputation, and reduction), (2) data analytics (prediction, classification, visualization, and
decision-making), (3) resources management (task scheduling, and load balancing), and
(4) intelligent sensing (data collection, and data transmission).

Smart Helathcare

27%

Smart grid

16%

Smart agriculture

9%

Smart environment

11%

Smart education

6%

Security and privacy

11%

Smart transportation

11%

Smart industry

9%

Figure 2. A statistic distribution of the domains considered in this review.
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Table 11. The benefits of the integration of AI and edge in the eight reviewed domains.

Domain Benefits of AI-Edge

Smart healthcare Reduces latency and provides location-aware and real-time healthcare services.

Smart grid Provides effective distribution and forecasting of energy

Smart agriculture Provides powerful monitoring systems to help speed up the diagnosis and analysis
of plants’ health conditions. Moreover, it helps to solve the problem of connectivity,
monitor the statutes of the machine, and identify the fault in the machine in a
timely manner

Smart environment Improves data quality, reduces computational modeling complexity, and improves
the mining efficiency of ocean big data. For air-quality monitoring, considering re-
gional characteristics when distributing various site-monitoring models enhances
the performance of monitoring

Security and privacy Increases security and privacy by adding noise and encryption to data, and distin-
guishing legitimate edge nodes from malicious nodes and attackers

Smart industry Provides immediate services to customers with minimal delays and errors; it
also helps in detecting the credit risks of legitimate customers and detecting and
preventing fraudulent activity

Smart transportation Manages real-time parking, traffic flow prediction, and supports intelligent mobil-
ity decisions

Smart education Improves online and real-time course management services, addresses poor porta-
bility of the experience, and improves distance learning

AI Techniques

Machine learning

supervised

SVM, KNN, RVM, NB, DBN-SVR, RF, DT

semi-supervised

graph-learning

unsupervised

Kmeans, DBSCAN, PCA, LDA, SOS, Fuzzy c-means, KPCA

Reinforcment learning

Qlearnig, deep-RL

Deep learning

supervised

LSTM, CNN, DNN, GRU

unsupervised

SAE, VAE, AE, GAN, DBN

Artificial Neural Networks

FFN, MDN

Meta Heuristics

Evolutionary

GA

Swarm intelligence

Ant-Bee, Cuckoo, Flower, Elephant, PSO, Rhino, WOA

Gentic Harmony, Lévy Flight, SHO, ACO, HHO, Salp

Figure 3. Categorization of AI technologies.



Sensors 2023, 23, 1639 37 of 49

Figure 4. Percentage of the use of the convolutional ML and deep learning algorithms in the
reviewed works.

AI use

Data preprocessing Data analytics
Resources

management
Intelligent sensing

Aggegation

Filtering

Imputation

Reduction

Prediction

Classification

Visualisation

Decision mak-
ing

Task schedul-
ing

Load balancing

Data collection

Data transmis-
sion

Figure 5. AI use.

3.4. Enabling Technologies and Strategies that Provide Analytic Services at the Edge

We conclude from the reviewed works that most of the research studies considered
lightweight models with 37% of the total number of reviewed works. The second con-
sidered technologies are the transfer learning and federated learning with 25% and 15%,
respectively. Whereas, approximately 12% and 9% of the studied related works considered
hardware and software optimizations and preprocessing at the edge, respectively. Unfortu-
nately, only 2% of the reviewed works considered DNN splitting and early exit. Figure 6
shows the distribution of these enabling technologies from the reviewed works.
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15%

Federated learning25%

Transfer learning

37%

Lightweight models 9%

Edge preprocessing

12%

Hardware and software optimizations

2%
DNN splitting

Figure 6. Enabling technologies.

3.5. Platforms and Software Tools

For edge-based applications, many simulators are used, such as iFogSim and YAFS.
However, for distributed data management at the edge, many big data analytic platforms
are used, such as Apache, Spark, and HDFS. Many libraries are proposed for deep learning
implementation, such as TensorFlow, Keras, and Caffe. However, with the purpose of
enabling deep learning inference at the edge, the lightweight library TensorFlow light is
used. Figure 7 shows the platforms used in the reviewed papers.

8%

Matlab

29%

Tensorflow

6%

Tensorflow lite

5%

iFogSim toolkit

5%Weka

4%

JavaScript
2%

OpenCV

4%

Caffe

25%

Not mentionned

4%

big data framwork Hadoop (HDFS)-Apache-Kafka

8%

Keras

Figure 7. Platforms and software tools.

3.6. Performance Metrics

As depicted in Figure 8, the used metrics are low latency, accuracy, training/ inference
time, data transmission rate, throughput, stability, mobility, security and privacy, scalability,
memory usage, reliability, training time, and bandwidth management. As shown in
Figure 8, the most used metrics in the reviewed works are accuracy and low latency. Then,
security and privacy, and training time were moderately used. However, a weak use
considered the other metrics.
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27%

Latency

36%

Accuracy

17%

Training time

3%

Reduction rate

2%

Throughput

1%

Stability

2%

Scalability

2%

Reliability

2%

Memory usage

7%

Execution time

1% communication overhead

Figure 8. Performance metrics.

3.7. The Convergence of AI-Edge with Other Technologies

Blockchain provides ultrasecurity mechanisms by using cryptographic algorithms [136].
Blockchain is a decentralized ledger system where digital files are grouped into blocks,
such as transaction lists or contractual agreements, and stored in a distributed database
blockchain smart contract is leveraged to generate a global model by averaging the sum of
locally trained models submitted by users. In this federated way, source data are supposed
to maintain security and privacy. Due to its distinctive characteristics, such as decentral-
ization, immutability, and traceability, the authors of [137] provide appealing solutions
for FL-based intelligent edge computing. FL can be implemented by using decentralized
data ledgers rather than a central server, reducing the chance of single-point failures. Any
update events and user actions are transparently tracked by all network entities.

4. Open Issues and Future Directions

Many factors impact the performance of edge-based smart applications: IoT data
quality, 5V IoT data features, heterogeneity, dynamicity of the edge computing, and its
resource constrained. Below, we discuss and present the major issues related to the design
and implementation of edge analytics, and we present future directions. As depicted in
Figure 9, the major issues revealed from the reviewed works are (1) big data analytic issues
(Section 4.1), (2) scalability (Section 4.2), (3) resource management (Section 4.3), (4) security
and privacy (Section 4.4), and (5) ultralow latency requirement (Section 4.5).

4.1. Big Data Analytic Issues

With the goal of transforming information into actionable insights and retrieving
the necessary knowledge for robust decision-making support and a reliable QoS; various
issues arise for big IoT data analytics in edge-based applications. The different issues are
discussed in detail below:

1. With regard to data quality issues, the collected IoT data may include irrelevant,
redundant, and missing data due to IoT network issues such as failure of devices,
less coverage, the overlapping area of redundancy that cause high energy consump-
tion and affect the limited power capabilities of IoT devices. All of these features
may reduce the accuracy of the model while increasing the execution time and the
computational complexity of the analysis. The authors of [54,57,102,138] used AI for
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spatial and temporal redundancy, data imputation, sensing coverage, and pipeline
data preprocessing at the edge, respectively. However, not all of them consider the
mobility, dynamic, and heterogeneity feature of an edge environment. The solutions
based on (1) dynamic network management, (2) lightweight AI data fusion at the
network edge, and (3) quality-aware, energy-efficient data management and data
reduction at the network edges are still open issues. AI and 6G/5G are recommended
solutions for efficient 3D coverage and intelligent sensing.

2. With regard to analytical learning model choices to deal with IoT big data characteris-
tics, we find the following.

• Spatio-temporal correlated data issue: Large-scale distributed geographic sys-
tems, such as large-scale environmental monitoring and city-wide traffic flow
prediction, where data is captured from different geographic locations in contin-
uous time, require the handling of the complex correlation between space–time
dependency. Graph-based deep learning is considered a promising solution to
handle the spatiotemporal correlation issues [139,140].

• Nonstationary, dynamic, and nonlinear IoT time series data: It is difficult for
classical methods to extract effective features from the collected IoT data due to
the nonstationary, dynamic, and nonlinear IoT data, such as in electric power
systems. To this end, selecting a suitable model to deal with IoT data characteris-
tics and in order to solve the problems associated with dynamic IoT data, it is
desirable to develop an online/incremental learning model that can be further
improved to become more flexible and adapt more quickly to changes in the
IoT environment. Reservoir computing is used in [40] to deal with this problem.
Retraining the deep learning model is still a problem due to the limited recourse
constraint of the edge.

• Generalized, adaptability, and tradeoff between training/inference time and
accuracy in ML models are also still challenges to be considered.

• Limited available dataset, multiclass classification, and imbalanced data set are
also challenges to be considered.

• Frameworks and simulators: To support real-time analysis and development
of fog computing, the authors of [141] developed modular simulation models
for service migration, dynamic distributed cluster formation, and microservice
orchestration for edge/fog computing based on real-world datasets. In [142], the
authors proposed a multilayer fog deployment framework for job scheduling
and big data processing in an industrial environment.

3. With regard to device computation, we find the following.

• Hardware and software optimization challenges: In the literature, many hard-
ware platforms capable of accelerating DL execution are used like server-class
central processing units (CPUs), and graphics processing units (GPUs). As an
innovative solution and to enhance the efficiency of computing in edge devices.
Hardware implementation is designed as an integrated solution to the neural
network in [143].

• Model compression challenges: Many solutions emphasize employing quantiza-
tion and compression methods to address the limited hardware requirements of
an edge device and compress CNN. The quantization requires careful tuning or
retraining of the model, which can take a long time and affect the accuracy of the
model. Other solutions use dynamic compression with an effort to reduce model
complexity and eliminate redundant components, such as in [56]. Others for-
mulate CNN model compression as a multiobjective optimization problem with
three functional objectives: reducing the size, improving classification accuracy
of the DCNN, which is related to the reliability of the model, and minimizing
the number of neurons in the hidden layer using the Lévy flight optimization
algorithm (LFOA) [59]. This model suffers from high complexity in training time.
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One of the future directions could be the combination of dynamic compression
with quantization for more accuracy [56].

4. With regard to distributed and parallel computing, we find the following.

• Federated learning:

– Communication overhead: FL involves sharing the model parameters in-
stead of the data. Transmitting complex models from large numbers of
clients to centralized aggregators generates a massive load of traffic, which
makes communication overhead. The iterative and nonoptimized methods
of communication between the server and the clients are the main factors
for increasing the communication overhead. Decreasing the communication
frequency at each round is also essential to improve the efficiency of the
algorithm considering the bandwidth cost. As a solution, authors in [144]
proposed federated particle swarm optimization (FedPSO) for transmitting
score values instead of large weights, which reduces the overall traffic in the
network communication. Moreover, authors in [145] proposed a framework
called COMET, in which clients can use heterogeneous models. It uses
knowledge distillation to transfer its knowledge to other customers with
similar data distributions.

– Fault tolerance: Reliability and fault tolerance means the whole system
architecture should be able to provide services even if any node (server)
on any level fails [146]. Leveraging peer-to-peer FL updates model in the
coordination of training can eliminate the single point of failure that may be
inherent in an aggregator-based approach [33]. Authors in [147] proposed
a decentralized learning variant of the P2P gossip averaging method with
batch normalization (BN), adaptation for P2P architectures. BN layers
accelerate the convergence of the nondistributed deep learning models.

– The unbalanced and not independent and identically distributed (Non-IID)
data: Non-IID data on the local devices (divergence in the data distribution)
can significantly decrease learning performance. Many solutions proposed
to solve this problem, such as model selection, and clustering are reported
in [20,116].

• With regard to DNN splitting, its advantage is that, compared with model com-
pression, it will not lose accuracy. However, it will create many caching and com-
munication costs because tasks should be transferred between the edge nodes to
reach the appropriate nodes with low delay and sufficient resources [148]. Early
exit is used by [76] to overcome the limitation, but choosing the point of early exit
is still inconvenient. Other problems are related to heterogeneous node failure,
and many solutions in the literature are proposed, such as RoofSplit [148], which
is used to overcome the limitation of communication cost. SplitPlace is used
for mobility. Therefore, developing a heterogeneous, parallel, and collaborative
architecture for edge data processing for various DL services will be helpful.
Other solutions still need to be developed.

4.2. Scalability

Edge computing has a scalability problem when high-volume IoT devices require
processing at the edge. Inadequate distribution of computation across multiple resource-
constrained nodes affects the scalability of the system. In the works reviewed above, few
works considered the scalability problem in edge-based applications. For example, in
Samy et al. [126], clustering of fog nodes to balance the network load is used to increase
scalability. Autoscaling is a solution that aims to optimize the use of resources [149].
However, the edge-computing environment is very dynamic which impacts the availability
of nodes in a distributed edge-based infrastructure, so the load on each node may change
continuously. Therefore, the scaling of processing services must be dynamic. Recent work
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has studied online machine learning for autoscaling, such as the one in [150], in which
the authors present an autoscaling subsystem for container-based processing services.
However, it will be interesting and promising to design dynamic autoscaling to ensure the
scalability of the system with high QoS performance.
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Figure 9. Open issues.

4.3. Resource Management

Edge computing is a resource constraint. Task scheduling and load-balancing tasks
across fog nodes are crucial to improve the quality of service of IoT-based applications,
including response time and improving the usage of fog nodes. In the distributed architec-
ture of edge-based applications, different edge servers or fog nodes are shared to perform
the processing of the collected data. The load imbalance among the edge servers affects
the stability of the system. Many works, such as [109], propose dealing with resource-
management issues. However, none of them consider heterogeneous and dynamic node
distribution. Dynamic load balance is an efficient solution, such as in the study in [151],
in which authors proposed a network traffic-based dynamic load balancing approach to
optimize the overall network performance.

4.4. Security and Privacy

The security problems of edge nodes are more important than those of servers because
they are placed at the edge of the networks, closer to the attackers. Therefore, an authentica-
tion security mechanism must be developed. The use of machine learning in adding noise
for differential privacy is a promising solution for improving the security and processing
time of the system. For example, in the reviewed works, DL-based physical layer authenti-
cation approaches can distinguish multiple legitimate edge nodes from malicious nodes
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and attackers. Moreover, DL is used for encoding data into a new format that prevents
inference attacks from gaining knowledge relative to original datasets.

4.5. Ultralow Latency Requirement

The need for ultralow service requires to introduce tactile 5G [152]. For example,
authors in [153] proposed a solution for ultralow latency based on machine learning and
network slicing.

5. Conclusions

This paper attempts to provide a review of edge computing-based applications with
a focus on the fusion of AI and edge computing while offering discussions on future
research directions related to AI and edge computing convergence. We started with a
review of existing recent works in eight different IoT-based application areas, and we
qualitatively compared them through tables by using several characteristics (use case,
reference, contribution, AI role at the edge, AI algorithm, dataset, AI placement, employed
technology, platform, metrics, benefits AI-Edge, and drawbacks). Then, we discussed the
related works to distinguish what was already done and used for the convergence of AI
and edge. After that, we presented issues and open challenges that serve as guidelines for
future work.

This review is limited to aspects related to the confluence of AI and Edge in eight
application areas from a global perspective for the purpose of big data analytics at the
edge. In this sense, this article focuses only on papers that deal with edge learning in
distributed edge-based architecture. It only touches on task and resource management and
the different feature challenges of edge in a limited way.
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