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Abstract: In recent years, the development of wireless technologies has led to fast growth in mobile
networks, especially with the rise of 5G New Radio (5G NR). A huge number of base stations (BSs)
are mandatory to serve the growth of mobile services, which has led to concerns about the increase
in electromagnetic field (EMF) radiation exposure levels. To control the overall power emitted by
EMF transmitters, international bodies have set maximum exposure limits. This paper investigates
the compliance distances (CDs) of shared sites by a group of Mobile Network Operators (MNO) as
multi-operators operating with multi-technology and sharing the same tower. The study investigated
the CDs of the most two commonly used types of sharing sites, macro and indoor-Based solution sites
(IBS). In addition, the study analyzed the power densities and total exposure ratios for the general
public and occupational workers in each sharing scenario. The results showed that, compared with a
single MNO, the CD increased by 41% in the case of two MNOs, 73% for three MNOs, and 100% for
four MNOs. The EMF site sharing scale-up formula was used to estimate the increase in CDs for N
number of MNOs assuming that all MNOs use the same site configuration. In addition, the results
showed that 5G has the highest contribution to the total exposure ratio (TER) at the CD in the main
direction of the antennae.

Keywords: EMF exposure; power density; total exposure ratio; compliance boundary; 5G;
massive MIMO

1. Introduction

Mobile networks are the fastest-growing wireless communication networks due to
the massive increase in data service consumption, especially with the wide spread of
smartphones and tablets. This leads to the generation of large data traffic over the mobile
network that will reach very high figures by 2030 compared with 2020 [1,2]. Expanding
mobile networks necessitates the installation of additional BSs to increase network coverage
and capacity. Most deployed sites involve the 2G Global System for Mobile Communi-
cation (GSM), 3G Universal Mobile Telecommunications System (UMTS), 4G Long-Term
Evolution (LTE), and 5G NR, which has recently been introduced. The installation of more
BSs raises electromagnetic field exposure levels, which has become a source of concern
due to the effects on human health [3–5]. Several well-known international organizations
have set standard guidelines, i.e., the International Commission on Non-Ionizing Radia-
tion Protection (ICNIRP) [6,7] and the Federal Communication Commission (FCC) in the
USA [8]. These standards have been adopted by national regulators in many countries to
control the installation of EMF transmitters. The ICNIRP and FCC guidelines distinguish
between the general public and occupationally exposed individuals. The general public
comprises normal individuals who are exposed to EMFs, and occupational personnel
are the staff exposed to certain situations associated with EMFs and are well-trained for
possible risks [6].
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It is predicted that 5G technology will be the system for general purposes [9] because
5G provides a high capacity and enables many features [10]. This requires the installation of
NR BSs at higher-frequency bands [11], and most are colocated with existing technologies
(2G, 3G, and 4G). The group of solutions and technologies operating at one site causes an
increase in EMF exposure, and investigation is needed to evaluate the total accumulated
radiation and assess it versus the standard limits [12–14].

In many countries, the MNOs have started to share mobile sites to expand their
network services in terms of coverage footprint and capacity resources [15]. Site sharing has
become a good alternative and a key approach because of the following main reasons [16]:

1. It is less expensive to share a site than to build a new one. According to [17], infrastruc-
ture sharing can result in significant cost savings—up to 40% of assets can be saved by
site sharing, and cash flow can improve by 31% as a result.

2. The densification of the existing sites increases the difficulty of acquiring more physical
sites within the required nominal locations and leads to fewer options.

3. Site sharing enables the rationalization of the legacy 2G and 3G networks, taking into
account the declining revenues from 2G and 3G networks and the higher spectral
efficiency of the next generation of 4G and 5G technologies.

4. Site sharing enables diverting the investment to other important innovations, such as
the deployment of more 5G sites.

5. Site sharing has some social benefits because it lowers network costs, which lowers
the customer’s service fee.

6. Tower sharing benefits the environment by reducing the number of sites with better
looks and views.

Network sharing can proceed in many ways, starting from a small part of the in-
frastructure up to full sharing, including core parts [18]. Sharing can be classified into
two groups. The first is passive sharing, which mainly involves sharing parts of the tower
site, antennas, and/or the backhaul part (MW, transport, fiber, etc.), as illustrated in Figure 1.
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Figure 1. Illustration of passive sharing between three operators.

The second group is active sharing, which consists primarily of sharing the Radio
Access Network (RAN) component with a dedicated frequency spectrum for each operator
as the Multi-Operator RAN (MORAN) and a shared frequency spectrum as the Multi-
Operator Core Network (MOCN), as shown in Figure 2.
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Figure 2. MORAN and MOCN active sharing between three operators.

Passive site sharing raises concerns about the total EMF exposure radiated from the
antennae because each operator has separate radio equipment and all of them transmit
from the same location. In this study, we determined the total accumulated exposure by
calculating and analyzing the CDs for the two types of site sharing at the macro site and
the indoor IBS site.

The merit of this analysis is in the calculations that consider the real operating setup
(typical configurations) and involve the actual realistic transmitted power. Additionally,
the goal was not to compare the levels of exposure to different technologies. Instead, it was
to find out what the CDs are when different technologies and operators all transmit in the
same place.

This manuscript is structurally organized into three main sections: the exposure
standard limits, CD calculations, and the results and discussion for site sharing at macro
and indoor sites.

2. Exposure Standard Limits

The guidelines of the ICNIRP are the most widely adopted and used for controlling
non-ionizing radiation exposure in many countries [19–21]. This standard has set maximum
limits based on baseline values directly related to the adverse effects produced by EMF
radiation. The ICNIRP defined two groups of people for radiation exposure [7], occupa-
tional workers (OWs) and the general public (GP). Similarly, the USA FCC [8] defined the
maximum permitted exposure (MPE) for the general public and occupational workers.
Table 1 lists the exposure limits for both the ICNIRP and FCC.

The ICNIRP also specified the total reference limits from instantaneous concurrent
exposures from multiple sources, which are aggregated using Equation (1) shown below [6]:

30 MHz
∑

i=100 kHz

{( Einc, fi
Einc,RL, fi

)2
+
( Hinc, fi

Hinc,RL, fi

)2}
+

2 GHz
∑

i>30 MHz
MAX

{( Einc, fi
Einc,RL, f i

)2
,
( Hinc, fi

Hinc,RL, f i

)2
,
( Sinc, fi

Sinc,RL, f i

)}
+

300 GHz
∑

i>2 GHz

( Sinc, fi
Sinc,RL, fi

)
≤ 1

(1)

where fi is the frequency range, Einc, fi
is the electric incident field level, Einc,RL, fi

is the
electric incident field reference level at fi. Hinc, fi

and Hinc,RL, fi
are the magnetic field and
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reference levels at fi, respectively. Sinc, fi
and Sinc,RL, fi

are the power density and its reference
level at fi, respectively.

Table 1. The ICNIRP and FCC maximum limits for frequencies 0.1 MHz to 300 GHz.

Exposure Limit Freq. Range E-Field (V/m) H-Field (A/m) PD (W/m2)

ICNIRP-OW

0.1–30 MHz 660/ fM
0.7 4.9/ fM NA

300–400 MHz 61 0.16 10
400–200 MHz 3 fM

0.5 0.008 fM
0.5 fM/40

2–300 GHz NA NA 50

ICNIRP-GP

0.1–30 MHz 300/ fM
0.7 2.2/ fM NA

300–400 MHz 27.7 0.073 2
400–200 MHz 1.375 fM

0.5 0.0037 fM
0.5 fM/200

2–300 GHz NA NA 10

FCC-OW

0.3–0.3 MHz 614.0 1.630 100.0
3.0–30 MHz 1842/f 4.89/f 900/ f 2

30–300 MHz 61.40 0.163 1.00
0.3–1.5 GHZ - - f/300
1.5–100 GHz - - 5.00

FCC-GP

0.3–1.34 MHz 614.0 1.630 100
1.34–30 MHz 824/f 2.19/f 180/ f 2

30–300 MHz 27.50 0.0730 0.20
0.3–1.5 GHz - - f/1500
1.5–100 GHz - - 1.00

3. Compliance Distance Calculations

In [22], the International Electrotechnical Commission (IEC) specified in their stan-
dard IEC62232 that the most accurate compliance boundary is obtained as an iso-surface
shape that can be enclosed in volumes with simpler shapes to define more conservative
boundaries, such as a box shape, which is suitable for the sector coverage antenna, with
horizontal, side, and vertical directions. In this work, the box-shaped compliance boundary
was used to take into account the horizontal and vertical beamwidths and the gains of the
antennae. Following some related works [23–27], we used the compliance distance (RCD) to
refer to the distance from the antenna at which TER = 1, which means that the accumulated
exposure reaches the maximum limit. The TER was calculated on the basis of the power
density Sinc; therefore, Equation (2) was modified to Equation (3), as shown below [6].

TER =
300 GHz

∑
f>30 MHz

(
Sinc,f

Sinc,RL,f

)
(2)

At distance R (m) from the antennae, the Sinc is the power density, which can be
expressed as:

Sinc,f =
(PT .GA)f

4.π.R2 (3)

Equation (3) can be substituted in the nominator of Equation (2), so the TER would be:

TER =
300 GHz

∑
f >30 MHz

(
(PT .GA)f

4.π.R2.Sinc,RL,f

)
(4)

At compliance distance RCD, the TER = 1, then:

RCD =

(
1

4π

300 GHz

∑
f >30 MHz

PT,f.GA,f
Sinc,RL,f

)1/2

(5)
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With the introduction of 5G NR, which uses a high grade of massive Multi-Input
Multi-Output (mMIMO), some recent studies have investigated EMF exposure by consider-
ing more factors [28–32], such as the actual radiated power, system utilization load, and
spatial/time duty cycle [32,33]. Furthermore, according to IEC 62232 [22], EMF assessments
for human exposure can be performed on the basis of actual situations. In [34,35], the
authors investigated the time-averaged instantaneous radiation and the theoretical maxi-
mum exposure from 5G NR base stations, and their results stated that the actual maximum
exposure was very low compared with the theoretical maximum exposure for NR mMMO.
In this study, we used the power rating factor as a reduction in the total transmitted power
to compute the compliance distance. Thus, Equation (5) becomes Equation (6):

RCD =

(
1

4π

300 GHz

∑
f>30 MHz

ρr, f .PT, f .GA, f

Sinc,RL, f

)1/2

(6)

4. Results and Discussion

A modern mobile wireless network is comprised of a combination of different site
types and different access technologies that work together as a heterogeneous network. The
RF planning teams in the MNOs select the appropriate site type according to many inputs,
such as the target coverage range, number of users, forecasted traffic growth, total cost, and
nature of the area (rural, urban, suburban, dense, indoor buildings, etc.). This study looked
into multi-operator, multi-technology CDs for two types of sharing sites, macro and indoor
IBS sites, which are currently the most commonly used.

4.1. Shared Macro Site

The macro site is a general solution that is used by all operators to provide coverage in
populated areas [36]. The macro site has radio equipment with higher Tx power than other
types of sites (micro, femto, and indoor), and the coverage range can reach long distances
depending on the antenna height and site configurations. The macro site can be installed in
different civil models, such as on monopoles, self-based towers, cells on wheels (COWs),
wall-mounted antennae, or towers at rooftop sites. This study considered passive sharing,
as shown in Figure 3 and illustrated in Figure 4.
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rooftop tower.

Typical configurations of macro sites equipped with multi-technology solutions were
used as input data for the calculations. The site was operated with six technologies: 2G
GSM at 900 MHz (G900), 3G UMTS at 900 MHz (U900), 4G LTE at 800 MHz (L800), 4G
LTE at 1800 MHz (L1800), 4G LTE at 2100 MHz (L2100), and 5G NR at 3500 MHz (N3500).
The input data for each technology, including Tx/Rx, antenna gain, frequency bandwidth,
system load, and transmitting power, are listed in Table 2. For N3500, which has a high
grade of mMIMO (64T/64R), we used 0.22 as a realistic power factor. This was taken
from the interesting results and findings of the studies [28–30]; it indicates that the realistic
transmitted power of mMIMO reaches 16–22% of the maximum equipment power when it
operates at a full system load.

Table 2. Configuration setup for macro site.

Site Setting 2G G900 3G U900 4G L800 4G L1800 4G L2100 5G N3500

Freq. Band (MHz) 900 900 800 1800 2100 3500
Freq. BW (MHz) 5 5 10 20 20 100

Total Tx 2 1 2 2 4 64
Total Rx 2 1 2 2 4 64

Power Tx 40 W 40 W 80 W 80 W 80 W 160 W
System Load 95% 95% 95% 95% 95% 95%

Ant. Gain 17 dBi 17 dBi 16.7 dBi 16.6 dBi 17 dBi 24.8 dBi

The site configuration data were utilized in Equation (6) to compute the vertical and
horizontal RCD (RDC-H and RDC-V), as displayed in Figure 5. The calculation outcome
expressed that all horizontal RDC-H distances were longer than the vertical RDC-V distances,
and the ICNIRP has a little more restricted RCD compared with the FCC. In the main
antenna horizontal direction, the general public ICNIRP RCD-H was 14.81 m when there
was a single MNO, while it increased to 29.6 m when 4 MNOs shared the macro site. The
general public FCC RCD-H was 13.8 m when there was a single MNO, and it increased
to 27.7 m for 4 MNOs. Figure 5 summarizes the RCD in both the vertical and horizontal
directions for the GP.



Sensors 2023, 23, 1588 7 of 16

Sensors 2023, 23, x FOR PEER REVIEW 7 of 18 
 

 

Table 2. Configuration setup for macro site. 

Site Setting 2G G900 3G U900 4G L800 4G L1800 4G L2100 5G N3500 
Freq. Band (MHz) 900 900 800 1800 2100 3500 
Freq. BW (MHz) 5 5 10 20 20 100 

Total Tx 2 1 2 2 4 64 
Total Rx 2 1 2 2 4 64 

Power Tx 40 W 40 W 80 W 80 W 80 W 160 W 
System Load 95% 95% 95% 95% 95% 95% 

Ant. Gain 17 dBi 17 dBi 16.7 dBi 16.6 dBi 17 dBi 24.8 dBi 

The site configuration data were utilized in Equation (6) to compute the vertical and 
horizontal RCD (RDC-H and RDC-V), as displayed in Figure 5. The calculation outcome ex-
pressed that all horizontal RDC-H distances were longer than the vertical RDC-V distances, 
and the ICNIRP has a little more restricted RCD compared with the FCC. In the main an-
tenna horizontal direction, the general public ICNIRP RCD-H was 14.81 m when there was 
a single MNO, while it increased to 29.6 m when 4 MNOs shared the macro site. The gen-
eral public FCC RCD-H was 13.8 m when there was a single MNO, and it increased to 27.7 
m for 4 MNOs. Figure 5 summarizes the RCD in both the vertical and horizontal directions 
for the GP. 

 
Figure 5. The RCD results for multi-technology multi-operator sharing a macro site, referencing the 
ICNIRP and FCC standards limits for GP. 

Further processing was carried out to analyze the total emitted power density and 
related contribution to the total exposure ratio. Figure 6 depicts the power density PD 
(W/m2) calculated at distance (m) from the antennae in the presence of four MNOs, and 
the analysis showed that 5G N3500 had the highest PD among the technologies, and all 
technologies reached high levels at distances very close to the macro site’s antenna (less 
than 3 m). 
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Further processing was carried out to analyze the total emitted power density and
related contribution to the total exposure ratio. Figure 6 depicts the power density PD
(W/m2) calculated at distance (m) from the antennae in the presence of four MNOs, and
the analysis showed that 5G N3500 had the highest PD among the technologies, and all
technologies reached high levels at distances very close to the macro site’s antenna (less
than 3 m).
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With reference to the ICNIP for the GP, Figure 7 displays the exposure ratio for each
technology calculated by Equation (4) in the horizontal direction and TER for the macro
site shared by a single MNO, two MNOs, three MNOs, and four MNOs.
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Figure 7. The exposure ratio in the main direction for multi-technology macro site with reference to
ICNIRP limits for GP.

The results showed that 5G N3500 had the highest contribution at the RCD with 34%,
followed by 4G L800 with 24%, 4G L1800 and L2100 with 9–10% each, and 2G G900 and 3G
U900 with 11% each. Similarly, at the RCD based on FCC limits, the highest contributor was
N3500 (39%), followed by L800 (21%), L1800 and L2100 (11% each), and G900 and U900
(9% each). Figure 8 summarizes the exposure contributions of each technology at the RCD,
and these were in line with the results found in [36,37] for the power density.
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Figure 8. The EMF radiation contribution at the RCD in the horizontal direction for the macro site
shared by 4 MNOs.
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Equation (6) gives shorter compliance distances compared with the calculations per-
formed using Equation (4) because it is based on realistic rated power for the mMIMO
rather than the conservative power levels used in Equation (4). The RCD increased with
the increase in the number of MNOs sharing the same location; Table 3 summarizes the
percentage of the distance increase compared with a single MNO with reference to the
ICNIRP and FCC limits. It shows a +41% increase for 2 MNOs for all standard limits, +73%
for 3 MNOs, and +100 for 4 MNOs.

Table 3. The RCD for macro site shared by up to 4 MNOs, referencing the ICNIRP and FCC limits.

Limits
Compliance Distance (m)

1MNO 2xMNO % 3xMNO % 4xMNO %

INCIRP 14.8 20.9 +41% 25.6 +73% 29.6 +100%
FCC 13.8 19.6 +41% 24.0 +73% 27.7 +100%

INCIRP 6.6 9.4 +41% 11.5 +73% 13.2 +100%
FCC 6.2 8.8 +41% 10.7 +73% 12.4 +100%

INCIRP 6.5 9.2 +41% 11.3 +73% 13.0 +100%
FCC 5.9 8.3 +41% 10.2 +73% 11.8 +100%

INCIRP 2.9 4.1 +41% 5.0 +73% 5.8 +100%
FCC 2.6 3.7 41% 4.6 73% 5.3 100%

The results in Table 4 can be scaled up to any number N of MNO operators sharing
the same site, assuming all operators use the same configuration and technologies. In this
case, Equation (6) and can be written for one MNO as:

CD1 =

(
1

4π

300 GHz

∑
f>30 MHz

ρr, f .ab, f .PT, f .GA, f

Sinc,RL, f

)1/2

(7)

For N number of MNOs, Equation (7) becomes Equation (8):

CDN =

(
1

4π

300 GHz

∑
f>30 MHz

N.
ρr, f .ab, f .PT, f .GA, f

Sinc,RL, f

)1/2

(8)

CDN = N1/2.CD1 (9)

Equation (9) represents a simplified formula that gives the compliance distance based
on the EMF Site-Sharing Scale (EMF-SSS formula). In reality, it is very hard to find a
group of MNO operators that use the same configuration for multi-technology, including
the power rating and system load. However, Equation (9) is useful for predicting the
CD and indicating the expected increase in the CD when accommodating more than one
MNO at the same site, and Figure 9 plots this relationship using Table 2 as input data for
Equation (8).

4.2. Shared Indoor IBS Site

Most of the traffic in mobile networks is generated from indoor houses and buildings [38],
and in some dense areas, huge buildings suffer from weak indoor single strength due to
construction loss [39], especially in public places such as airports, commercial malls, cinemas,
hospitals, hotels, universities, and commercial buildings. The in-building solution (or indoor-
based solution) provides indoor coverage by distributing the signal to several antennae
via a series of hubs (splitters), as shown in Figure 10. The IBS gives additional leverage
to strengthen the level and quality of wireless signals, thereby ensuring smooth wireless
communication for mobile network users. The operators install the IBS inside massive
buildings and high-rise towers, where the received coverage from outdoor macro sites is
weak due to the construction penetration losses. The IBS combines all the technologies into



Sensors 2023, 23, 1588 10 of 16

one Distributed Antenna System (DAS) in which each antenna provides coverage for a
certain zone as a hotspot [17,40].
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The IBS-DAS consists of many connected antennae that are shared and energized from
the same radio transmitters in the splitting system. In this study, we looked at radiation
from a single antenna (one zone) using high-density configurations of a single IBS site
outfitted with multi-technology. The IBS was operated with six technologies: G900, U900,
L800, L1800, L2100, and N3500. The input data for each technology are listed in Table 4.
They are similar to those of the macro site but have less Tx power, lower antenna gains,
and no mMIMO in 5G.

Table 4. Configuration setup for shared indoor IBS.

Site Setting 2G G900 3G U900 4G L800 4G L1800 4G L2100 5G N3600

Freq. Band (MHz) 900 900 800 1800 2100 3500
Freq. BW (MHz) 5 5 10 20 20 100

Total Tx 2 1 2 2 2 4
Total Rx 2 1 2 2 2 4

Power Tx 1.3 W 1.3 W 1.3 W 1.3 W 1.3 W 2 W
System Load 95% 95% 95% 95% 95% 95%

Ant. Gain 8 dBi 8 dBi 8 dBi 10 dBi 10 dBi 11.1 dBi

Similar to the macro results, the IBS results expressed that all RDC-H distances were
longer than the vertical RDC-V distances, and the ICNIRP had a slightly more restricted
RCD compared with the FCC. The general public ICNIRP RCD-H was 0.89 m when there
was a single MNO, but it increased to 1.74 m for four MNOs. Additionally, for the general
public, RCD-H was 0.4 m when there was a single MNO, while it increased to 0.79 m for
four MNOs. Figure 11 shows the RCD for the general public in both the vertical and the
horizontal direction.
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In addition, further processing was carried out to analyze the power density and its
related contribution to the total exposure ratio. Figure 12 presents the power density PD
(W/m2) calculated at a distance (m) from the antennae, and the analysis showed that 5G
N3500 had the highest PD compared with the other technologies; it reached high levels at
distances very close to the DAS antenna.
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With reference to the ICNIP for the GP, Figure 13 displays the exposure ratio for each
technology calculated using Equation (4) in the horizontal direction and the total TER for
the IBS site shared by a single MNO, two MNOs, three MNOs, and four MNOs.
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Figure 13. The exposure ratio at the main direction for multi-technology IBS site, referencing ICNIRP
limits for GP.

The results showed that 5G N3500 MHz had the highest contribution to the TER at
the compliance distances for the ICNIRP with a contribution of 26%, followed by 4G L800
with 20%, 2G G900 and 3G U900 with 18% each, 4G L1800 with 9%, and 4G L2100 with
8%. Similarly, the N3500 had the highest contribution (30%), followed by 4G L800 (18%),
2G G900 and 3G U900 (16% each), and 4G L1800 and 4G L2100 (both with 10%). Figure 14
summarizes the exposure contributions of each technology at the RCD, and these were the
expected results because the IBS site does not use a high grade of mMIMO.
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Similar to that of the shared macro site, with an increase in the number of MNOs, the
RCD of the IBS increased with the same percentage for all references. Table 5 summarizes
the percentage of the distance increase compared with a single MNO with reference to the
ICNIRP and FCC limits. It shows an increase of +41% for two MNOs, +73% for three MNOs,
and 100% for four MNOs.

Table 5. DC for IBS site shared by up to 4 MNOs, referencing the ICNIRP and FCC limits.

Limits
Compliance Distance (m)

1MNO 2xMNO % 3xMNO % 4xMNO %

INCIRP 0.9 1.2 +41% 1.5 +73% 1.7 +100%
FCC 0.8 1.1 +41% 1.4 +73% 1.6 +100%

INCIRP 0.4 0.6 +41% 0.7 +73% 0.8 +100%
FCC 0.4 0.5 +41% 0.6 +73% 0.7 +100%

INCIRP 0.4 0.6 +41% 0.7 +73% 0.8 +100%
FCC 0.4 0.5 +41% 0.6 +73% 0.7 +100%

INCIRP 0.2 0.3 +41% 0.3 +73% 0.4 +100%
FCC 0.2 0.2 +41% 0.3 +73% 0.3 +100%

Additionally, in practice, it is difficult to find groups of MNO operators that share
IBS sites with the same configurations. However, using Table 4 as the input, Equation (9)
was used to scale up the increase in RCD with the increased N of MNOs sharing the IBS, as
shown in Figure 15.
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5. Conclusions

The EMF exposure compliance boundary for multi-technology, multi-operator site
sharing was discussed and analyzed using calculations that considered realistic configura-
tions, and the study covered two types of site sharing: macro and indoor IBS sites. For a
typical site operating with 2G/3G/4G/5G, the compliance distance results for the general
public zone were less than those for the occupational zone. The ICNIRP limits were slightly
more restricted than the FCC limits. For a macro site with a single MNO, the general pub-
lic’s horizontal RCD distances were 14.8 m and 13.8 m according to the ICNIRP and FCC,
respectively. Furthermore, for a macro site shared by four MNOs, the RCD distances were
29.61 m and 27.69 m according to the ICNIRP and FCC, respectively. In addition, for all
shared macro site scenarios, the 5G N3500 MHz had the highest contributions to the TER of
34% and 39% at the horizontal RCD according to the ICNIRP and the FCC, respectively. For
the indoor IBS site with a single MNO, the general public’s horizontal RCD distances were
0.87 m and 0.8 m according to the ICNIRP and FCC, respectively. In addition, for an IBS
shared by four MNOs, the RCD distances were 1.74 m and 1.6 m according to the ICNIRP
and FCC, respectively. Moreover, for all shared IBS site scenarios, the 5G N3600 MHz
had the highest contributions to the TER of 26% and 30% at the horizontal compliance
distances according to the ICNIRP and FCC, respectively. In the future, the research team
will investigate the RCD for the accumulated radiation considering the neighboring sites.
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