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Abstract: This paper addresses the problem of achieving lifelong open-ended learning autonomy
in robotics, and how different cognitive architectures provide functionalities that support it. To this
end, we analyze a set of well-known cognitive architectures in the literature considering the different
components they address and how they implement them. Among the main functionalities that are
taken as relevant for lifelong open-ended learning autonomy are the fact that architectures must
contemplate learning, and the availability of contextual memory systems, motivations or attention.
Additionally, we try to establish which of them were actually applied to real robot scenarios. It
transpires that in their current form, none of them are completely ready to address this challenge,
but some of them do provide some indications on the paths to follow in some of the aspects they
contemplate. It can be gleaned that for lifelong open-ended learning autonomy, motivational systems
that allow finding domain-dependent goals from general internal drives, contextual long-term
memory systems that all allow for associative learning and retrieval of knowledge, and robust
learning systems would be the main components required. Nevertheless, other components, such as
attention mechanisms or representation management systems, would greatly facilitate operation in
complex domains.
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1. Introduction

The standard model of the mind [1] is a picture of the main consensus on the compo-
nents and structures that should make up a cognitive architecture as well as on their basic
relationships. Most recent, and sometimes not so recent, cognitive architectures comply
to a certain extent with this model and implement some of the components. However,
most of them have been designed with the main objective of studying and/or developing
human-like intelligent capabilities and not from an engineering perspective of having
robots perform tasks in an ever-more autonomous manner. Clearly, the final objective, i.e.,
human-like intelligence, is probably the same, but the path towards it is different.

In this paper, we are concerned with the idea of taking robot autonomy to a higher
level. This implies providing robots with the capability of handling variability successfully
and robustly in the situations/domains they face that were not considered at design time.
Variability can be described and addressed at different levels: from slight variations in the
operational domains, where it is only necessary to adapt a skill the robot already has; to the
designer changing the goal to be achieved in a given domain, in which case the robot must
master a new skill; to a more difficult situation in which domains change and the robot
must find its own goals and learn to master the skills to achieve them consistently. This
last problem is generally called the open-ended learning (OEL) problem, in which a robot
must be able to learn to operate in domains that were unknown at design time [2]. We say
these robots display OEL autonomy. Additionally, in the most general case, the domains
could change continuously and unpredictably, often effectively preventing the robot from
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being able to master a domain in a single attempt. Therefore, we would be facing a lifelong
open-ended learning problem, requiring lifelong open-ended learning autonomy (LOLA).

Increasing the level of autonomy of robotic systems up to LOLA involves jointly
solving the OEL [2] and lifelong learning [3] problems. Dealing with these problems goes
beyond specific learning algorithms. It requires the ability to manage all the knowledge
that is learned so that it can be contextually related and reused, thus facilitating further
learning and exploitation. Furthermore, for robots to learn in complex and unfamiliar
domains, it is also necessary to manage their motivations, as well as considering other
processes, such as attention, representation, and learning. Thus, for robots to autonomously
learn to operate in domains that were not considered at design time and build on this
knowledge to address new domains as they emerge during their lifetime, the capabilities
mentioned above (and probably some more) must be integrated and regulated. This is the
job of cognitive architectures, and these have been studied for decades [4]. However, as
we have already mentioned, the purposes for which each one was created were different
and usually not related directly to LOLA. Consequently, it makes sense to carry out a
brief overview of the main cognitive architectures found in the literature and characterize
them in terms of the level of autonomy they allow and their possible adequation to LOLA.
Thus, the objective of this paper is to provide an overview of the main types of cognitive
architectures that have been developed in recent decades and select some examples of each,
in order to characterize them in terms of LOLA-related capabilities. Thus, researchers in
the field of autonomous robotics will have an updated and reliable reference of the state of
the art in this area.

To this end, Section 2 provides a general classification of cognitive architectures based
on the work carried out in [4] and establishes a series of requirements for LOLA. In this
section, a series of representative and well-known architectures are selected, and their main
sub-systems and components are evaluated. Section 3 is devoted to a discussion of how
these architectures fulfil LOLA capabilities, pointing towards their strengths and, more
importantly, what is lacking. Finally, Section 4 provides a series of conclusions and paths for
future developments to create a new generation of LOLA-capable cognitive architectures.

2. Cognitive Architectures and LOLA

Cognitive architectures are structures that artificially implement cognition [5]. They
allow learning, storing, using, and reusing knowledge and can also contemplate devel-
opmental or other integration strategies to produce new higher-level knowledge nuggets
from the elements stored in their memory. Many types of cognitive architectures have been
developed over the past four decades, each one addressing different aspects of cognition.
They generally base their operation on their abilities to interpret, index, and sort the differ-
ent knowledge elements they require based on their content. However, they use different
approaches to this end. Following [4], cognitive architectures can be firstly classified into
three basic groups according to the type of representations they can manipulate:

• Symbolic: Most of the traditional cognitive architectures, especially in their initial
form, belong to this group, although some of them have been later hybridized. They
are characterized by representing concepts through symbols and having predefined
instruction sets to manipulate them. This makes them excellent systems in terms
of planning and reasoning. However, for the same reason, they present grounding
problems and lack the robustness and flexibility needed to adapt to the changing
conditions of real environments. In addition, the designer assumes a high degree of
knowledge about the domains and tasks to be performed and, therefore, provides
a lot of knowledge in the form of specific representations or even complete sets of
rules in some cases. They are, therefore, limited to use in an abstract framework and
are not generally ready to tackle the LOLA problem. We can take as representative
examples of this group ACT-R [6], CLARION [7], 4CAPS [8], or SOAR [9]. SOAR, de-
veloped by Allen Newell, Paul Rosenbloom, and John Laird, is one of the most-studied
architectures. It was created in 1982 but it has undergone different improvements
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and additions, including hybridizations, throughout the years. CLARION, 4CAPS,
and ACT-R were also built as symbolic architectures but, over the years, have also
been hybridized. Their main goal initially was to study and emulate human cognitive
processes, and, thus, they led to very few real robot applications. Along the same line,
we can also find EPIC [10], created in 1980, whose main objective was to replicate the
human motor system. On the other hand, an example of architecture of this group
created to be used in robotics is ICARUS [11]; however, it has been tested mainly in
experiments related to solving puzzles and driving games.

• Emergent: Based on sub-symbolic or connectionist approaches, they often follow
developmental principles [12,13] that seek to progressively build system knowledge
from scratch through direct interaction with the world. In them, knowledge is often
represented and distributed through neural networks. This approach provides a direct
path to the autonomous construction of high-level knowledge, avoiding grounding
problems. Thus, they aim to solve the problems of adaptation to the environment and
learning through the concatenation of multiple models in parallel, where information
flows through activation signals. However, this introduces a high level of complexity
in development and the need for very long learning and interaction processes, which
is, of course, very costly when considering robotics applications. It also causes the
system to lose transparency, as knowledge is no longer represented by well-understood
symbols and rules, instead being distributed throughout the network. Some examples
of these architectures are MDB [14], GRAIL [15], or SASE [13]. In the case of SASE,
its main purpose is the autonomous learning of models. GRAIL (and its modified
versions M-GRAIL [16], C-GRAIL [17], and H-GRAIL [18]) comes from the field of
intrinsically motivated open-ended learning (IMOL), and its focus is on the handling
of motivations to seek and relate goals and skills. MDB is a long-standing project
started at the end of the 1990s that seeks to implement an evolutionary cognitive
architecture suitable for developmental processes in a direct bottom-up approach so
that knowledge is always grounded. Finally, we can also include MicroPSI [19] in this
group, which was developed in 2003 and combines associative learning, reinforcement
learning, and planning in order to allow autonomous systems to acquire knowledge
about their environment.

• Hybrid: Finally, the group of hybrid architectures consists of those that use sym-
bolic representations at higher processing levels but include emerging connectionist
paradigm-like sub-symbolic representations at the low level. These approaches have
become quite popular for addressing low-level grounding and domain adaptation
problems, but they still require many adjustments to construct symbolic information.
In fact, even though there are researchers trying to provide autonomous approaches
to bridge the gap between sub-symbolic and symbolic representations [20], they are
still not very common in cognitive architectures. This makes these architectures dif-
ficult to adapt to general use cases in robotics, and their implementations tend to
focus on specific functionalities. Recent examples of such architectures (apart from
the previously mentioned symbolic architectures that have been hybridized) are, on
the one hand OpenCogPrime [21], which is a product of the ideas from the artificial
general intelligence (AGI) community, which seeks to address intelligence through
a holistic approach and not by creating specific AI-based modules that are then inte-
grated. On the other, we have MLECOG [22], which was created by Janusz A. Starzyk
and James Graham in 2017 with the aim of moving towards greater autonomy by
including motivations and goal creation. In this group, we also find architectures
such as ADAPT [23], designed to solve computer vision problems, or LIDA [24] and
DUAL [25], which were both designed to study human cognitive processes. A set of
additional architectures emerged from European research projects. Representative
examples of these are IMPACT [26], developed by the same authors as GRAIL, which
combines planning and reinforcement learning algorithms with intrinsic motivations
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to represent autonomously learned skills, or iCub [27], created to control the robot to
which it gives its name and aimed at the study of how newborns learn.

In addition to the type of representation, we are going to consider additional features
to classify the existing cognitive architectures here. From the perspective of lifelong open-
ended learning autonomy, and from a functional viewpoint, we must bear in mind that
architectures should contemplate, at least, the following components:

• A motivational system that enables open-ended learning, i.e., that allows the robot to
discover new goals and select which ones are active at each moment in time.

• A memory system that permits storing the acquired knowledge and relating it contex-
tually, that is, without having to externally label the knowledge, to facilitate its reuse
in the right conditions so that lifelong learning is made possible.

• An online learning system that facilitates acquiring knowledge about the different
goals discovered in the different domains, as well as about how to achieve them during
robot operation (skills).

• Some type of attention system that helps to reduce the sensory and processing load of
the system when operating in real-world conditions would also be very convenient.

We have selected a set of fifteen well-known cognitive architectures representative of
the three architecture types and have analyzed their structure and components according
to the previous four features. The criteria for selecting these architectures were that their
development is still ongoing and that they have practical applications. For compactness,
Table 1 provides a summary of their characteristics and the requirements they meet with
regard to their LOLA capabilities. In the following subsections, we describe how they
address the four main components mentioned above in an individual manner.

Table 1. Features of the cognitive architectures under study.

Architecture Type
(Following [4])

Design
Objective

Motivational
System Level

Learning
System

Contextual
Memory

Attention
Mechanism

Real Robot
Applications

EPIC [10] Symbolic
Emulate
human

cognition
0 NO NO YES NO

ICARUS [11] Symbolic Robotics 1 YES
(rule-based) NO NO NO

ADAPT [23] Hybrid Computer
vision 0 YES

(rule-based) NO YES NO

CLARION [7] Hybrid
Emulate
human

cognition
1 YES YES NO NO

LIDA [24] Hybrid
Emulate
human

cognition
1 YES YES YES NO

iCub [27] Hybrid Robotics 3 YES NO YES YES

SOAR [9] Hybrid Robotics 2 YES YES NO YES

OpenCogPrime [21] Hybrid
Artificial
General

Intelligence
1 YES YES NO NO

DUAL [25] Hybrid
Emulate
human

cognition
0 YES

(rule-based) YES NO YES

4CAPS [8] Hybrid
Emulate
human

cognition
0 NO NO NO NO

ACT-R [28] Hybrid
Emulate
human

cognition
0 YES YES YES YES
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Table 1. Cont.

Architecture Type
(Following [4])

Design
Objective

Motivational
System Level

Learning
System

Contextual
Memory

Attention
Mechanism

Real Robot
Applications

MLECOG [22] Hybrid Autonomy 2 YES YES YES NO

IMPACT [26] Hybrid Robotics 3 YES NO NO NO

MicroPSI [19] Emergent Autonomy 2 YES NO YES NO

GRAIL [15] Emergent Robotics 3 YES NO NO YES

MDB [14] Emergent Robotics 2 YES NO NO YES

SASE [13] Emergent Model learning 0 YES NO NO YES

2.1. Learning

Starting with the learning component, and even though it may seem rather obvious,
it is important to note that possessing the ability to learn is fundamental to be able to
address LOLA. However, not all cognitive architectures presented in the literature show
this capability. In fact, many symbolic architectures do not implement learning mechanisms
and, therefore, their knowledge must be introduced by the designer when they are built.
This implies that the domains in which the robot will operate must be known at design
time, contradicting the open-ended learning principle. Examples of these are EPIC [10] or
4CAPS [8]. In addition, others within the symbolic or hybrid group, such as DUAL [25],
ADAPT [23], and ICARUS [11], incorporate learning capabilities, but mostly through top-
level rule modification, without a versatile and unrestricted ability to create new rules
for new domains. Only within the group of emerging cognitive architectures, such as
iCub [27] or MDB [14], and in a small group of hybrid architectures, such as MicroPSI [19],
can versatile low-level learning mechanisms be found. Consequently, only these types of
architectures would be candidates for achieving LOLA in robots from the point of view
of learning.

Another required property of the learning systems in LOLA is supporting online
operation. Lifelong learning requires model creation and transferring learning from previ-
ously acquired knowledge as a core feature. In this sense, the number of existing cognitive
architectures that perform online learning is scarce, and even more so if we look for
reliable solutions that have been tested in real operation. One of the exceptions is the
MDB [14], which contains an online learning procedure based on neuroevolution [29,30]
and an episodic memory management method that has been validated in simple real
robot experiments.

2.2. Motivational System

On the other hand, when we talk about a cognitive architecture having a motivational
system, we refer to the fact that it should be endowed with a mechanism in charge of
determining what the robot should strive for in a given domain at each moment in time.
This mechanism can have different functionalities, from being able to guide the robot
towards the achievement of a goal, to allowing for the selection of which goal/goals are
active at each moment in time, or even being able to guide the robot to discover new goals.
It is worth remembering that possessing these three qualities is what may allow the robot
to be able to perform OEL. Considering these qualities, a classification of motivational
systems into different levels can be established. The levels we consider in this paper are
the following:

• Level 0: The robot has a specific goal set by the designer and the motivational system
is able to guide the robot towards the achievement of that goal.

• Level 1: The robot has a series of goals set in advance by the designer and the motiva-
tional system is able to select which goals should be active at any given moment in
time and guide the robot towards their achievement.
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• Level 2: The robot has a series of goals set in advance by the designer and the motiva-
tional system is able to select which goals are active at any given moment in time and
is capable of autonomously generating sub-goals to reach those goals.

• Level 3: The goals/domains are not known at the time of design and the motivational
system is able to discover goals, select which ones are active, and guide the robot
towards their achievement.

It is important to note that levels 0, 1, and 2 imply that the designer knows in advance
the goals and domains in which the robot will operate, while level 3 is domain-independent
and will be the one required to provide robots with OEL autonomy.

At level 0, we find all the architectures that do not have an explicit motivational system.
They allow the robots/agents they control to achieve the specific objective for which they
are designed. Examples are symbolic architectures such as EPIC [10], hybrid architectures
such as ADAPT [23] and DUAL [25], or emergent architectures such as SASE [13].

If we go to level 1, we have examples such as CLARION [7], which uses a motivational
system based on drives. These drives have goals associated with them beforehand, so that
the activations of the goals depend on the value of the drives. In other architectures such
as LIDA [24], the motivations of the system are set in the form of artificial sensations and
emotions. This allows it to appropriately select its goals and, consequently, the actions with
which to act on the environment. Something similar happens in OpenCogPrime [21], where
human motivations of feelings and beliefs are modeled through a motivational system
based on the concepts of magicians and anti-magicians.

At level 2, we find multiple different implementations of motivational systems. Ar-
chitectures such as SOAR have a motivational system that allows them to generate their
own subgoals from goals predefined by the designer [9] as a previous step to be able to
address a problem. MDB [14] also allows the intrinsic change of goals or motivations, and
the generation of subgoals by introducing a satisfaction model. In MDB, the degree of
fulfillment of motivations is based on both internal and external perceptions of the agent.
This is similar to how MLECOG [22] handles motivations and their action choices based on
pain/need (and other factors such as distance and availability). Moreover, in MLECOG,
only a few motivations are given to the system, with all others being developed internally.
On the other hand, MicroPSI [19] also has a motivational system based on needs and drives,
so that MicroPSI agents use pleasure/distraction signals related to the satisfaction of those
drives. Finally, in the iCub [27] architecture, it is the affective state that is in charge of
providing the motivational cues. Thus, it has affective factors (motivations) that allow it to
acquire knowledge and validate it.

Finally, only two of the architectures found in the literature present a motivational
system that could be suitable for carrying out OEL. GRAIL [15] and IMPACT [26] present
motivational systems composed of intrinsic motivations based on competence. These
systems allow them to autonomously learn new skills based on the self-generation of goals
driven by intrinsic motivations (intrinsic goals).

2.3. Decision Systems and Contextual Memory

The final purpose of a cognitive architecture is to decide on the actions to be executed.
The decision processes used for deciding on actions almost always revolve around two
main concepts: prospection and experience. Prospection is related to the anticipation or
prediction of future states (really beliefs in the context of cognitive architectures) so that they
can be evaluated using a motivational system to allow for the selection from the potential
actions or policies as a function of the expected achievement of its goals [31,32]. This
deliberative process requires performing predictions into the future, usually carried out by
models (world models, internal models), and evaluations of the predicted beliefs (points in
belief space) by means of utility functions. Of course, the memory-related problem here
becomes how to find the appropriate models and/or utility functions in order to perform
deliberation in the current situation.
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On the other hand, experience is related to direct or statistical associations or rela-
tionships the system has found among its knowledge components or knowledge nuggets
(models, policies, perceptual classes, etc.) when it was successful at achieving a goal (or, in
some cases, even unsuccessful). These relationships allow the system to directly choose an
action or policy without any prospection or evaluation if it can determine the context it is
in, that is, if it can determine in which world it is operating, what its goal is, and what its
current perception is. Through a structure of previously observed relationships, when a
known context arises, it can directly activate the action or policy that produced a successful
result in a previous instance of the same or a similar context. In the terminology of many
authors, the decision process has been automated, as it does not require any prospection
for its completion [33]. This is the idea of associative learning as the learning process by
means of which an association is established between two or more stimuli or a behavior
and some stimuli. The key here is to progressively create and associate different knowledge
nuggets within a long-term memory (LTM) in a meaningful and general manner, that is,
to provide compact experiential representations so that hypotheses can be made on the
actions to take when faced with similar perceptions in different contexts.

This makes LTM critical for addressing cognition [34]. However, probably due to the
fact that humans are not conscious of the contents of LTM except when they are brought
into working memory, its critical role in cognitive activity is often ignored. This has led to
most authors creating artificial cognitive architectures paying very little attention to this
system except as a passive storage container for knowledge. A computer architecture-like
analogy of the mind has been the predominant paradigm: memory as a hard disk with
discrete encoding, storage, and retrieval functions.

More recently, authors such as Wood [34] or Fuster [35] state that to achieve properties
that are necessary for autonomy, e.g., adaptability, flexibility and robustness, LTM must be
situated within the perception–action cycle of adaptive behavior and must operate in an
associative and distributed manner. They argue that some of the most relevant mechanisms
for lifelong cognition are those related to an associative LTM and its operation.

Therefore, in order to achieve LOLA, where most of the knowledge elements are
acquired by the autonomous system itself and, thus, cannot be externally labeled, it seems
that there is quite a strong need to establish a memory structure that can operate as a
dynamic associative component to support the different decision processes required.

If we look at the type of memory systems presented by the different architectures
in the light of the previous comments, we can distinguish two main groups. On the one
hand, we have a series of architectures that have a more classical computer-type memory.
In them, all the knowledge generated is stored under a label. In this group, we can find
architectures such as EPIC [16], 4CAPS [7], or SASE [11]. On the other hand, we have a
series of architectures that present an associative memory system, more similar to natural
memories. These associative memories are characterized by the fact that they are able
to relate knowledge through the context in which it can be used. Thus, as discussed,
they would be the most appropriate to be able to achieve LOLA. This group includes
architectures such as ACT-R [15], MLECOG [14], OpenCogPrime [13], or CLARION [6].
However, in these architectures, the contextual associations are implemented by hand
by the designer and are not created autonomously, thus defeating the purpose of LOLA.
Therefore, it is necessary to address the problem of establishing contextual or associative
memories that are filled in by the cognitive architecture itself by including mechanisms
that allow determining when a context is relevant in order to be stored as such in the LTM,
as well as mechanisms for the contextual retrieval of knowledge. This second aspect has
already been partially addressed in the construction of architectures such as ACT-R [15],
MLECOG [14], and OpenCogPrime [13]. However, the first one is still an open problem in
terms of its inclusion in general-purpose cognitive architectures.
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2.4. Attention

Finally, another component present in most of the reviewed architectures, and that
could help to cope with LOLA, is attention mechanisms. Attention is necessary to reduce the
amount of sensory information for real-time operation and select the sensory information
most relevant to the current situation. Attention allows the architecture to manage real-time
operation, reducing the amount of information processed and, consequently, the reaction
time of the system. Examples of architectures with attention mechanisms are MicroPSI [19],
LIDA [24], MLECOG [22], or iCub [27].

3. Discussion

Most of the architectures shown in Table 1 were not created with the objective of
achieving higher levels of autonomy in real robots, but with the objective of demonstrat-
ing/imitating human behaviors. Moreover, most of the existing architectures were designed
for intelligent agents, and not for real robots. Therefore, they are not really prepared to
work in real environments and manage continuous perceptual spaces. Only some emergent
architectures have been tested using real robots in laboratory experiments to verify specific
cognitive functionalities [27]. Additionally, the fact that none of the existing cognitive archi-
tectures have been explicitly designed to address the LOLA problem implies that most lack
some of the necessary components/functionalities to be able to achieve it. Table 2 shows a
summary of the four features commented on above and the architectures that include them
in green. As can be observed, there is no existing approach that covers all of them (the
whole column in green). Many implement motivational systems, although most of them are
not prepared to deal with OEL and remain at lower levels of autonomy. Additionally, some
of the architectures include attention systems and have low-level learning mechanisms.
However, very few of them include an associative memory capable of handling contexts,
and these are usually constructed by the designer.

Table 2. Main components to achieve LOLA and cognitive architectures that implement them.

Architecture
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C
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Motivational
system for OEL 0 1 0 1 1 3 2 1 0 0 0 2 3 2 3 2 0

Learning system

ru
le

-
ba

se
d

ru
le

-
ba

se
d

ru
le

-
ba

se
d

Contextual
memory

Attention
mechanism

Hence, although there are no architectures explicitly designed to address the problem
of achieving LOLA in a general way, there is quite a lot of work on different aspects of
this field. Thus, there are examples in the literature of architectures such as GRAIL [15] or
IMPACT [26] that have been tested in different OEL problems. However, they are run in
simulations [26] or they only address a specific part of the robotic system and, therefore,
cannot be translated to reality [15]. Other architectures, such as ACT-R, have addressed
knowledge reuse problems [36], although without using real robots, and starting from
knowledge previously introduced by the designer.

It must be pointed out that some of the four features established in Section 2 have
been addressed to a greater or lesser extent in specific fields. In this line, the intrinsically
motivated open-ended learning (IMOL) framework has made great contributions towards
achieving agents capable of operating in an open-ended manner and autonomously acquir-
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ing knowledge and skills to solve tasks that are not known at design time. These approaches
have been used in a wide variety of applications such as state-space exploration [37–39],
knowledge gathering [40,41], autonomous skill learning [18,42–44] or autonomous goal
selection [15,18]. However, despite these advances, IMOL systems are still difficult to
use in real-world applications. This is because these systems are designed to acquire the
maximum possible knowledge from the interaction of the robot with the environment,
but without considering the purpose for which the robot was designed. This results in an
unbounded and unfocused learning that is not adapted to the specific needs of a service
robot. A solution to this problem could consist of providing a motivational mechanism
capable of considering and balancing different typologies of motivations. However, this
topic is still under study [45]. Moreover, another problem that is not yet solved is the design
of specific motivations to trigger representation/redescription processes. It is important
to look for motivational mechanisms that allow for seeking better representations when
necessary, since this is something that, as has been commented on before, is critical for
facilitating learning and, more importantly, abstraction.

Regarding lifelong learning, fields such as transfer learning [46] or continual learn-
ing [47] present very promising approaches to the problems of knowledge reuse and task
learning in multiple domains, respectively. These approaches have proven to be effective
for deep learning or supervised learning. However, they are not yet applicable to real
robotic problems, since the former are not able to solve the issue of catastrophic forget-
ting [48,49], while, in the latter, the tasks to be performed and the domains of operation of
the robot must be known in advance by the designer. Thus, as they are not intended for
LOLA problems, they do not fully cover the needs that arise in this field.

Finally, it is interesting to comment that all the architectures have implicitly or explic-
itly assumed that robot cognitive systems are given specific and appropriate state-space
representations by their designers. That is, designers decide what is relevant from the
robot’s sensory flow and how these relevant features are represented. Consequently, the
learning mechanisms for architectures have focused on how to learn whatever knowledge
components the architectures require (direct or inverse state transition models, utility mod-
els, policies, etc.) using these predefined state-space representations. Therefore, it seems
that it would also be important to start addressing the issue of learning representations
within the framework of cognitive architectures in order to provide paths for the simplifica-
tion of the learning processes as well as for the introduction of abstraction capabilities.

4. Conclusions and Perspective

Most current applications of autonomous robots consider a very limited range of
autonomy, usually dealing with a limited number of unexpected disturbances in the do-
main the robot is designed for. They seldom face the problem of autonomously setting
goals in previously unknown domains (open-ended learning autonomy) nor, consequently,
using experience from previous domains to facilitate current learning (lifelong open-ended
learning autonomy, LOLA). Cognition and cognitive architectures have been purported as
a way to address problems that require higher levels of autonomy. However, the mostly
programmed-in symbolic representations of traditional general-purpose cognitive archi-
tectures are not up to the task due to their grounding and domain adaptation problems.
Hybrid approaches, on the other hand, have become quite popular to address grounding
and domain adaptation at a low level, but they require a lot of tweaking of the symbolic
information in the higher levels, thus generally making them inadequate for open-ended
learning situations. Finally, most emergent cognitive approaches have never been com-
pletely integrated into full cognitive architectures or tested on real market use cases. In fact,
most developments are incomplete and only address a specific part of the robotic system
and, thus, require more work to be ported to reality.

In this work, we identify four basic components required for cognitive architectures
that support LOLA: a motivational system, a contextual memory system, an online learning
system and, finally, an attention system. In general, there has been a lot of work on several
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aspects pertaining to LOLA, but mainly within areas outside the cognitive architecture
realm and hardly ever considering these four components together. These works range from
intrinsically motivated structures to provide for goal discovery, to different approaches
to knowledge reuse. Thus, the open question that needs to be addressed now is how
to integrate this work within operational cognitive architectures that provide the four
structural components and the internal operational mechanisms needed to achieve the
LOLA objective in a way that does not constrain their performance and possibilities.

This opens up a whole set of research paths towards constructing a cognitive archi-
tecture that is able to support and relate the knowledge designed by the robot’s creator
with the knowledge discovered and learned by the robot itself, in such a way that useful
decisions can be made. Such a structure must be able to adapt its decision-making processes
to its level of knowledge. Therefore, it is important that it can balance and complement
deliberative and reactive decisions. The latter because they are faster and more efficient,
while the former are the ones that will allow the robot to explore the different domains,
discover new goals in them, and acquire knowledge on how to reach them. Therefore, after
the review presented in this article, we have found that this architecture must contemplate,
among others, the components shown in the schematic of Figure 1 to provide it with
the aforementioned autonomy and lifelong learning capacity. Additionally, and with the
objective of making the operation of the architecture more efficient, the inclusion of self-
maintenance and autonomous internal knowledge enhancement procedures should also be
contemplated. Similarly, mechanisms to obtain a balanced integration of deliberative and
reactive decision-making processes will also be important.
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