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Abstract: The emergence of Transformer has led to the rapid development of video understanding,
but it also brings the problem of high computational complexity. Previously, there were methods
to divide the feature maps into windows along the spatiotemporal dimensions and then calculate
the attention. There are also methods to perform down-sampling during attention computation to
reduce the spatiotemporal resolution of features. Although the complexity is effectively reduced,
there is still room for further optimization. Thus, we present the Windows and Linear Transformer
(WLiT) for efficient video action recognition, by combining Spatial-Windows attention with Linear
attention. We first divide the feature maps into multiple windows along the spatial dimensions and
calculate the attention separately inside the windows. Therefore, our model further reduces the
computational complexity compared with previous methods. However, the perceptual field of Spatial-
Windows attention is small, and global spatiotemporal information cannot be obtained. To address
this problem, we then calculate Linear attention along the channel dimension so that the model can
capture complete spatiotemporal information. Our method achieves better recognition accuracy with
less computational complexity through this mechanism. We conduct extensive experiments on four
public datasets, namely Something-Something V2 (SSV2), Kinetics400 (K400), UCF101, and HMDB51.
On the SSV2 dataset, our method reduces the computational complexity by 28% and improves the
recognition accuracy by 1.6% compared to the State-Of-The-Art (SOTA) method. On the K400 and
two other datasets, our method achieves SOTA-level accuracy while reducing the complexity by
about 49%.

Keywords: action recognition; Spatial-Windows attention; linear attention; self-attention; transformer

1. Introduction

One of the most important tasks in video understanding is to understand human
actions. The task to recognize human actions in a video is called video action recogni-
tion [1]. Transformer architecture is driving a new paradigm shift in computer vision, and
researchers are rapidly adapting transformer architectures to improve the accuracy and
efficiency of action recognition task [2]. Video frame sequence has an explicit sequential
relationship-like sentence, which means that video understanding has a high similarity
to Natural Language Processing (NLP) tasks [3]. Therefore, rich context information is
essential for video understanding tasks. This is one of the reasons that the Transformer
structure [4], which is widely used in NLP, has received a lot of attention in the video field
in recent years. A unit in convolutional networks only depends on a region of the input,
and this region in the input is the perceptual field for that unit. Since anywhere in an
input image outside the perceptual field of a unit does not affect the value of that unit, it is
necessary to carefully control the perceptual field to ensure that it covers the entire relevant
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image region [5]. So, another important reason for the widespread use of the Transformer
structure is that the size of the perceptual field is important for many Computer Vision
(CV) tasks, especially for video understanding tasks. The main previous approach is a
three-dimensional convolutional neural network [6–9] (3D CNN) using 3× 3× 3 convo-
lutional kernels with multilevel architectures and down-sampling to gradually increase
the perceptual field. However, when the Transformer [10,11] has been widely used in
the CV field in the last two years, it becomes a better approach to capture long-distance
visual dependencies through the attention layer. While this approach has a powerful global
context modeling capability, its computational complexity grows quadratically with token
length, limiting its ability to scale to high-resolution scenarios. Therefore, designing a more
efficient model structure that can capture global information is still an open issue. There
is much effort that has been undertaken to modify the Transformer’s structure to pursue
this goal.

IGPT [10] uses the standard Transformer model to solve vision tasks with the pixels
of the input image as the sequence to be processed, and the information interacts at
the pixel level. Subsequently, ViT [11] divides the image into non-overlapping patches
instead of pixels and imitates the name in the NLP field [12], calling each block a “token”.
That effectively reduces computational effort and improves performance and lays the
foundation for later research. To further reduce the computational cost, several approaches
propose to compute local attention within a window [13–16], as well as to perform spatial
down-sampling operations on tokens [17,18] during attention computation. Such methods
maintain good accuracy while significantly reducing the computational effort, but they still
require operations such as shifting [13], overlapping patches [17,18], etc., to compensate
for the lost spatiotemporal information. In addition to this, some methods note that the
attentional overhead is mainly in the intermediate matrix operations [19–21]. In particular,
the Softmax function restricts the order of matrix computation, resulting in a complexity
that is a squared relationship of the sequence length. They try some operations to change
the computational order of the matrix, but the results are not satisfactory. These methods
obtain a trade-off between accuracy and computational complexity, but it is clear that
researchers still pursue better methods that reduce complexity while maintaining the most
complete spatiotemporal information possible.

This paper aims to propose a more accurate and efficient action recognition method,
which can reduce the computational complexity as much as possible while ensuring recog-
nition accuracy. Our work is inspired by the above works. Firstly, we divide the feature
maps into multiple windows along the spatial dimensions and calculate the attention
inside the windows, respectively. Unlike Swin [22], which divides the windows along the
spatiotemporal dimensions, we only divide the windows along the spatial dimensions,
which further reduces the computational complexity. This method also brings the prob-
lem of a limited perceptual field of the model; that is, the model can only represent and
reinforce the information inside each window and lacks the ability to mine long-distance
dependencies. Therefore, we consider that features extracted from different dimensions
may help to solve this problem. In traditional attention calculations [16], each feature
in the spatiotemporal dimensions is called a spatiotemporal token, which has complete
channel information. Thus, if we transpose the dimensions of the feature maps, that is,
each feature in the channel dimension is called a channel token, which contains complete
spatiotemporal information. As shown in Figure 1, we divide the feature maps along the
spatial and channel dimensions to obtain the Spatial-Windows token and Channel token,
respectively. After the Spatial-Windows attention calculation, we use the Channel token
for attention calculation, which we call Linear attention, so as to supplement the model’s
ability to represent global information. Different from some of the previous Linear attention
methods, we still follow the self-attention without introducing other additional operations
to the calculation process. To intuitively represent the logical positional relationship be-
tween Spatial-Windows attention and Linear attention, other modules between the two
attentions are omitted.
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Figure 1. The logical pipeline of the Spatial-Windows Attention and Linear Attention with the
generation of two kinds of tokens used in them. In addition, the attention calculation process and
feature dimensions change during the pipeline are shown.

While such a method is theoretically feasible, there are still some challenges to over-
come. In the calculation of attention, the Spatial-Windows/Channel token takes the
channel/spatiotemporal dimensions as the hidden dimensions, and the complete chan-
nel/spatiotemporal information of a Spatial-Windows/Channel token is compressed into
a single value after matrix multiplication during the calculation. This means that chan-
nel/spatiotemporal information is naturally lost in complex operations. Therefore, as
shown in Figure 1, we use two kinds of attention alternately to compensate for the lost
information in the spatiotemporal and channel dimensions.

To summarize, the main contributions of this article are as follows:

(1) We propose a complementary framework of Windows and Linear Transformer (WLiT),
which ensures the ability of the model to capture global information while achieving
efficient action recognition.

(2) We present the Spatial-Windows attention module that only divides the feature maps
along the spatial dimensions, which further reduces the computational complexity.

(3) We fully analyze and discuss the computational complexity of the attention mecha-
nism, and theoretically prove our method.

(4) We conduct a lot of experiments to verify our method. On the SSV2 dataset, our
method achieves higher accuracy than the SOTA method while having less computa-
tional complexity.

This paper consists of five parts: The first part is the introduction, which introduces
the action recognition task and the mainstream methods in this field and summarizes the
methodological basis and main contributions of our study. The second part introduces some
work related to our research and describes the problems and optimization possibilities of
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the previous methods in detail. The third part describes our research method particularly,
not only introducing the overall structure of the method but also fully interpreting each
part of the model. The fourth part first introduces the dataset selected in this paper and the
relevant experimental details and then shows sufficient experimental results to prove the
reliability of our research. The last part summarizes the content of the full text and puts
forward possible directions for further research.

2. Related Works

The mainstream methods of action recognition can be divided into two categories ac-
cording to the order of development, namely convolution-based methods and Transformer-
based methods. To describe our work more clearly, we will also briefly describe the basic
Transformer structure and self-attention in the second part.

2.1. Convolution-Based Action Recognition Methods

The earliest models relied on manually extracted features [23–25] to encode motion
and scene information. With the advent of large datasets such as ImageNet [26], Con-
volutional Neural Networks [27] are widely used for various vision tasks and are also
rapidly becoming the backbone of video understanding tasks [28–30]. Since the release of
the Kinetics dataset [8], 3D CNN [7,31] has been widely used, and many variants [32–35]
have emerged to improve the accuracy and efficiency of convolutional models. However,
3D convolutional kernel is difficult to train, and it takes a lot of calculation costs. I3D [8]
inflates the pre-trained 2D convolutional kernels for better optimization; it adapts mature
image classification architectures to use for 3D CNN. Hence, I3D bypasses the dilemma
that 3D CNNs have to be trained from scratch. Moreover, I3D ends the era where different
methods report numbers on small-sized datasets such as UCF101 and HMDB51. Publica-
tions following I3D need to report their performance on Kinetics400 or other large-scale
benchmark datasets, which push video action recognition to the next level [1]. Meanwhile,
some works represented by P3D [36] and R2 + 1D [34] try to decompose the 3D convolution
kernel to reduce the complexity. To be specific, a 3D kernel (e.g., 3× 3× 3) can be factorized
to two separate operations, a 2D spatial convolution (e.g., 1× 3× 3) and a 1D temporal
convolution (e.g., 3× 1× 1). P3D proposes three connection structures according to the
order of spatial convolution and temporal convolution operations and how they affect the
output results. In addition to this, some works [37–40] optimize the processing of convolu-
tion through different entry points to fully exploit the spatiotemporal modeling capability
of convolution. TSM [38] shifts part of the channels along the temporal dimension, thus
facilitating information exchanged among neighboring frames. In order to keep spatial
feature learning capacity, they put temporal shift module inside the residual branch in a
residual block. TSM has high industrial application value, but it also has some defects.
TSM does not choose the shifted channels, so there will be some information confusion.
TEA [39] uses motion features to recalibrate the spatiotemporal features to enhance the
motion pattern. Although so many methods have been tried differently, there are still
unavoidable problems with convolution-based methods. Since the convolution operations
can only process one local area at a time, the perception field is limited. In the face of
tasks sensitive to long-distance information, the performance of convolution methods is
not satisfactory.

2.2. Transformer-Based Action Recognition Methods

The Transformer structure was first proposed for NLP tasks in 2017; it can accept
all feature information input in parallel. The self-attention mechanism is an integral
component of transformers, which explicitly models the interactions between all entities
of a sequence for structured prediction tasks [41]. Therefore, transformer models have
emerged as attractive and promising solutions very soon for improving the accuracy of
challenging CV tasks such as action recognition [2]. For a given entity in a sequence of
video frames, self-attention computes the dot-product of the query with all keys, i.e., the
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patches segmented from the video frames. The dot-product result is then normalized using
a Softmax operator to obtain the attention scores. Each entity then becomes a weighted
sum of all entities in the sequence, where the weights are given by the attention score [41].
The most prominent advantage of this structure is that it can process all input features at
the same time, that is, it has a global perceptual field.

Video-related tasks require longer-distance information due to the additional temporal
dimension. Therefore, Transformer blocks [4] are inserted into CNNs as additional layers to
improve long-range interaction modeling of spatiotemporal features [42]. Over time, pure
transformer architecture-based action recognition has started emerging with an increasing
trend [2]. So based on the ViT [11,43], there are some methods [3,43–45] that propose
different variants of the spatiotemporal information learning process, which not only
validate the Transformer’s ability to capture spatiotemporal information over long distance
but also enhance the ability of feature extraction and analysis. VTN [44] successfully
modifies the Transformer structure in the image field to be a video recognition network.
VTN solved the problem of how to transform the video sequence into the input form
of Transformer and became a new baseline in the field. Subsequently, TimeSFormer [3]
considers the differences between video and image and proposes five video-based attention
schemes, including joint space-time attention (ST), divided space-time attention (T + S),
and so on. In addition, it also successfully applies the residual connection in the CNNs
to the video Transformer structure, which further improved the recognition accuracy.
Based on these, ViViT [45] slices the feature maps along the spatiotemporal dimensions to
obtain the 3D tokens. It completed action recognition with a pure Transformer structure
and proposes two token construction methods and three temporal attention and spatial
attention connection modes.

Although the Transformer structure shows superior competitiveness in extracting
spatiotemporal long-range dependencies, it comes with a much larger computational and
parametric volume than convolution. Therefore, several works attempt to design them in
a lightweight manner. Swin [13] slices the feature maps into windows and calculates the
local attention inside each window. This approach successfully reduces the sequence length
by a factor of several, enhancing the local induction bias but also losing global modeling
capability. For global information interaction, they use sliding windows with overlap to
achieve this. Immediately afterward, Video Swin Transformer [22] was also proposed,
which was used for video action recognition. They divided the video frame into 3D
windows and performed the same operation. Video Swin Transformer achieved excellent
recognition accuracy. MViT [46] uses a hierarchical structure and pool self-attention. The
combination of the multi-scale idea and Transformer structure improves the accuracy while
reducing the model complexity. However, the method has a large number of redundant
operations for processing information, and there is still room for improvement. Therefore,
we further explore the structure of ViT and try to propose a more concise and efficient
action recognition model.

3. Method

Our method has been further innovated and optimized on the basis of the previous
ones. We achieve the low computational complexity through Spatial-Windows attention
and ensure the ability of the model to obtain global information through Linear attention
and additional Feed-Forward-Network (FFN) modules. In addition, we use a concise
adaptive position encoding module, which simply and efficiently ensures that the position
of the tokens in spatiotemporal and channel dimensions is fixed. In this section, we first give
an overview of the overall structure of the model and analyze the traditional spatiotemporal
self-attention. Next, we detail the key components of the model one by one. Finally, we
qualitatively analyze the computational complexity to prove the reliability of the proposed
method and explain some key parameters in the model.
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3.1. Overview of WLiT Architecture

We follow the structural setting of MViT [46] and other transformer-based methods [22]
to facilitate a fairer comparison of results. As shown in Table 1, our WLiT is composed of
4 stages, each having several transformer blocks of consistent channel dimension. At the
beginning of the network, we sample and crop the video to obtain input features of size
8× 224× 224 (8 is the number of frames, and 224 is the spatial resolution). WLiT initially
projects the input to a channel dimension of D = 64 with overlapping spatiotemporal cubes
of shape 3× 4× 4. The resulting sequence of length 4× 56× 56 = 12, 544 is reduced by
a factor of 4 for each additional stage to a final sequence length 4× 7× 7 = 196 at the
last stage. In tandem, the channel dimension is up-sampled by a factor of 2 at each stage,
increasing to 512 at stage 4. To visually show the difference among stages, we also show
the attention operator used in each stage and the number of superimpositions.

Table 1. Model configurations for our WLiT.

Stage Operators Output Sizes

Pre-processing Sampling 8× 1× 1 8× 224× 224

Patch embedding Kernel 3× 4× 4, 64
Stride 2× 4× 4 64× 4× 56× 56

Stage 1
[

Spatial-Windows attention
Linear attention

]
×1 64× 4× 56× 56

Stage 2
[

Spatial-Windows attention
Linear attention

]
×2 128× 4× 28× 28

Stage 3 [Spatiotemporal attention]×11 320× 4× 14× 14

Stage 4 [Spatiotemporal attention]×2 512× 4× 7× 7

Figure 2 illustrates the architecture of our WLiT; it can be seen that each block contains
an attention module, two adaptive position encoding modules, and an FFN module. The
attention module can be divided into Spatial-Windows attention, Linear attention, and
spatiotemporal self-attention at different stages. Spatial-Windows attention and Linear
attention are the core of this study and are therefore presented in more detail in Figure 1
(The Norm layer, the adaptive position encoding layer, and FFN module in Figure 2 are
omitted). A patch embedding layer is inserted before the start of each stage, and the
adaptive position encoding module is used. The spatiotemporal resolution and feature
dimensions are kept constant in each stage. What’s more, the FFN module is an important
part of the transformer structure, which can introduce nonlinear feature activation and
supplement the ability of the model to capture all channel information. Therefore, after
each calculation of attention, the feature must be activated by an FFN module.

It should be emphasized that the attention modules in the first two stages of the
model are different from those in the last two stages. We decide to use Spatial-Windows
attention and Linear attention in the first two stages of the network. In the last two
stages, we still use the traditional spatiotemporal self-attention. This is a good trade-off
between computational complexity and precision that we achieve after theoretical analysis
and experimental verification. We will conduct a sufficient analysis in the part of this
section behind.
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Figure 2. Overall architecture of our Windows and Linear Transformer (WLiT). We show one block
of each stage of WLiT which contains three important parts: Adaptive Position Encoding (APE) to
keep the position relationship between tokens stable, Feed-Forward-Network (FFN), which performs
nonlinear activation on features, and the Attention Module. In the first two stages, we use Spatial-
Windows attention and Linear attention. By alternately using the two types of attention, our model
enjoys the benefit of capturing global information with lower computational complexity. In the last
two stages, we use spatiotemporal self-attention.

We first introduce the calculation process of spatiotemporal self-attention [3]. Assume
that there is a video feature, x ∈ RN×C, where N = T × H ×W denotes the length of the
feature sequence; C denotes the channel dimension; T, H, W means time, height, and
width, respectively. The feature x is projected by an adaptive matrix to generate QKV. Then
we perform the calculation as follows.

A(Q, K, V )= Softmax

(
QKT
√

dk

)
V. (1)

After the matrix multiplication in Q× K, the feature’s dimensions change from RN×C

to RN×N . Besides, dk means the number of channels of K. The obtained similarity matrix is
normalized by the Softmax operation and multiplied by V so that the feature’s dimensions
change from RN×N to RN×C. Then, the features are output from the FFN module. In this
process, the computational complexity is O(2N 2C + 12C2), which is mainly positively
related to the sequence length as well as the number of channels.

In the first two stages of the model, N � C, so we strive to minish N to reduce
computational complexity. We achieve this through Spatial-Windows attention. Then, we
supplement the global information with Linear attention. The calculation processes of
Spatial-Windows attention and Linear attention are different from traditional self-attention,
and we will introduce them in turn.
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3.2. Spatial-Windows Attention

In the first two stages, the influence of sequence length on computational complexity
dominates [47], so we introduce Spatial-Windows attention to limit the attention calcula-
tion to local windows. The whole feature maps are divided evenly in a non-overlapping
manner. Suppose there are Nw windows, then each window contains n patches, where

Nw =
H ×W × T

n
, n = ws× ws, and ws is the window size. Additionally note that we

divide the feature maps into windows only along the spatial dimensions, which means
that our windows have only two dimensions, H and W. That is unlike the division method
of Swin [22], and therefore each window contains fewer patches and is less computation-
ally intensive.

Aspatiotemporal (Q, K, V) = {Awindows(q, k, v)}Nw , (2)

where q, k, v ∈ Rn×C stands for query, key, and value inside each window. The computa-
tional complexity of the process is O(2N wn2C + 12C2

)
. It can be observed that there is a

significant reduction in computational effort. The model loses the ability to mine global
contextual information which can be captured by channel-based Linear attention.

3.3. Channel-Based Linear Attention

Spatial-Windows attention is computed in a single window that does not overlap.
It means that there is no interaction of information among different windows, which
can severely limit the ability of the model to extract and represent features. We note
that the Spatial-Windows token used in the calculation of Spatial-Windows attention
contains all the channel information. So, if the feature maps are divided along the channel
dimension, the obtained Channel tokens can cover all spatiotemporal information. Using
Channel tokens for attention computation, we can effectively implement the interaction
of different windows information. This improves the ability of the model to represent
global information while maintaining a lightweight network. Therefore, after computing
Spatial-Windows attention, we restore all windows to the original feature maps and then
compute Linear attention on the entire feature maps.

Achannel= Softmax
(

KTV√
dk

)
Q, (3)

where Q, K, V ∈ RN×C represent the query, key, and value of Linear attention, respectively.
It can be noticed that, unlike Spatial-Windows attention, the channels occupy the main
component of the computational complexity in this process. We still follow the computa-
tional process of spatiotemporal self-attention without too much additional modification.
This also proves that the effectiveness is derived from this structural design.

3.4. Adaptive Position Encoding

Compared with image tasks, video has an additional time dimension, which requires
a more sufficient positional encoding layer to exploit the positional relationship of tokens.
Instead of the usual absolute and relative position encodings [48,49], we choose to use a
position encoding that adapts to different input lengths and does not require additional
clipping or interpolation. The local inductive bias contained in the convolution method can
naturally memorize the image position due to its unique characteristics such as translation
invariance [50]. Some previous works used convolutions as a position encoding method [51].
We also follow such an idea but explore it a little deeper. At the beginning of each stage, we
insert an adaptive position encoding to ensure that the positions among tokens are stable.
Our method includes an operation of dividing the window. To ensure that this process does
not affect the positional relationship of tokens, we additionally add an adaptive position
encoding module that does not share weights before the features are input into the FFN
module. In order to ensure the simplicity of the model, we choose depth-wise convolution
to realize adaptive position encoding. We also verify in the experiments that the adaptive
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position encoding improves the accuracy of the model without increasing the number of
parameters and computation.

3.5. Computational Complexity Analysis and Model Structure Design

We first analyze traditional spatiotemporal self-attention. The module of projecting
from the feature maps to generate QKV is a linear layer, and the computational complexity
is only related to the number of channels, that is,O(3C 2). Then in the calculation process of
attention, the complexity of QK multiplication is O(N 2 C). The complexity of multiplying
the weight matrix by V is O(N 2 C). The complexity of the final linear layer and FFN
module is O(9C 2). So, the total computational complexity is O(2N 2C + 12C2).

However, when we calculate the attention after dividing the feature maps into win-
dows, the computational complexity becomes O(2N wn2C + 12C2

)
, where Nw means the

number of windows, and n means the square of the window size. To show the reduction of
computational complexity more intuitively, we roughly conduct a quantitative analysis. Taking
the first stage as an example, N = 56× 56, C = 64, so the first part of the traditional spatiotem-
poral self-attention complexity is 2N2C = 2× (56× 56)2×64 = 1, 258, 815, 488. The com-
plexity of Spatial-Windows attention is only 2Nwn2C = 2× 64× (7× 7)2×64 = 19, 668, 992.
Thus, the computational complexity is reduced by a factor of 64. Then there is Lin-
ear attention computed along the channel dimension. The computational complexity
of other steps is the same as that of spatiotemporal attention, but only the complex-
ity of the matrix multiplication process of attention becomes O(2C 2 N). So, the total
computational complexity of Linear attention is O(2C 2N + 12C2). At the first stage,
2C2N = 2× 642× (56× 56)= 25, 690, 112. The sum of the computational complexity of the
Spatial-Windows attention and Linear attention is about 45, 359, 104, and the computational
complexity is reduced by 27.8 times.

In the first two stages where N � C, we reduce the computational complexity from
O(N 2) to O(C 2). In the last two stages of the network, the spatiotemporal resolution has
been reduced to a relatively low level due to the layer-by-layer down-sampling operation,
which means N � C. If we continue with the previous setup, the complexity is higher than
normal attention. Thus, we only use Spatial-Windows attention and Linear attention in the
first two stages of the network.

We sample 8 frames from a video as input, and we first down-sample the spatiotem-
poral dimensions of the frames using non-overlapping 2× 4× 4 convolutions and the

input’s dimensions change from T × H ×W × 3 to
T
2
× H

4
× W

4
×64. After each stage, the

input’s spatiotemporal dimensions are further reduced to
T
2
× H

8
× W

8
,

T
2
× H

16
× W

16
, and

T
2
× H

32
× W

32
by a 1× 2× 2 convolutional layer. Besides, the input’s channel dimension

is raised from 3 to 128, 320, and 512. We set the channel expansion rate of FFN and the
number of layers in the network stages completely following the settings in MViT [46].
Thus, the performance fluctuation caused by hyperparameter changes can be reduced as
much as possible, and the effectiveness of our method is proved. The specific network
structure is shown in Table 1.

4. Experiments
4.1. Setup
4.1.1. Datasets

We conduct extensive experiments on four datasets. Deep learning methods generally
improve accuracy when the amount of training data increases [1], especially for Transformer
methods. Kinetics400 [8] and Something-Something V2 [52] are the two most widely used
large-scale datasets in this field, so it is fair to provide recognition results on these two
datasets. When the convolution-based methods are popular, UCF101 [53] and HMDB51 [54]
are the most popular datasets, so we also verify the recognition results of the model. The
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K400 dataset contains 400 human action categories, including about 240 K training videos
and 20 K verification videos. Then, we further validate the performance of the model on
the SSV2 dataset [52] that is more concerned with temporal information. SSV2 dataset
requires strong temporal modeling ability because most activities cannot be inferred based
on spatial features alone [1]. It contains approximately 168.9 K training videos as well as
25 K validation ones with 174 classes. In addition, we also fine-tune and test our model
on the UCF101 [53] and HMDB51 [54] datasets in Top-1 recognition accuracy. The specific
number of categories and samples for each dataset is shown in Table 2.

Table 2. Public datasets of video action recognition.

Dataset Category Samples (Train) Samples (Test)

Kinetics400 [8] 400 240,436 19,787
Something-Something V2 [52] 174 168,913 24,777

UCF101 [53] 101 9537 3734
HMDB51 [54] 51 3570 1530

4.1.2. Implementation Details

In the training process, we use the uniform sampling strategy [9] for the K400 dataset.
That is, we sample a clip from the full-length video, and the input to the network are T
frames with a temporal stride of τ; denoted as T× τ [46]. We use the same training strategy
as MViT [46]. In addition, to validate the capability of our model, we do not pre-train it on
the large-scale ImageNet dataset but do the full training directly on the K400 dataset. For
the SSV2 dataset, we load the weights pre-trained on the K400 and then train the model for
50 epochs. For the UCF101 and HMDB51 datasets, we also load the weights pre-trained
on the K400 and fine-tune the model for 20 epochs. For all datasets, we use the AdamW
optimizer [55] and set 10% of epochs as warmup. We extract eight frames as one clip on the
K400 dataset, with an interval of eight frames, for a total of four clips from one video file,
without spatial crop operations. We extract 16 frames at intervals of eight frames on the
SSV2 dataset as a clip. A total of one clip and three spatial crop operations are used in the
experiment. This is because the videos in the SSV2 dataset are more temporally related, so
more frames are needed to ensure recognition accuracy. In our tests, we use the multi-clip
test for the K400 dataset and the multi-crop test for the SSV2 dataset. For the UCF101 and
HMDB51, we extract eight frames as one clip and take one clip to test. We train and test
our model on four NVIDIA RTX 3090 GPUs.

4.2. Comparison with the State-Of-The-Arts

In this section, we compare the performance of our method with popular approaches in
recent years on four datasets. For the fairness of comparison, we choose their small version
as much as possible. The benchmark is the small version of MViT. In addition to Top-1 and
Top-5 accuracy criteria, we also compare the number of parameters and calculations.

4.2.1. Kinetics400

As shown in Table 3. We compare our approach not only with convolution-based
methods but also with Transformer-based models that have performed prominently in
recent years. There are some parts in the table from top to bottom, and we discuss them
in turn. The first part shows the results of the convolution-based methods on the K400
dataset. Traditional convolutional methods naturally have a smaller number of parameters
and calculations than Transformer-based methods, but they are also limited by the model
capacity. It does not perform well when scaling up the model capacity and when facing, for
example, K400 or even larger datasets. Our method has a larger perceptual field, which can
better capture the global spatiotemporal information. Therefore, our method improves the
accuracy by 0.5–3%. At the same time, our model has fewer layers than the convolutional
methods, so the amount of calculation and parameters is less.
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The second part is a variation of the various Transformer-based methods in recent
years. Most Transformer-based methods use ImageNet for pre-training, which improves
the accuracy by 2–3%. If the model is pre-trained on Imagenet21K, it can even be improved
by about 5–7%. These models have a larger network size, more parameters, and higher
computational complexity. The baseline criterion we choose, i.e., a small version of the
MViT model without introducing additional pre-training parameters, is then shown. MViT
performs down-sampling during the calculation of attention to reduce the spatiotemporal
resolution of features, thereby reducing computational complexity. However, such a
method will reduce the ability of features to represent whole information.

The last one is our WLiT model. Our method guarantees feature integrity as much as
possible. We first use Spatial-Windows attention to extract features and then use Linear
attention to supplement global information. Although the perceptual field of the model is
limited by the window size, we have successfully further reduced the number of parame-
ters and GFLOPs of the model. The best trade-off between accuracy and computational
complexity has been achieved. It is easy to see that our method has 20% fewer parameters
and 49% less computation compared to the benchmark, while the difference in accuracy is
only 1.4% for Top-1 and 0.1% for Top-5.

Table 3. Comparison with previous work on the K400. We report the inference cost with a single
“view” (spatial crop with temporal clip) multiplied by the number of views. GFLOPs (Giga floating
point operations) for calculation amount and Mega for Parameters.

Method Pre-Train Frame GFLOPs Param. Top-1 (%) Top-5 (%)

Two-Stream I3D [8] ImageNet 64 - 25.0 71.6 90.0
R(2 + 1)D [34] - 32 75× 1× 10 61.8 72.0 90.0

bLVNet-TAM-24 × 2 [56] Kinetics400 24 93.4× 3× 3 25.0 73.5 91.2
TSM [38] ImageNet 8 33× 1× 10 24.3 74.1 91.2
STM [57] ImageNet 16 - - 73.7 91.6

ViT-B [46] - 16 180× 1× 5 87.2 68.5 86.9
ViT-B-VTN [44] ImageNet 250 4218× 1× 1 114.0 78.6 93.7

ViViT [45] ImageNet21K 32 283.9× 1× 1 86.7 75.8 -
TimeSFormer [3] ImageNet 8 590× 3× 1 121.4 75.8 -

MViT-S (Our baseline) [46] - 8 32.9× 1× 5 26.1 76.0 92.1

WLiT (Ours) - 8 20.9 × 1 × 4 21.9 74.6 92.0

4.2.2. Something-Something V2

The performance of our method on the SSV2 dataset is shown in Table 4. This video
dataset contains the behavior of object interactions and is referred to as a temporal modeling
task. It pays less attention to textural information such as background and focuses more
on temporal contextual information. The performance of the latest convolutional methods
is shown first. Due to the limitation of its natural perceptual field, convolution-based
methods cannot capture global spatiotemporal information well and perform relatively
poorly on the SSV2 dataset.

The method based on Transformer has a global perceptual field, whose performance
is more outstanding but also generates more parameters and computational effort. We
choose the base version of MViT [46] as the baseline on this dataset. The SSV2 dataset
is more sensitive to temporal information. The down-sampling operations of MViT on
features significantly affect the model’s ability to represent temporal information, so the
performance on this dataset is not satisfactory.
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Table 4. Comparison with previous work on the SSV2.

Method Pre-Train Frame GFLOPs Param. Top-1 (%) Top-5 (%)

bLVNet-TAM-32 × 2 [56] - 32 128.6× 3× 3 40.2 65.2 90.3
MSNet-R50 [58] - 16 67× 1× 1 24.6 64.7 89.4

Slow-Fast R101 [9] K400 8 106× 3× 1 53.3 63.1 87.6
TSM [38] K400 16 65× 1× 10 24.3 64.3 89.6
STM [57] ImageNet 16 - - 63.5 89.6
TEA [39] ImageNet21K 16 70× 3× 10 - 65.1 89.9
TDN [40] ImageNet 16 132× 3× 10 - 65.3 89.5

CTNet [59] ImageNet 16 75× 1× 1 - 65.9 90.1

X-ViT [60] ImageNet21K 32 850× 3× 1 - 66.2 90.6
ViViT-L [45] K400 32 991× 3× 4 86.7 65.9 89.9
SSTSA-L [61] ImageNet21K 32 1356× 3× 4 181.6 66.2 -

TimeSFormer [3] ImageNet21K 16 5109× 3× 1 - 62.5 -

MViT-B (our baseline) [46] K400 16 70.5× 3× 1 36.6 64.7 89.2
MViT-B [46] K600 16 70.5× 3× 1 36.6 66.2 90.2

WLiT (Ours) K400 16 50.7 × 3 × 1 21.9 66.3 91.5

Although our method divides the feature maps along the spatial dimensions, which
greatly reduces the computational complexity, it still ensures the integrity of the features.
Subsequently, we strengthen the model’s ability to extract full temporal information by
Linear attention. At the bottom of the table, we present the results of the test with 16 frames
selected. Compared to the baseline, our method saves 28% computational complexity and
40% number of parameters while improving 1.6% and 2.3% in Top-1 and Top-5 accuracy,
respectively. Even compared to X-ViT pre-trained on ImageNet21K, our method exceeds
its 0.1% and 0.9% in Top-1 and Top-5 accuracy, respectively. In general, Table 4 verifies the
capability of temporal modeling for WLiT, and our method achieves the best recognition
accuracy with fairly less computational complexity on the SSV2.

4.2.3. UCF101 and HMDB51

We compare the results of our method on the UCF101 and HMDB51 with other
methods in Table 5. These two datasets that pay more attention to scene information
are relatively small, suffering overfitting. Therefore, we pre-train the model on the K400
and then migrate the model to the UCF101 and HMDB51. Our method outperforms
the SOTA method by 0.2% and 2.8% in Top-1 accuracy on the UCF101 and HMDB51
datasets, respectively.

Table 5. Comparison with previous methods on the UCF101 and HMDB51 in Top-1 accuracy.

Method Pre-Train UCF101 (Top-1%) HMDB51 (Top-1%)

TSN [37] ImageNet 94.0 68.5
P3D [36] ImageNet 88.6 -

ARTNet [62] K400 94.3 70.9
TSM [38] K400 95.9 70.7
D3D [63] K600 97.1 79.3

FASTER32 [64] K400 96.9 75.7
Two-stream I3D [8] K400 93.4 80.9

MEST [65] ImageNet 96.8 73.4

WLiT (Ours) K400 97.3 83.7

There are two reasons behind this result. WLiT has strong robustness and can still
achieve better recognition results in the face of low-resolution datasets. Different from other
methods that pay more attention to appearance features, WLiT can also capture sufficient
temporal information, so higher recognition accuracy is obtained.
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4.3. Ablation Study

The SSV2 dataset requires a strong temporal modeling ability of the model [1]. We
hope to prove that our method has the ability to capture global temporal information
through sufficient ablation learning, so we choose to use the SSV2 dataset for ablation
research. In addition, the scale of SSV2 datasets is relatively large, which can fully verify
the performance of the algorithm. We show Top-1 accuracy and computational complexity
in GFLOPs for a single clip and three spatial crop inputs of size 224× 224.

4.3.1. The Performance of the Linear Attention

Spatial-Windows attention limits the calculation scope to the inside of the window, ob-
tains the information of the channel dimension, and reduces the computational complexity.
However, the perceptual field of Spatial-Windows attention is small, and the model loses
the ability to represent the global spatiotemporal information. Linear attention can extract
global spatiotemporal information, which can help the model to make up for this deficiency.
As shown in Table 6, when the Linear attention module is not used, the recognition accuracy
is reduced by 4.7%. When the model can only focus on the information in the local window
without global information interaction, the recognition accuracy of our method is greatly
reduced. In addition, if the Spatial-Windows attention module is removed, the accuracy
decreases by 4.1%. This is because Linear attention has limitations, which means that part
of the spatiotemporal information will be lost in the calculation process of attention, so the
recognition accuracy of the model also decreases significantly.

Besides, we also explore the effect of the combined order of the two attention modules
on the model accuracy. As shown in Table 6, we show the results of stacking Spatial-
Windows attention and Linear attention in different orders. It is obvious that computing
the Spatial-Windows attention first and then computing the Linear attention can improve
the recognition accuracy by 0.4% in Top-1. The model first extracts and enhances the infor-
mation in local regions through Spatial-Windows attention and then mines the potential
connections of each region through Linear attention. Therefore, it can obtain richer semantic
information, which is also in line with biological studies.

Table 6. Attention structure design.

Model GFLOPs Param. Top-1 (%) Top-5 (%)

Spatial-Windows attention 46.6 21.4 61.6 88.7
Linear attention 46.7 21.4 62.2 89.1

Linear→Windows 50.8 21.9 65.9 91.1
Windows→ Linear (WLiT) 50.8 21.9 66.3 91.5

4.3.2. The Performance of the Extra FFN for the Linear Attention

The FFN module has always been a default part of the Transformer structure. So, we
verify the impact of the FFN module on our WLiT. As shown in Table 7, the FFN module
has little effect on the computational complexity, thus excluding the effect of network size
on the recognition accuracy. The experimental results show that when the FFN in the
Spatial-Windows attention module is removed, the Top-1 accuracy drops by 1%. When we
delete the FFN in the Linear attention, the Top-1 accuracy drops by 1.2%. When all FFN
modules in the network are not used, the accuracy decreases by 2.8% in Top-1.

The calculation process of attention is mainly matrix operations, all of which are linear
operations. The FFN module introduces the nonlinear feature activation layer, which
effectively helps the model to propagate gradients during the learning process. Besides,
during the calculation of Linear attention, the part of channel information is lost. The
FFN module can supplement the model’s representation ability for all channel information.
Therefore, the FFN module is very important for WLiT, especially for the Linear attention
module. We use the structure of alternating Spatial-Windows attention and Linear attention
in each block, as shown in Figure 1, so unlike previous attention modules, we use the FFN
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module twice. Although the additional FFN module will introduce a small number of
additional calculations and parameters, it also helps the model to improve the recognition
accuracy.

Table 7. Evaluation of the role of FFN in Spatial-Windows attention and Linear attention. ‘8’ means
deleting the FFN module.

FFN SSV2
In Spatial-Windows

Attention
In Linear
Attention GFLOPs Param. Top-1 (%) Top-5 (%)

8 8 45.8 21.3 63.5 90.1
X 8 48.3 21.6 65.1 90.5
8 X 48.3 21.6 65.3 90.7
X X 50.8 21.9 66.3 91.5

4.3.3. The Performance of the Adaptive Position Encoding

The position encoding module plays a crucial role in the network based on the Trans-
former structure, which ensures that the tokens can still perceive the relative positions of
each other in the video frame when calculating the attention score. Therefore, we embed
two adaptive position encoding modules in each block, as shown in Figure 2, respectively
at the start of the attention calculation, and before the FFN module. This is because we
make ensure that after dividing the feature maps into several windows and restoring them
back, the tokens can still maintain the stable positional relationships. At the same time, to
ensure the consistency of the model structure, we use this design in all attention modules.
The results are shown in Table 8. We use depth-wise convolution to implement adaptive
position encoding, so only a few parameters and computations are added. After deleting
the first or second adaptive position encoding layer, the recognition accuracy of the model
drops by 0.5% and 0.3%, respectively. When all adaptive position encoding layers are
removed, the model accuracy drops by 2.2%. This can demonstrate the importance of
adaptive position encoding.

Table 8. Measure the effect of two Adaptive Position Encoding (APE) modules.

APE SSV2
APE [0] APE [1] GFLOPs Param. Top-1 (%) Top-5 (%)

8 8 50.5 21.7 64.1 90.2
X 8 50.7 21.8 66.0 91.3
8 X 50.7 21.8 65.8 91.4
X X 50.8 21.9 66.3 91.5

4.3.4. Empirical Investigation on Model Settings

We first analyze the effect of different window sizes on the model. Different window
sizes correspond to different perceptual fields in the early stage of the model. The larger the
window is, the less spatiotemporal information is split, but at the same time the number of
computations increases. The results in Figure 3a show that when the window size exceeds
seven, the accuracy only improves by 0.1%, but the computational complexity increases
about 10%. Therefore, we find that setting the window size to seven is the best trade-off
between computational complexity and accuracy.

Then, we modify part of the testing strategy to verify the robustness of our method.
For the K400 dataset, we train the model with four clips which have eight frames in each,
so we test the effect of different clips on the accuracy. As shown in Figure 3b, K400 is
the key dataset for the scene, so multiple clips can focus on more scene information and
improve performance. The experimental results show that when four clips are extracted
for testing, the accuracy is close to the maximum. In other words, four clips can well
summarize the content of the entire video, and the recognition ability of the model has
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reached saturation. If the number of clips continue to increase, it will only increase the
computational complexity. Therefore, four clips are sufficient.

Figure 3. Experiments with some variables. (a) Effect of different window sizes on accuracy on the
K400 dataset. (b) Results of accuracy on the K400 dataset with different number of clips. (c) Results
of accuracy on SSV2 dataset with different number of clips and crops.

The SSV2 dataset is a temporal-related dataset and trained with a 16 frames clip, so
multi-crop testing is better for capturing the motion information for boosting performance.
The experiments in Figure 3c demonstrate that the number of clips has very little effect on
test accuracy. This is because uniformly sampling one 16 frames clip can cover important
information in the video. However, when the same number of clips is selected, the accuracy
of the three crops is about 4.2% higher than that of the one crop. Multi-crop can more fully
extract the object relationship on each frame, so multi-crop can obtain better recognition
accuracy. However, increasing the number of crops will bring a significant increase in
computational complexity, so we finally choose three crops for experimentation.

4.4. Visualization

To further demonstrate the effectiveness of our model, we visualize some outputs of
our model. In Figure 4, we use Visualizer to show the attention heatmap output from the
network. The red box in the graph means “query”, and the redder color in the graph means
the higher attention score. According to the first graph of Figure 4a, it can be seen that the
perceptual field of attention is limited to a small range using only the Spatial-Windows
attention. Subsequently, the perceptual field is expanded into a larger region after Linear
attention computation. Finally, the output from the last layer of the model shows that for
the action of playing the piano, attention is focused on the keys when the “query” is the
hand, which is a reasonable result.

In the visualization experiment, we extract 16 frames for prediction and then randomly
select six frames for display, and the results are presented in Figure 4b. It is clear that the
model effectively focuses on the important regions in all six displayed frames. This also
confirms the effectiveness of our model.
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Figure 4. Some visualizations of WLiT. (a) We show the results of only Spatial-Windows attention
calculation and then the results of Linear attention calculation and the final results. (b) We randomly
select six of the sixteen frames we predict to show the attention heat-map.

5. Conclusions

We propose a pure Transformer architecture for action recognition based on two
attention methods. We modify the traditional self-attention as the superposition of the
Spatial-Windows attention and Linear attention and the directions of these two attention
division tokens are different. Spatial-Windows attention divides the feature maps into
Spatial-Windows tokens along the spatial dimensions, which contain full channel infor-
mation with lower computational complexity. Linear attention divides the feature maps
along the channel dimension to obtain Channel tokens, and these Channel tokens can cover
all spatiotemporal information with long-range dependencies. We alternately use Spatial-
Windows attention and Linear attention, which effectively improves the computational
efficiency while ensuring powerful spatiotemporal information modeling. Our method is
fully verified on four classical datasets as well as visualization experiments. We will further
optimize our WLiT to achieve a more accurate recognition effect with less computational
complexity. We will expand it to other video understanding tasks in the future.
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