
Citation: Ibrahim, M.; Elhafiz, R.

Security Analysis of Cyber-Physical

Systems Using Reinforcement

Learning. Sensors 2023, 23, 1634.

https://doi.org/10.3390/s23031634

Academic Editors: Jemal Abawajy

and Nikos Fotiou

Received: 15 December 2022

Revised: 22 January 2023

Accepted: 30 January 2023

Published: 2 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Security Analysis of Cyber-Physical Systems Using
Reinforcement Learning
Mariam Ibrahim * and Ruba Elhafiz

Department of Mechatronics Engineering, German Jordanian University, Amman 11180, Jordan
* Correspondence: mariam.wajdi@gju.edu.jo

Abstract: Future engineering systems with new capabilities that far exceed today’s levels of autonomy,
functionality, usability, dependability, and cyber security are predicted to be designed and developed
using cyber-physical systems (CPSs). In this paper, the security of CPSs is investigated through a case
study of a smart grid by using a reinforcement learning (RL) augmented attack graph to effectively
highlight the subsystems’ weaknesses. In particular, the state action reward state action (SARSA)
RL technique is used, in which the agent is taken to be the attacker, and an attack graph created for
the system is built to resemble the environment. SARSA uses rewards and penalties to identify the
worst-case attack scenario; with the most cumulative reward, an attacker may carry out the most
harm to the system with the fewest available actions. Results showed successfully the worst-case
attack scenario with a total reward of 26.9 and identified the most severely damaged subsystems.

Keywords: SARSA; reinforcement learning; optimal path; cyber security

1. Introduction

Cyber-physical Systems (CPSs) have emerged as a result of integrated progress in
information technology. A CPS is a contemporary control system that incorporates a
computer, communication, and control technology into physical systems. It monitors and
regulates physical processes in real time using a computational system [1].

Currently, CPS has a wide range of potential applications as one of the key technologies
in industry 4.0, including aerospace, civil infrastructure energy, intelligent manufactur-
ing, intelligent transportation, etc. The widespread use of wireless networks in CPS has
improved lifestyle and output, but security issues have also been introduced. Through
a variety of assault techniques, cyber attackers can disable the system’s physical control
mechanism. Recent CPS security breaches have shown that it is extremely important to
investigate the security issue of CPS under cyber assaults [2].

The security of CPS was studied through our earlier work, such as [3–5], where we
sought to visualize the attack sequence within the attack graph that an attacker may carry
out to compromise the system. Additionally, a variety of frameworks were employed in
these studies, including the use of architecture analysis and design language for system
modeling, matrices, and algebra to determine any assault that may occur, and Q-based
reinforcement learning (RL) for establishing the worst damage an attacker can cause.

Machine learning (ML) is a developing technology that can help with practical com-
munication issues in actual contexts. Artificial intelligence (AI) technology is currently
playing a significant part in the development of several fields. Our main contribution
in this paper is to present a security analysis framework built on RL. In particular, the
state action reward state action (SARSA) approach is employed which uses rewards and
penalties to interact with sensory information and the environment. In contrast to previous
ML techniques that rely on trials and failures, RL agents may learn on their own without
prior knowledge of the environment [6].

The novelty of this work lies in introducing a unique SARSA-based on-policy algo-
rithm to discover the ideal pathway/attack scenario in the attack graph an attacker can

Sensors 2023, 23, 1634. https://doi.org/10.3390/s23031634 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23031634
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5683-3317
https://doi.org/10.3390/s23031634
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23031634?type=check_update&version=1

Sensors 2023, 23, 1634 2 of 14

pursue to cause the maximum damage to CPSs through a case study of a smart grid. An
off-policy learner gains knowledge of the value of the best course of action apart from the
actions of the agent. An agent learning on-policy gains knowledge of the policy’s benefits,
including the investigation procedures [7]. Furthermore, this approach can be useful in
detecting the most susceptible section of the system, which can aid in the development of a
more secure system. This strategy is compared with earlier work [5] based on Q-learning
(off-policy) to discover the differences among various RL approaches.

Despite several prior studies applying the SARSA to identify the optimum path, this
is the first time the SARSA algorithm is used to determine the best course of action for the
attacker, assuming that the attacks are the agent’s activities and that the RL environment is
the attack graph with the rewards’ values determined using the CVSS. This research offers
a method that integrates the attack graph and SARSA to examine the cyber security of CPSs
through a case study of a smart grid.

The rest of the paper is organized as follows: Section 1.1 highlights some of the
research that has been conducted in this area. Section 2 contains the specifics of our method.
The SARSA algorithm process is illustrated in Section 3 while the system’s evaluation
and outcomes are provided in Section 4. Finally, we summarize our contribution and
forthcoming initiatives in Section 5.

1.1. Related Work

Numerous works have focused on ML and RL, including [8], where the author used
the evolution strategy (ES) in the training of a neural network controller for the task of
pendulum control. The trials’ findings demonstrated that ES could successfully train the
multi-layer perceptron (MLP) to quickly make the pendulum upright if the MLP had a
sufficient number of hidden units. For the task utilized in this study, 32 hidden units did not
substantially outperform 16 hidden units, while 8 hidden units performed noticeably worse
than both 16 and 32 hidden units. A total of 16 units outperformed the other 2 options
in terms of task performance and computing effectiveness. Additionally, the findings
showed that exploration rather than exploitation helps ES search for better solutions. To
determine if this conclusion holds for evolutionary algorithms other than ES, more analyses
are necessary. Additionally, the study’s evolutionary algorithms should be enhanced and
further tested by using them for RL tasks other than pendulum control.

A rapid algorithm is suggested by [9] for a game player that can produce results
quickly. However, there are still many optimizations to be conducted, and the objective of
producing a generic game player needs further investigation. The typical player of games
can currently recognize the game setting, game actor, movements, and goal state.

To provide patients with individualized therapy, the researcher in [10] developed an
easy user interface for clinicians to utilize at the patient’s bedside to forecast prostate cancer
survival. With a margin of error of two months, the neural network was able to predict
the survival of patients with prostate cancer using the inputs of age, race, comorbidities,
and baseline prostate-specific antigen (PSA). The error margin of the neural network was
almost 37.5 times less than the margin of the linear regression model, which had a margin of
75 months. The best neural network model included a stochastic gradient descent optimizer,
an early stopping time of 50 iterations, a minimal delta of 0.0001, and a mean squared error
monitor, which produced the final margin.

Many pieces of research were conducted to explore SARSA algorithms to determine
the optimal path, such as [11], which offers a unique RL method called “Iterative SARSA”
that allows an agent to choose the best and safest path in dangerous surroundings filled
with hazards. The suggested method works best in situations when the operations’ overall
safety and efficacy take precedence over their ability to be implemented quickly. The safest
trajectory is then determined using SARSA. However, the length of the path results in a
rise in time complexity due to various iterations.

In order to determine the optimal path for mobile robots with the least amount
of computation, a hierarchical path planning technique using multi-SARSA based on

Sensors 2023, 23, 1634 3 of 14

topological maps is proposed in [12]. The approach put forward in this research splits
and resolves the issue by supplying a priori knowledge: the topological map gives the
initialization Q-table, while the artificial potential field technique supplies the child nodes.
Two preceding sets of data working together make it possible to speed up the algorithm’s
convergence and deliver a better outcome. The experiment investigated the impact of
prior knowledge on RL path planning further. Experiments revealed that the presentation
information may accelerate the algorithm’s convergence speed, and the convergence result
is more comparable to the presentation information, indicating that the suggested technique
has a promising future in personalized route training. The constraint, however, is in the
interactive alternatives that the robot must go through.

The potential uses of SARSA in cyber security are also investigated in the literature. For
instance, Ref. [13] introduced adaptive RL methods to examine the secure state estimation
problem from three distinct angles. The algorithms may determine the matching best course
of action from the viewpoint of a sensor or an attacker, as well as the Nash equilibrium
course of action from the viewpoint of a zero-sum game. The simulation results showed
that two different kinds of algorithms could provide the best laws. It should be mentioned
that there are limitations since Q-learning and SARSA rely on tables to store value; they
cannot be modified to fit situations involving high-dimensional state spaces.

An impersonation attack detection approach is presented by [14] using physical layer
security technology and a RL algorithm is suggested to examine the impersonation problem
between edge nodes and mobile users in edge computing settings. A detection approach
based on the SARSA algorithm is built under the Impersonation Attack Model (IAM) in an
edge environment, detecting impersonation assaults in a dynamic setting. According to
the experimental findings, the SARSA-based impersonation detection system has a slightly
greater miss detection rate than Q-learning, but a lower false alarm rate and average error
rate. In an edge computing environment with increased precision, communication security
is therefore better safeguarded between edge nodes and mobile users.

The development of intelligent technologies in smart power systems has made various
cyber physical power system architectures more vulnerable to cyberattacks. The functioning
of the smart power grids can be improved in terms of efficiency and failure avoidance via
the application of intelligent approaches based on ML techniques. The network can be
more robust if its users are aware of the various cyberattack techniques that may be used
against power systems and how to counter them [15].

Blockchain applications for the smart grid are examined in article [16], including dis-
tributed ledger technology, peer-to-peer (P2P) commerce, transactions, cyber security, and
local energy markets. The authors started by meticulously going through the blockchain’s
past. The smart contract and its significance in the blockchain were also explained. Finally,
they discussed some of the difficulties which encounter blockchain applications for the
smart grid.

A deep Q-Learning-based false data injection attack generator is developed in [17]
using several probable attack scenarios. A snapshot ensemble deep neural network and a
deep auto-encoder were also used to construct a two-layer framework for attack detection
that can distinguish between passive and active threats. The first layer’s accuracy was
98.02%, which indicates excellent performance. With an astonishingly low false positive
rate of 2.9%, the second layer, which was in charge of threat hunting, was able to detect
unidentified attacks. In the end, the GridLAB-D, ns-3, and Framework for Network Co-
Simulation (FNCS) simulators were combined to simulate the proposed attack modeling
and detection system.

2. Preliminaries
2.1. Case Study

This section discusses the case study, which will focus on the smart grid system (as
referred to in our previous work [4]). A CPS that frequently faces technological pressures is
the smart grid. The term “smart grid” refers to an electricity network that can effectively

Sensors 2023, 23, 1634 4 of 14

integrate the behavior and operations of all users connected to it (consumers, producers,
and those who do both), resulting in a financially viable, sustainable power system with
minimal losses, high levels of efficiency, and elevated levels of security [18].

Figure 1 shows the components and connections of the smart grid. The generating
system (GS) of a smart grid converts bulk energy into electrical energy and is connected
directly to the transmission system (TS), and the transmission control center (TCC) often
oversees and coordinates TS from a distance. TS transports electrical energy to be generated
in further regions. It delivers electrical energy to the distribution system (DS), and a
distribution control center (DCC) controls and monitors DS from a distance. Then, the DS
distributes the power to the consumers (C).

Sensors 2023, 23, x FOR PEER REVIEW 5 of 14

Figure 1. Smart grid architecture.

2.2. Attack Graph

With the use of attack graphs, several vulnerabilities may be connected to develop

an intrusion. A vulnerability is a defect in a system or network that might be exploited by

an attacker to carry out a successful attack. They are the preconditions for some of the

attacks. They can be caused by bugs, features, or human error. Attackers will attempt to

take advantage of any of these, typically combining one or more, to achieve their goal [19].

An attack graph’s description of an exploit of vulnerabilities amongst linked hosts is a

change in the system state, which is reflected in security-related situations [20].

The development of attack graphs has already advanced significantly, and there are

now more effective methods for doing so. A network attack model is created initially with

rules (exploits) for changing the attack state by following the security criteria to automat-

ically produce an attack graph. Exploit sequences that result in an unsafe network state

are developed. These sequences may then be organized in a graph [21].

Attack graphs are complicated, though, making it challenging for people to use them

effectively. Even a medium-sized network may have hundreds of potential attack points,

which would be too much information for a human user to handle. Using the data from

the attack graph to determine which configuration parameters should be changed in order

to successfully address the security concerns found is challenging. Additional work is re-

quired to assess potential configuration changes and ensure that the best adjustments are

made without a thorough understanding of the security issues that currently exist [22].

The attack graph of the smart grid, depicted in Figure 2, will be examined in this

paper. This graph was produced in our earlier work [4]. This investigation aims to further

analyze the attack graph demonstrating the ease that our algorithm will provide in doing

so, along with highlighting the significance of the cyber security of the smart grid.

Figure 1. Smart grid architecture.

This system is additionally supported by the service provider (SP), who contracts with
customers to distribute power to specific devices and collaborates with internal devices via
signals sent by the smart meter (SM). A broader market and system members are reached
much more quickly and online by the market (MK) system, which also distributes value.
The domains of the MK and SP make up the management system (M), which is in charge
of managing services such as energy distribution.

The control center (CC), which understands the intelligent warning ahead by moni-
toring the dominating transmission network over time and assessing its security through
cooperation among several specialist teams, is the last component of the smart grid. To
promote a higher cognitive process, CC optimizes the transmission operation by compiling,
integrating, analyzing, and mining the operational data. Additionally, it makes sure that
the electrical power network is reliable, efficient, flexible, economical, environmentally
friendly, and safe.

Sensors 2023, 23, 1634 5 of 14

The smart grid’s communication infrastructure is also built on three different kinds of
networks: the home area network (HAN), which is controlled within a small area of only
a few tens of meters, the neighborhood area network (NAN), which is distributed within
a wider area of some few hundred meters, and the wide area network (WAN), which is
controlled within a range of tens of kilometers. Please refer to [4] for further information
on the smart grid’s subsystems, network, connectivity, and vulnerabilities.

2.2. Attack Graph

With the use of attack graphs, several vulnerabilities may be connected to develop
an intrusion. A vulnerability is a defect in a system or network that might be exploited
by an attacker to carry out a successful attack. They are the preconditions for some of the
attacks. They can be caused by bugs, features, or human error. Attackers will attempt to
take advantage of any of these, typically combining one or more, to achieve their goal [19].
An attack graph’s description of an exploit of vulnerabilities amongst linked hosts is a
change in the system state, which is reflected in security-related situations [20].

The development of attack graphs has already advanced significantly, and there are
now more effective methods for doing so. A network attack model is created initially
with rules (exploits) for changing the attack state by following the security criteria to
automatically produce an attack graph. Exploit sequences that result in an unsafe network
state are developed. These sequences may then be organized in a graph [21].

Attack graphs are complicated, though, making it challenging for people to use them
effectively. Even a medium-sized network may have hundreds of potential attack points,
which would be too much information for a human user to handle. Using the data from
the attack graph to determine which configuration parameters should be changed in order
to successfully address the security concerns found is challenging. Additional work is
required to assess potential configuration changes and ensure that the best adjustments are
made without a thorough understanding of the security issues that currently exist [22].

The attack graph of the smart grid, depicted in Figure 2, will be examined in this paper.
This graph was produced in our earlier work [4]. This investigation aims to further analyze
the attack graph demonstrating the ease that our algorithm will provide in doing so, along
with highlighting the significance of the cyber security of the smart grid.

In the smart grid, many vulnerabilities were found such as customer security (CS),
which describes the large volumes of data that are autonomously collected by smart meters
and sent to the market, consumers, and service providers. These data include sensitive
consumer information that might be used to deduce the user’s behaviors and the devices
they are using [23]. Another vulnerability in the complex system that makes up the smart
grid, which is concerned with controlling both the supply and demand for power, is the
greater number of intelligent devices (GNOID). These advanced gadgets might act as access
points for network attacks. Furthermore, because the smart grid network is 100–1000 times
larger than the Internet, network management and observation are quite challenging [24].

It is expected that old technology is still in use because electricity systems and relatively
short-lived IT systems coexist in the same building. This equipment might serve as a
weak security node and be incompatible with current power system components. This
vulnerability is known as the lifetime of power systems (LOPS) [25]. A zero day (ZD) is
an undisclosed computer program vulnerability that needs to be mitigated, according to
those who should be concerned. Attackers can negatively exploit the vulnerability to affect
programs, data, and new systems or networks until it is fixed [26].

Firmware is another weakness since it is vulnerable to many different types of software
errors. These problems include memory corruption flaws, application logic errors, and
command injection vulnerabilities [27].

Sensors 2023, 23, 1634 6 of 14Sensors 2023, 23, x FOR PEER REVIEW 7 of 14

Figure 2. Smart grid’s attack graph.

2.3. SARSA

An AI method called SARSA was built on the Markov decision process (MDP) [29].

In this work, we used SARSA to determine the optimal path of the attacker based on the

rewards-augmented attack graph. The “Modified Connectionist Q-Learning MCQL”

method, now regarded as one of the well-established algorithms in the RL domain of ML,

was initially put out by Rummery and Niranjan [29].

Later, Sutton [30] proposed the present nomenclature SARSA. Two well-known RL

algorithms (built on temporal difference (TD) learning), SARSA and Q-learning, have a

great capacity for constructing a learning process that finally results in subsequent deci-

sion-making processes. The idea of an agent operating in a specific environment is used

in RL to infer a policy by using a collection of self-explanatory actions, states, calculated

Q-values, and reward signals.

Only by depending on its present condition and the impact of a positive or negative

reward signal created by the learning process can the agent decide which action to take.

Regarding the design objectives of the learning approach, a discount factor is also recom-

mended. The impact of the upcoming reward on the present state will increase as the fac-

tor approaches unity and vice versa. Reward signals therefore act as feedback to show

whether an action may succeed or fail in the learning process [31].

According to SARSA, the main method for updating the Q-value is based on the

agent’s present status. The agent picks action “a” and the reward signal “r” leads the agent

to choose the appropriate action; then, the agent enters state “s’” after executing that par-

ticular action, and lastly, the agent chooses action “a’” while in its new state. In SARSA,

the agent conducts exploration and exploitation using the state-value function and the

epsilon greedy strategy. The subsequent step assigns a grade to the states and determines

their relative strength based on the weights of the derived Q-values [32]:

Figure 2. Smart grid’s attack graph.

The smart grid, which combines physical power systems with cyber systems for
sensing, monitoring, communication, processing, and control, is an example of a CPS [28].
Moreover, the vulnerabilities of the smart grid can be exploited to execute cyberattacks, for
example, malware spreading (MS), eavesdropping (E), denial of service (DoS), zero day
(ZDA), and bypass security mechanism (BSM). Each attack instance in an attack scenario
executed between two subsystems has a pre- and post-condition, in terms of connectivity,
vulnerabilities, services, privileges, and attacker capabilities [4].

The attack graph represents the routes that the attacker can take and the attacks that
can be executed to compromise the smart grid. By modifying the firmware of the DS or
obtaining access to the CC, the attacker plans to disrupt the smart grid system by increasing
latency in the communication between two subsystems, gaining root access on the DS, or
causing a blackout.

There are sixteen sequences/paths in this attack graph that lead to states (nodes)
where the system may be controlled and put in danger by the attacker. Additionally, nine
nodes were located, each of which describes how the state of the system can evolve as a
consequence of an attack. The system’s state captures the evolution of its dynamic variables
whose values change upon attacks. These are attacker level of privilege (P), data knowledge
(K), latency (L), and hardware control (H).

An example of a sequence presented in the graph can be described as follows. An
Eavesdropping attack E-APM is launched on management system M in the beginning when
the attacker has a privilege on the access point (AP) to obtain information (e.g., the type of
smart devices and applications that M uses). In order to obtain control over M, the malware
spreading MS-APM attack is then launched from the AP using the GNOID vulnerability.
After that, a bypass security mechanism BSM-MD is run on D to take advantage of the

Sensors 2023, 23, 1634 7 of 14

LOPS vulnerability and take over the firmware of the device. This may cause a system
outage and eventually have an impact on power use [4].

2.3. SARSA

An AI method called SARSA was built on the Markov decision process (MDP) [29].
In this work, we used SARSA to determine the optimal path of the attacker based on
the rewards-augmented attack graph. The “Modified Connectionist Q-Learning MCQL”
method, now regarded as one of the well-established algorithms in the RL domain of ML,
was initially put out by Rummery and Niranjan [29].

Later, Sutton [30] proposed the present nomenclature SARSA. Two well-known RL
algorithms (built on temporal difference (TD) learning), SARSA and Q-learning, have a
great capacity for constructing a learning process that finally results in subsequent decision-
making processes. The idea of an agent operating in a specific environment is used in RL to
infer a policy by using a collection of self-explanatory actions, states, calculated Q-values,
and reward signals.

Only by depending on its present condition and the impact of a positive or negative
reward signal created by the learning process can the agent decide which action to take.
Regarding the design objectives of the learning approach, a discount factor is also recom-
mended. The impact of the upcoming reward on the present state will increase as the factor
approaches unity and vice versa. Reward signals therefore act as feedback to show whether
an action may succeed or fail in the learning process [31].

According to SARSA, the main method for updating the Q-value is based on the
agent’s present status. The agent picks action “a” and the reward signal “r” leads the
agent to choose the appropriate action; then, the agent enters state “s’” after executing that
particular action, and lastly, the agent chooses action “a’” while in its new state. In SARSA,
the agent conducts exploration and exploitation using the state-value function and the
epsilon greedy strategy. The subsequent step assigns a grade to the states and determines
their relative strength based on the weights of the derived Q-values [32]:

Vπ(s) = E
[
∑ ´a∈Aγ r (s, a)| s

]
(1)

Qπ(s, a) = E
[
∑tγ r (s, a) | s, a

]
(2)

where:
A: is the agent’s actions set, ai ∈ A
S: is the agent’s states set, si ∈ S
Qi(s, a) : is the Q-value for (s, a)
ri (s, a): is the reward signal
π: is the control policy in the learning process
γ: is the discount factor
t: is a time step
Equation (1) underlines the relationship between state and value whereas Equation (2)

emphasizes the association between action and value. Whether or not the agent’s present
activity is known determines how significantly the two functions differ from one another.
The action-value function is typically used to determine the best course of action at each time
step as a result. Therefore, the following would be a better Bellman form of Equation (2):

Qπ(s, a) = ri(s, a) + γ ∑ś∈SPi (ś | s, a) Qπ
i (ś, á) (3)

where:
Pi (ś | s, a) : is the likelihood that an agent will change between any two successive

states after performing a certain activity
ś: is the updated state
á: is the updated action

Sensors 2023, 23, 1634 8 of 14

The agent’s behaviors in the present and the future in SARSA are all constrained by
a greedy policy and are therefore on-policy. Q-learning, on the other hand, is based on
off-policy because the agent’s subsequent action is not based on the online law, prohibiting
greedy behavior. The SARSA updates the Q-values using the following equation:

Q (s, a) = Q(s, a) + α(R(s, a) + γQ(ś, á)−Q(s, a)) (4)

where:
α: is the learning rate
R(s, a): is the reward received on moving from state s by performing an action a
Q(ś, á): is the Q-value for (ś, á)

2.4. Common Vulnerability Scoring System (CVSS)

An open platform called CVSS is used to communicate the features and consequences
of IT vulnerability. The evaluation of IT vulnerabilities, IT administrators, vulnerability
bulletin providers, security organizations, application makers, and researchers will all
benefit from the use of this consistent terminology [33].

The base, temporal, and environmental subcategories of the CVSS measure are sep-
arated. The inherent characteristics of a vulnerability that hold throughout time and in
various user contexts are represented by the base metric category. It includes two different
categories of metrics: those that evaluate the impact and those that evaluate exploitability.

The criteria for exploitability reflect both the technical methods and the simplicity
with which a vulnerability may be misused. In other words, they represent traits of the
susceptible entity, also known as the vulnerable component. The impacted component,
which is properly known as the object that is affected, is what the impact metrics refer to as
the direct result of a successful attack [34].

The elements of a vulnerability that change over time but not across user contexts are
highlighted by the temporal metric category. For instance, the CVSS score would increase
if a rudimentary exploit kit was included, but it would decrease if an official remedy was
developed [35].

The susceptibility traits particular to a certain user’s surroundings are represented
by the environmental metric group. A system’s relative value within a technological
infrastructure, the existence of security procedures that may reduce some or all of the
effects of a successful assault, and other similar considerations are all important [36].

We used an online CVSS calculator [37] to determine the CVSS score for each attack on
the smart grid system, as shown in Table 1. For instance, the inputs that were supplied into
the calculator for the eavesdropping attack that the host AP conducted against subsystem
M (E-APM) were as follows:

• Our input for the Attack Vector was local, meaning that the attack is being conducted
via read/write/execute capabilities and that the vulnerable component is not con-
nected to the network stack.

• The Low input for the Attack Complexity was entered into the calculator, signifying
that no special access requirements or mitigating factors exist.

• The value entered for the Privileges Required field is None, indicating that the attacker
was not authorized before beginning the attack and does not require access to the
settings or data on the susceptible system to carry it out.

• None was entered in the User Interaction field, indicating that no user interaction was
required to abuse the system.

• The Scope field’s response of Unchanged indicates that only resources under the
control of the same security authority can be harmed by an exploited vulnerability.

• The attacker has access to some protected information, but he or she has no control
over what information is gained or how much of it is obtained. This is shown by the
Low response that was entered into the Confidentiality field.

Sensors 2023, 23, 1634 9 of 14

• The None response was entered for the two fields Integrity and Availability, signifying
that the affected component has not lost its integrity or availability.

• The input for Exploit Code Maturity is Functional, indicating that there is functional
exploit code available.

• Unavailable was the response for Remediation Level and Reasonable for
report Confidence.

• Security Requirements: Low
• Modified Attack Vector (MAV): Local
• Modified Attack Complexity (MAC): Low
• Modified Privileges Required (MPR): High
• Modified User Interaction (MUI): None
• Modified Scope (MS): Unchanged
• Modified Confidentiality (MC): Low
• Modified Integrity (MI): Low
• Modified Availability (MA): High
• These inputs resulted in an overall score of 3.4.

Table 1. Attacks’ CVSS Scores.

Attack Name Base Score Temporal Score Environmental Score Overall Score

E-APM 4.0 3.8 3.4 3.4

ZDA-APM 5.2 4.8 4.7 4.7

MS-APM 5.0 5.2 4.8 4.8

BSM-CCCC 8.0 8.1 8.1 8.1

BSM-MD 8.0 8.1 8.1 8.1

DoS-MCC 7.5 7.5 10 10

DoS-MT 9.2 9.0 8.7 8.7

DoS-MGS 9.2 9.0 8.7 8.7

DoS-TCC 7.5 7.5 10 10

DoS-TD 7.5 7.5 10 10

DoS-GSCC 7.5 7.5 10 10

DoS-GSD 7.5 7.5 10 10

DoS-MD 7.5 7.5 10 10

3. Methodology

This section details the process of the SARSA-based rewards-augmented attack graph.
The attack graph depicted in Figure 2 is duplicated to be more thorough as illustrated in
Figure 3. It shows the rewards-augmented movements that the attacker can carry out from
each node. The attacker’s initial location is supposed to be at node number 1, and the
attacker is free to go through the nodes in any order until reaching node numbers 4, 5, 8,
and 9, which represent the objective states. Additionally, the reward values are determined
using the CVSS overall ratings from Table 1. Once in the target state, the attacker will
remain there indefinitely. The forward route is depicted by the blue lines, and the value
of these lines varies according to the attack and its CVSS value. The agent will receive no
reward for any action or movement that is reversed, demonstrated using the orange lines.
The reward will be -1 if the agent stays put (remains in the same node) or goes to a different
node that is not linked to the one they are currently in, as illustrated with the green lines.

Sensors 2023, 23, 1634 10 of 14

Sensors 2023, 23, x FOR PEER REVIEW 10 of 14

DoS-TCC 7.5 7.5 10 10

DoS-TD 7.5 7.5 10 10

DoS-GSCC 7.5 7.5 10 10

DoS-GSD 7.5 7.5 10 10

DoS-MD 7.5 7.5 10 10

3. Methodology

This section details the process of the SARSA-based rewards-augmented attack

graph. The attack graph depicted in Figure 2 is duplicated to be more thorough as illus-

trated in Figure 3. It shows the rewards-augmented movements that the attacker can carry

out from each node. The attacker’s initial location is supposed to be at node number 1,

and the attacker is free to go through the nodes in any order until reaching node numbers

4, 5, 8, and 9, which represent the objective states. Additionally, the reward values are

determined using the CVSS overall ratings from Table 1. Once in the target state, the at-

tacker will remain there indefinitely. The forward route is depicted by the blue lines, and

the value of these lines varies according to the attack and its CVSS value. The agent will

receive no reward for any action or movement that is reversed, demonstrated using the

orange lines. The reward will be -1 if the agent stays put (remains in the same node) or

goes to a different node that is not linked to the one they are currently in, as illustrated

with the green lines.

The potential rewards the agent could receive when navigating between the nine

nodes are shown in Table 2. For instance, the reward would be 8.1 if the attacker moved

from node 3 to node 5.

Figure 3. Rewards-augmented attack graph.

Figure 3. Rewards-augmented attack graph.

The potential rewards the agent could receive when navigating between the nine
nodes are shown in Table 2. For instance, the reward would be 8.1 if the attacker moved
from node 3 to node 5.

Table 2. Reward matrix.

R 1 2 3 4 5 6 7 8 9

1 −1 3.4 4.7 −1 −1 −1 −1 −1 −1

2 0 −1 4.8 −1 −1 −1 −1 −1 −1

3 0 0 −1 8.1 8.1 8.7 8.7 10 10

4 −1 −1 0 −1 −1 −1 −1 −1 −1

5 −1 −1 0 −1 −1 −1 −1 −1 −1

6 −1 −1 0 −1 −1 −1 −1 10 10

7 −1 −1 0 −1 −1 −1 −1 10 10

8 −1 −1 0 −1 −1 0 0 −1 −1

9 −1 −1 0 −1 −1 0 0 −1 −1

Algorithm 1 displays the predicted optimal path of the attacker through the SARSA-
based rewards-augmented attack graph. The initial state 1 is provided as input. However,
it is presumed that nodes 4, 5, 8, and 9 are the ending states. The suggested path from the
source to the destination nodes is the output. Equation (4) is used to compute and update
the Q-value in the suggested algorithm for route recommendation using SARSA.

The epsilon greedy strategy is used to choose the next course of action in states. For
each state, a random integer (0 or 1) is created and then contrasted with the epsilon value.
This method selects the action with the lowest value for the specified user preference if the
produced random number is higher than epsilon; otherwise, it takes a greedy approach
to investigate all other possible actions for the specified condition. The path is forecasted
taking into account the highest value of action “a” for the state “s”. Up until one of the final
nodes is reached, it is repeated.

Sensors 2023, 23, 1634 11 of 14

Algorithm 1: Predict the optimal route

Input: Start state;
Result: Optimal route;
initialization;
Initialize Q(s,a);
Initialize state ’s’;
Choose an action ’a’ using epsilon-greedy approach;
for each time step do

Take a;
Observe the reward r(t+1) and the state s(t+1);
Update Q(s(t),a(t));
s(t)← s(t+1);
a(t)← a(t+1)

end

4. Experimental Results and Discussion

In this part, we applied our SARSA approach using Python to identify the worst-case
attack scenario an attacker may carry out on the smart grid system. On a typical computer
processor, the execution time for the employed approach is almost 1 h and 15 min: 2.3 GHz8-
CoreIntelCorei9; memory: 16 GB, 2667 MHz DDRF4, running macOS Big Sur.

Finding the optimum path for the attacker/agent reflects the agent’s training devel-
opment as depicted in Figure 4. The cumulative reward for each episode is shown on the
y-axis, while the x-axis shows the number of episodes. The model’s convergence required
54 episodes. The red line depicts how the average reward changed after each episode,
illustrating how the agent training has changed. The blue line displays the total reward for
each episode. The chart shows that the average reward is rising, indicating an improvement
in the agent’s training as the episodes go.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 14

Figure 4. Results of SARSA agent.

According to the findings and after 54 iterations, the worst assault scenario path in-

volves the nodes 1 → 2 → 3 → 6 → 9, with a total reward of 26.9. The most severely dam-

aged subsystems that may be identified using this information are M, MT, and DS.

The cumulative reward started low during training (when the agent was unsure of

the best course of action) but increased throughout episodes as the best course of action

was discovered. When the reward remained constant, the agent’s training was finished.

This required 54 iterations.

To protect the vulnerable parts of the system from both internal and external assaults,

network Intrusion prevention (IP) and intrusion detection (ID) technologies can be added

to host-based defenses. Several ways can be addressed to safeguard the smart grid and

improve its security [25], including putting in place a strong authentication mechanism,

conducting yearly element vulnerability assessments, and modifying virtual private net-

work (VPN) topologies for secure communication.

Another traditional reinforcement approach was employed in our prior work [5] to

determine the best route an attacker may follow to compromise an integrated clinical en-

vironment system, and the algorithm utilized was based on Q-learning. Both Q-learning

and SARSA rely on tables to store value. In [5], one target node was the lone node in the

attack graph, which had seven nodes. It was found that the Q-learning results showed the

shortest path, independent of the cumulative reward, as opposed to the SARSA algorithm,

which disregarded the shortest path, such as 1 → 3 → 4. A longer path with greater cu-

mulative reward was produced as a result of the SARSA. Both strategies function in a

limited space (or a discretized continuous environment). While SARSA learns a near-op-

timal policy, Q-learning directly learns the optimal policy. Because it is optimal, the Q-

learning agent will choose the shortest route, but the SARSA agent would choose the

longer one with a greater cumulative reward.

Accessibility to the system model is crucial for the growth of the attack graphs. A

one-time modeling effort is frequently required to obtain the system description for com-

ponents, connections, services, and vulnerabilities.

A linear relationship exists between pre- and post-conditions for atomic attacks and

dynamic state variables. The computation’s difficulty is further influenced by the model’s

size and the length of the attribute. Model size and security attribute length are known to

have polynomial effects on complexity.

Figure 4. Results of SARSA agent.

According to the findings and after 54 iterations, the worst assault scenario path
involves the nodes 1→ 2→ 3→ 6→ 9, with a total reward of 26.9. The most severely
damaged subsystems that may be identified using this information are M, MT, and DS.

The cumulative reward started low during training (when the agent was unsure of the
best course of action) but increased throughout episodes as the best course of action was
discovered. When the reward remained constant, the agent’s training was finished. This
required 54 iterations.

To protect the vulnerable parts of the system from both internal and external assaults,
network Intrusion prevention (IP) and intrusion detection (ID) technologies can be added

Sensors 2023, 23, 1634 12 of 14

to host-based defenses. Several ways can be addressed to safeguard the smart grid and
improve its security [25], including putting in place a strong authentication mechanism, con-
ducting yearly element vulnerability assessments, and modifying virtual private network
(VPN) topologies for secure communication.

Another traditional reinforcement approach was employed in our prior work [5] to
determine the best route an attacker may follow to compromise an integrated clinical
environment system, and the algorithm utilized was based on Q-learning. Both Q-learning
and SARSA rely on tables to store value. In [5], one target node was the lone node in the
attack graph, which had seven nodes. It was found that the Q-learning results showed the
shortest path, independent of the cumulative reward, as opposed to the SARSA algorithm,
which disregarded the shortest path, such as 1 → 3 → 4. A longer path with greater
cumulative reward was produced as a result of the SARSA. Both strategies function in
a limited space (or a discretized continuous environment). While SARSA learns a near-
optimal policy, Q-learning directly learns the optimal policy. Because it is optimal, the
Q-learning agent will choose the shortest route, but the SARSA agent would choose the
longer one with a greater cumulative reward.

Accessibility to the system model is crucial for the growth of the attack graphs. A one-
time modeling effort is frequently required to obtain the system description for components,
connections, services, and vulnerabilities.

A linear relationship exists between pre- and post-conditions for atomic attacks and
dynamic state variables. The computation’s difficulty is further influenced by the model’s
size and the length of the attribute. Model size and security attribute length are known to
have polynomial effects on complexity.

5. Conclusions

In this work, a novel method was proposed based on the application of SARSA RL
to the attack graph comprising the set of possible attack scenarios performed against
the system. The agent successfully found the best path that might cause the system the
most harm. Our findings revealed which subsystem was most exposed to cyberattacks.
The development of the best action selection guidelines to fix the vulnerabilities can be
aided by these insights. Future improvements to this strategy might include the addition
of the defender, who would take appropriate preventive action based on a constrained
understanding of the state of the system, which would be made possible by the deployment
of monitors. Additionally, the strategy can be illustrated more strongly on larger attack
graphs. Moreover, alternative approaches, including deep RL and double RL, may be used
and contrasted with the RL strategy that was employed in this research.

Author Contributions: Conceptualization, M.I. and R.E.; methodology, M.I.; software, M.I. and R.E.;
validation, M.I. and R.E.; formal analysis M.I. and R.E.; investigation, M.I.; resources, M.I. and R.E.;
data curation, M.I. and R.E.; writing—original draft preparation, M.I. and R.E.; writing—review and
editing, M.I. and R.E.; visualization, R.E.; supervision, M.I.; project administration, M.I.; funding
acquisition, M.I. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Deanship of Graduate Studies and Scientific Research at
the German Jordanian University, Seed fund SATS 03/2020.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to acknowledge the Deanship of Graduation Studies
and Scientific Research at the German Jordanian University for the Seed fund SATS 03/2020.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2023, 23, 1634 13 of 14

References
1. Dafflon, B.; Moalla, N.; Ouzrout, Y. The challenges, approaches, and used techniques of CPS for manufacturing in Industry 4.0: A

literature review. Int. J. Adv. Manuf. Technol. 2021, 113, 2395–2412. [CrossRef]
2. Keerthi, C.K.; Jabbar, M.A.; Seetharamulu, B. Cyber physical systems (CPS): Security issues, challenges and solutions. In

Proceedings of the 2017 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC),
Coimbatore, India, 14–16 December 2017; pp. 1–4.

3. Ibrahim, M.; Al-Hindawi, Q.; Elhafiz, R.; Alsheikh, A.; Alquq, O. Attack graph implementation and visualization for cyber
physical systems. Processes 2019, 8, 12. [CrossRef]

4. Ibrahim, M.; Elhafiz, R. Security Analysis of Smart Grids. Secur. Commun. Netw. 2022, 2022, 7199301. [CrossRef]
5. Ibrahim, M.; Elhafiz, R. Integrated Clinical Environment Security Analysis Using Reinforcement Learning. Bioengineering 2022, 9,

253. [CrossRef] [PubMed]
6. Rigas, E.S.; Ramchurn, S.D.; Bassiliades, N. Managing electric vehicles in the smart grid using artificial intelligence: A survey.

IEEE Trans. Intell. Transp. Syst. 2014, 16, 1619–1635. [CrossRef]
7. Orseau, L.; Armstrong, M.S. Safely interruptible agents. In Proceedings of the Thirty-Second Conference on Uncertainty in

Artificial Intelligence (UAI), Jersey City, NJ, USA, 25–29 June 2016; pp. 557–566.
8. Okada, H. Evolutionary Reinforcement Learning of Neural Network Controller for Pendulum Task by Evolution Strategy. Int. J.

Sci. Res. Comput. Sci. Eng. 2022, 10, 13–18.
9. Kataria, V. Extending Specialized Systems to a Generic Approach of Game Playing. Int. J. Sci. Res. Comput. Sci. Eng. 2018, 6,

31–34.
10. Chaudhary, S.; Datta, P. Survival Model of Prostate Cancer Patients Using Machine Learning Neural Networks Techniques. Int. J.

Sci. Res. Comput. Sci. Eng. 2021, 9, 48–54.
11. Mohan, P.; Sharma, L.; Narayan, P. Optimal Path Finding using Iterative SARSA. In Proceedings of the 2021 5th International

Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 6–8 May 2021; pp. 811–817.
12. Wen, S.; Jiang, Y.; Cui, B.; Gao, K.; Wang, F. A Hierarchical Path Planning Approach with Multi-SARSA Based on Topological

Map. Sensors 2022, 22, 2367. [CrossRef] [PubMed]
13. Jin, Z.; Ma, M.; Zhang, S.; Hu, Y.; Zhang, Y.; Sun, C. Secure State Estimation of Cyber-Physical System under Cyber Attacks:

Q-Learning vs. SARSA. Electronics 2022, 11, 3161. [CrossRef]
14. Yan, X.; Yan, K.; Rehman, M.U.; Ullah, S. Impersonation Attack Detection in Mobile Edge Computing by Levering SARSA

Technique in Physical Layer Security. Appl. Sci. 2022, 12, 10225. [CrossRef]
15. Ghiasi, M.; Niknam, T.; Wang, Z.; Mehrandezh, M.; Dehghani, M.; Ghadimi, N. A comprehensive review of cyber-attacks and

defense mechanisms for improving security in smart grid energy systems: Past, present and future. Electr. Power Syst. Res. 2023,
215, 108975. [CrossRef]

16. Immaniar, D.; Aryani, A.A.; Ula, S.Z. Challenges Smart Grid in Blockchain Applications. Blockchain Front. Technol. 2023, 2, 1–9.
[CrossRef]

17. Rouzbahani, H.M.; Karimipour, H.; Lei, L. Multi-layer defense algorithm against deep reinforcement learning-based intruders in
smart grids. Int. J. Electr. Power Energy Syst. 2023, 146, 108798. [CrossRef]

18. European Regulators Group for Electricity and Gas, Position Paper on Smart Grids-an ERGEG Public Consultation No. e09-
eqs-30-04, Berlin, 2010. Available online: https://www.ceer.eu/documents/104400/-/-/c2479e88-a1fc-1751-bfa3-a37a710aa6f6
(accessed on 29 January 2023).

19. Ammann, P.; Wijesekera, D.; Kaushik, S. Scalable, graph-based network vulnerability analysis. In Proceedings of the 9th ACM
Conference on Computer and Communications Security, Washington, DC, USA, 18–22 November 2002; pp. 217–224.

20. Wang, L.; Islam, T.; Long, T.; Singhal, A.; Jajodia, S. An attack graph-based probabilistic security metric. In Proceedings of the IFIP
Annual Conference on Data and Applications Security and Privacy, London, UK, 13–16 July 2008; pp. 283–296.

21. Ingols, K.; Lippmann, R.; Piwowarski, K. Practical attack graph generation for network defense. In Proceedings of the 22nd
Annual Computer Security Applications Conference (ACSAC’06), Washington, DC, USA, 11–15 December 2006; pp. 121–130.

22. Homer, J.; Varikuti, A.; Ou, X.; McQueen, M.A. Improving attack graph visualization through data reduction and attack grouping.
In Proceedings of the International Workshop on Visualization for Computer Security, Cambridge, MA, USA, 15 September 2008;
pp. 68–79.

23. Bhatt, T.; Kotwal, C.; Chaubey, N. Survey on smart grid: Threats, vulnerabilities and security protocol. Int. J. Electr. Electron.
Comput. Syst. 2017, 6, 340.

24. Al-Turjman, F.; Abujubbeh, M. IoT-enabled smart grid via SM: An overview. Future Gener. Comput. Syst. 2019, 96, 579–590.
[CrossRef]

25. Aloul, F.; Al-Ali, A.R.; Al-Dalky, R.; Al-Mardini, M.; El-Hajj, W. Smart grid security: Threats, vulnerabilities and solutions. Int. J.
Smart Grid Clean Energy 2012, 1, 1–6. [CrossRef]

26. Ablon, L.; Bogart, A. Zero Days, Thousands of Nights: The Life and Times of Zero-Day Vulnerabilities and Their Exploits; Rand
Corporation: Santa Monica, CA, USA, 2017.

27. Shoshitaishvili, Y.; Wang, R.; Hauser, C.; Kruegel, C.; Vigna, G. Firmalice-Automatic Detection of Authentication Bypass Vulnerabilities
in Binary Firmware; NDSS: San Diego, CA, USA, 2015; Volume 1, p. 1.

http://doi.org/10.1007/s00170-020-06572-4
http://doi.org/10.3390/pr8010012
http://doi.org/10.1155/2022/7199301
http://doi.org/10.3390/bioengineering9060253
http://www.ncbi.nlm.nih.gov/pubmed/35735496
http://doi.org/10.1109/TITS.2014.2376873
http://doi.org/10.3390/s22062367
http://www.ncbi.nlm.nih.gov/pubmed/35336535
http://doi.org/10.3390/electronics11193161
http://doi.org/10.3390/app122010225
http://doi.org/10.1016/j.epsr.2022.108975
http://doi.org/10.34306/bfront.v2i2.150
http://doi.org/10.1016/j.ijepes.2022.108798
https://www.ceer.eu/documents/104400/-/-/c2479e88-a1fc-1751-bfa3-a37a710aa6f6
http://doi.org/10.1016/j.future.2019.02.012
http://doi.org/10.12720/sgce.1.1.1-6

Sensors 2023, 23, 1634 14 of 14

28. Jha, A.V.; Appasani, B.; Ghazali, A.N.; Pattanayak, P.; Gurjar, D.S.; Kabalci, E.; Mohanta, D.K. Smart grid cyber-physical systems:
Communication technologies, standards and challenges. Wirel. Netw. 2021, 27, 2595–2613. [CrossRef]

29. Rummery, G.A.; Niranjan, M. On-Line Q-Learning Using Connectionist Systems; Department of Engineering, University of
Cambridge: Cambridge, UK, 1994; Volume 37, p. 14.

30. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
31. Knox, W.B.; Stone, P. Combining Manual Feedback with Subsequent MDP Reward Signals for Reinforcement Learning; AAMAS: London,

UK, 2010; pp. 5–12.
32. Aljohani, T.M.; Mohammed, O. A Real-Time Energy Consumption Minimization Framework for Electric Vehicles Routing

Optimization Based on SARSA Reinforcement Learning. Vehicles 2022, 4, 1176–1194. [CrossRef]
33. Mell, P.; Scarfone, K.; Romanosky, S. A Complete Guide to the Common Vulnerability Scoring System Version 2.0; FIRST-Forum of

Incident Response and Security Teams: Cary, NC, USA, 2007; Volume 1, p. 23.
34. Singh, U.K.; Joshi, C. Quantitative security risk evaluation using CVSS metrics by estimation of frequency and maturity of exploit.

In Proceedings of the World Congress on Engineering and Computer Science, San Francisco, CA, USA, 19–21 October 2016;
Volume 1, pp. 19–21.

35. Mell, P.; Scarfone, K.; Romanosky, S. Common vulnerability scoring system. IEEE Secur. Priv. 2006, 4, 85–89. [CrossRef]
36. Cheng, Y.; Deng, J.; Li, J.; DeLoach, S.A.; Singhal, A.; Ou, X. Metrics of security. In Cyber Defense and Situational Awareness; Springer:

Cham, Switzerland, 2014; pp. 263–295.
37. National Vulnerability Database. Common Vulnerability Scoring System Calculator. Available online: https://nvd.nist.gov/

vuln-metrics/cvss/v3-calculator (accessed on 25 November 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/s11276-021-02579-1
http://doi.org/10.3390/vehicles4040062
http://doi.org/10.1109/MSP.2006.145
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator

	Introduction
	Related Work

	Preliminaries
	Case Study
	Attack Graph
	SARSA
	Common Vulnerability Scoring System (CVSS)

	Methodology
	Experimental Results and Discussion
	Conclusions
	References

