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Abstract: Signal acquisition is a crucial step in Global Navigation Satellite System (GNSS) receivers,
which is typically solved by maximizing the so-called Cross-Ambiguity Function (CAF) as a hypothe-
sis testing problem. This article proposes to use deep learning models to perform such acquisition,
whereby the CAF is fed to a data-driven classifier that outputs binary class posteriors. The class
posteriors are used to compute a Bayesian hypothesis test to statistically decide the presence or
absence of a GNSS signal. The versatility and computational affordability of the proposed method are
addressed by splitting the CAF into smaller overlapping sections, which are fed to a bank of parallel
classifiers whose probabilistic results are optimally fused to provide a so-called probability ratio
map from which acquisition is decided. Additionally, the article shows how noncoherent integration
schemes are enabled through optimal data fusion, with the goal of increasing the resulting classifier
accuracy. The article provides simulation results showing that the proposed data-driven method
outperforms current CAF maximization strategies, enabling enhanced acquisition at medium-to-high
carrier-to-noise density ratios.
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1. Introduction

The Global Navigation Satellite System (GNSS) [1,2] is the de facto technology for
position, navigation, and timing (PNT) applications [3,4], when it is available [4–6]. The
GNSS relies on one or more satellite constellations that transmit ranging signals, which
a receiver can use to self-localize. Along the signal processing chain, the first step that
is performed by a GNSS receiver is signal acquisition. The outcome of this statistical
process decides whether the signal from a particular satellite is present or absent in the
received signal, as well as providing a rough estimate of its associated code delay and
Doppler frequency, if present. All GNSS receivers [7–9] implement such an acquisition
process by evaluating the so-called Cross-Ambiguity Function (CAF) and maximizing
it [10]. The CAF is a two-dimensional function that is related to the correlation between the
received signal and a local code replica for every possible delay/Doppler pair, which is then
maximized for signal detection and coarse synchronization. This acquisition process can be
regarded as a signal detection problem, where two hypotheses are available: (1) the null
hypothesisH0 that the signal is not present or not correctly aligned with the local replica;
and (2) the alternative hypothesisH1 that the signal is present and correctly aligned with
the local replica. Three probabilities characterize the performance of the acquisition method:
detection (the probability of correctly detecting signal/noise when there is signal/noise);
false alarm (the probability of wrongly detecting signal when the satellite is not present);
and miss detection (the probability of mistakenly deciding for the null hypothesis when the
signal is present). Detection and false-alarm probabilities are used to obtain an important
figure of merit in hypothesis tests: the Receiver Operating Characteristic (ROC), which is a
plot of the probability of detection as a function of the probability of false alarm [11,12].

Signal acquisition is based on solid statistical grounds, where the approach of max-
imizing the CAF (i.e., the correlation between the local replica and the incoming signal)
can be seen to be optimal under certain model conditions (e.g., Gaussianity of the channel).
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However, experiments show (e.g., [13]) that reality is typically more challenging and that
the assumed nominal model conditions do not always hold true necessarily. Recent at-
tempts to modify the CAF [14,15] to make it more robust to non-Gaussian behaviors (such
as heavy-tailed noise distributions) showed outstanding performance, particularly in the
context of the GNSS operation under jamming, for instance considering Cauchy [16] or
Laplacian [17] distributions, or robust statistics losses [18] in transformed domains [19]
or dual domains [20], as well as understanding the impact on positioning solution [21].
Regardless of its remarkable performance in outlier-rich data, the aforementioned robust
approach does not accommodate for more complex situations such as multimodal distribu-
tions or moderate-to-severe nonlinearities affecting the received signal. In [22], the authors
showed preliminary results that such complex behaviors can be learned by employing
efficient data-driven methods, trained over large datasets. In particular, the work proposed
to use deep neural network (DNN) models to carry out the detection (or classification) pro-
cess involved in signal acquisition. The current paper extends the methodology presented
in [22] to (i) accommodate for enhanced DNN models that improve flexibility and com-
putational complexity through dataset splitting and parallel DNN processing; (ii) allow
for noncoherent integration times within the DNN framework through an optimal data
fusion step; and (iii) provide a more detailed discussion of results and design tradeoffs
for practitioners.

Nowadays, the advent of deep learning as a popular tool has sped up advances in a
myriad of disciplines. In short, deep learning algorithms (for instance, the variety of NN
architectures currently available) are data-driven models that, instead of using complex-
to-derive physics-based models, use large datasets to learn the correlations in the data.
This has been recently considered in order to redesign communication receivers using
deep learning models [23] with promising results. In the context of the GNSS (boosted
by the ever-increasing computational power of receivers [24]), deep learning has been
recently investigated in several domains, with [25] providing an excellent summary. Some
works explore the use of DNN as multipath mitigation strategies, one of those situations
where a physics-based model is either too complex to be used or not available at all. For
instance, ref. [26] presented a deep-learning-based beamforming approach to mitigate
multipath. That work highlighted the limitations of conventional beamforming algorithms
by developing a DNN-based model and applied it in different environments, showing a
root mean-squared error (RMSE) reduction. The work in [27] discussed the benefits of
DNN in predicting distortions in the urban area, which cause significant degradation to
GNSS performance. This is improved by leveraging a DNN to extract useful features from
the data to learn GNSS measurement quality for improved prediction (of satellite visibility
and pseudorange errors) in urban areas.

The work in [28] proposed an end-to-end deep learning method for satellite selection
based on the PointNet and VoxelNet networks as a promising alternative to standard
selection procedures. The work in [29] presented a methodology to substitute the CAF
calculation (typically performed through local code correlation) by a DNN method that
was able to learn the complexities of the multipath channel, with promising results when
used in standard tracking loops. Those and other works [30,31] highlight the relevance and
popularity that this topic is gaining in the GNSS multipath mitigation challenge [32,33].
On another set of GNSS applications, the impact of the deep learning approaches to
counteract GNSS spoofing [34–38] and jamming [39,40] attacks is presented in several
works. In the context of the GNSS for Earth sciences, deep learning was considered for
earthquake prediction [41], hurricane monitoring [42], ice detection [43], and ionospheric
scintillation [44–46], as well as in the survey article in [47].

This work investigates the use of Deep Neural Networks (DNNs) for GNSS signal
acquisition. In particular, a Convolution Neural Network (CNN) is considered in this
paper, used as a binary classifier to determine the presence or absences of signal from a
given satellite. The inputs to the CNN are the samples of the CAF, a time/Doppler matrix
of correlation values, which can potentially be high-dimensional. The dimensionality
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prevents its direct use, and thus this paper proposes a divide-and-conquer approach to
parallelize the computation employing a bank of CNNs processing smaller CAF portions.
The main idea is to split the original image (i.e., the CAF map) into several subimages,
such that, for instance, one can operate at the regular sampling frequencies encountered
in a GNSS receiver. Each classifier on these subimages produces binary class posteriors
that we propose to fuse using a Bayesian rule. The probabilistic results are optimally
fused to provide a so-called probability ratio map from which acquisition is decided. The
results show remarkable performance, particularly at high signal-to-noise ratio regimes,
where the data-driven approach provides enhanced performance when compared with
theoretical classification bounds. The reason is related to a more exhaustive use of signal
correlation in the neighborhood of the CAF’s peak. This work opens the possibility to
further methodological advances in addressing challenging GNSS problems, such as attack
detection or other forms of waveform distortions.

The remainder of the paper is organized as follows. Section 2 recalls the basics of
standard GNSS signal acquisition. Section 3 details the proposed DNN approach for
signal acquisition, including a discussion on the models and its extension to noncoherent
integration times. The model training setup is discussed in Section 4, and results are
analyzed in Section 5. Finally, conclusions and future research directions are drawn in
Section 6.

2. GNSS Signal Model and Acquisition

A receiver observes signals from M satellites plus noise. After downconversion and
sampling (at a rate fs = 1/Ts), the samples’ discrete-time signal is

y[n] =
M

∑
i=1

xi[n; θi] + η[n] (1)

xi[n; θi] = αibi(nTs − τi)ci(nTs − τi)ej2π fdnTs+jφi

with αi being the amplitude of the i-th received signal; bi(·) the data bits of the i-th nav-
igation message; ci(·) the spreading code of the i-th satellite; τi the time-evolving delay
of the i-th satellite; fd,i the Doppler-shift; φi a carrier-phase term introduced by the chan-
nel; and η[n] models the random noise at the receiver, typically complex, zero-mean, and
Gaussian-distributed with variance σ2. For the sake of clarity, the signal parameters for the
i-th satellite are gathered in a vector θi = (αi, φi, τi, fd,i)

>.
Signal acquisition is one of the first actions a receiver needs to perform, basically

deciding whether the signal from a particular satellite is present or absent, as well providing
a rough estimation of the code delay and Doppler frequency of the received signal in case
it is deemed present [10]. Therefore, when searching for the i-th satellite, this problem can
be formulated as a hypothesis testing problem with two possibilities:

H0 : i-th satellite is not present

H1 : i-th satellite is present

Equivalently, the two competing hypothesis are

H0 : y[n] = η[n] (2)

H1 : y[n] = xi[n; θi] + η[n]

such that n = 0, . . . , N− 1 index the N samples used in acquisition (i.e., coherent integration
interval). Notice that a common approach when deriving GNSS signal acquisition schemes
is to omit the inter-satellite interference effects, which are rather low thanks to the quasi-
orthogonality of the spread spectrum codes ci(·). Therefore, the model in (2) only considers
the contribution of the i-th satellite in (1). Since the parameters in θi are unknown, the
optimal detection framework (in the maximum likelihood (ML) sense) is the Generalized
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Likelihood Ratio Test (GLRT), which requires ML estimation (MLE) of the vector θi. Given
a set of N observations, y = (y[0], y[1], . . . , y[N − 1])> the MLE of θi is defined as

θ̂i = arg max
θi

p(y|θi) , (3)

where it is typically assumed that the parameters in θi are piecewise constant within the
N samples of y and that the codes have ideal cross-correlation properties, so they can be
processed independently at the receiver.

It can be seen that the GLRT results in the maximization of the correlation between
the received signal and a locally generated code. This correlation operation is encoded
in the so-called Cross-Ambiguity Function (CAF), which is nothing but the correlation
between y[n] and the spreading code of the i-th satellite at a given delay/Doppler pair (in
discrete time):

Ci(τ, fd) =
1
N

N−1

∑
n=0

y[n] ci(nTs − τ) exp{−j2π fd,inTs}︸ ︷︷ ︸
Local replica

, (4)

which can be expressed more compactly in vector notation after gathering N samples from
the samples and the local code as y, ci ∈ CN×1 as

Ci(τ, fd) =
cH

i y
N

. (5)

The CAF is crucial in the acquisition (and tracking) of the satellites’ signals. The MLE
of θi can be expressed in terms of it as

(τ̂i, f̂d,i) = arg max
τ, fd

{
|Ci(τ, fd)|2

}
(6)

α̂i =
∣∣∣Ci(τ̂i, f̂d,i)

∣∣∣ (7)

φ̂i = ∠Ci(τ̂i, f̂d,i) , (8)

and we decide that the i-th satellite is present by setting a detection threshold β (designed
for a desired false alarm probability) on the test statistic in the optimization problem in (6),
such as

|Ci(τ, fd)|2
H1
≷
H0

β . (9)

2.1. CAF Evaluation

The CAF is therefore a function which depends on the delay τ and the Doppler
frequency fd of the local replica. The optimization in (6) is performed over a grid of
possible τ and fd values, typically evaluating the CAF on a set of discrete values. Such a
bidimensional grid is referred to as the search space. The search space consists of a set of
cells which include the different value of delay and Doppler, which we gather in vectors
τ ∈ Rnτ and fd ∈ Rn f , respectively. Typically, we have that nτ � n f . The evaluation of
this grid can be performed following several strategies that trade off search speed and
performance. Three searching strategies are typically considered: maximum search, serial
search, and hybrid search strategies [10].

1. Maximum: This strategy evaluates the CAF all over the search space Rnτ ×Rn f , such
that each cell corresponds to a CAF value at the corresponding delay/Doppler pair.
The overall maximum value of the ambiguity function is then selected and compared
with the threshold β, if the maximum’s value is greater than β, the satellite is consid-
ered acquired, with the estimated code delay and Doppler frequency corresponding
to those of the maximum’s cell.
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2. Serial: In this strategy, the ambiguity function is evaluated serially cell by cell. In each
cell, when the ambiguity function (9) is computed, it is immediately compared with
the threshold. If the value exceeds the threshold, the acquisition process stops, and
the value of the estimated code delay and Doppler frequency are matched to those
from the cell under the test. This strategy has the benefit of reducing the number of
CAF evaluations, at the expense of some performance degradation.

3. Hybrid: This strategy evaluates the ambiguity function row by row (or column by
column), and at the end of each row (column), the values of the computed ambiguity
functions are compared with the threshold. As soon as the maximum value in the
current row (column) exceeds the threshold, the acquisition process stops, and the
estimated code delay and Doppler frequency are set to the corresponding cell. This
strategy brings in a balance between the two approaches above.

In this work, we consider the maximum search strategy, both for the standard GNSS
acquisition revisited in this section and the DNN approach proposed in the upcoming
Section 3.

2.2. Benchmark Performance Using the Receiver Operating Characteristic Function

The so-called Receiver Operating Characteristic (ROC) is a popular metric to assess the
performance of any detector/classifier. An ROC is a plot of the detection probability (Pd) as
a function of the false alarm probability (Pf a). More precisely, Pd = P{|Ci(τ, fd)|2 > β|H1}
is the probability of correctly detecting a GNSS signal given that it was present, while
Pf a = P{|Ci(τ, fd)|2 > β|H0} is the probability of detecting the signal given that it should
have not been detected. Ideally, the aim is to have the classifier operate such that Pd → 1
and Pf a → 0.

Theoretical ROC curves are well known for GNSS signal acquisition [10] and used to
benchmark different algorithmic solutions. The remainder of this section provides a quick
summary of the theoretical ROC used in coherent/noncoherent integration schemes. In this
article, we use this theoretical ROC to assess the performance of our DNN-based solution
against the best achievable performance under standard (i.e., non-data-driven) method.

In order to calculate the ROC curves, first, one needs to calculate the Pf a and Pd
probabilities. The value of the detection threshold β is typically computed for a given
false-alarm probability, given by

Pf a,K(β) = exp
(
− β

2σ2
n

) K−1

∑
k=0

1
k!

(
β

2σ2
n

)k
(10)

where K indicates the number of noncoherent integrations (i.e., averages of K-coherent
integrations, as in (9)) considered (such that K = 1 in the absence of noncoherent integration)
and σ2

n = σ2

2N is the variance of the in-phase and quadrature outputs.
Then, the Pd can be calculated as a function of β as

Pd,K(β) = QK

(√
K

λ

σ2
n

,

√
β

σ2
n

)
(11)

where λ = α2
i /4 is the noncentrality parameter, and the generalized Marcum Q-function is

defined as

QK(a, b) =
1

aK−1

∫ +∞

b
xK exp

(
− a2 + x2

2

)
IK−1(ax)dx , (12)

which allows for computation of the ROC curves.
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3. Deep Learning Method for GNSS Acquisition

In this work, the goal is to create a neural network model that is capable of recognizing
the presence/absence of satellite signals from CAF maps. To that aim, we use as inputs
the CAF evaluated at the delay/Doppler grid, which can be regarded as images from the
machine learning perspective. Such images (refer to Figure 1 for an exemplary situation)
have certain characteristics that can be used to determine whether the signal is present
or not, namely: (i) in the absence of signal from a specific satellite, the image should be
composed of random values (theory telling that the CAF would be exponentially distributed
in that case); and (ii) in the presence of a satellite, a peak should emerge from the random
noise floor. This knowledge can be used to train a data-driven model (e.g., a neural network
of some sort), such that a classifier can be used which learns to discriminate betweenH0
andH1, the hypotheses described earlier in Section 2.

(a) Signal is absent,H0 (b) Signal is present,H1

Figure 1. CAF evaluation at the delay/Doppler grid in the (a) absence and (b) presence of a signal
with C/N0 = 39 dB-Hz.

The framework presented in this work is independent of the particular NN architec-
ture, although a Convolution Neural Network (CNN) is used without loss of generality.
CNNs are very popular within the computer vision community thanks to their ability to
capture complex nonlinear phenomena at the expense of larger complexity compared with
multilayer perceptrons (or MLPs). The CNN model is discussed in this section after a
brief overview of how the classifier is built following a probabilistic approach. The NN
is used in order to provide Bayesian estimates of the hypotheses’ probabilities given the
observed data.

3.1. Data-Driven, Physics-Based Signal Acquisition

This section formulates the probabilistic hypothesis test, which in this work is solved
through a data-driven approach. More precisely, the proposed approach is also informed
by the nominal model discussed in Section 2, whereby the CAF for a given satellite Ci(·, ·)
is computed in order to extract the signal from the noise floor, thus enabling acquisition by
the data-driven model. The intuition is that the physics of the problem are accounted for
(that is, the optimal solution using the CAF), while augmented with a data-driven model in
the vein of [48].

The data fed to the NNs are the CAF’s delay/Doppler map for the i-th satellite,
which we denote with Zi ∈ Rnτ×n f in the sequel. The proposed methodology works on a
per-satellite basis. That is, the {m, n} element of the input matrix is defined as

[Zi]m,n =
∣∣Ci([τ]m, [fd]n)

∣∣2 , (13)

where τ and fd are vectors containing the computed delay and Doppler-shifts, respectively.
We use the convention that [a]m represents the m-th element in the vector, a, and that [A]m,n
provides a shortcut for the element of A in the m-th row and n-th column.
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In the Bayesian sense, the information of the models is gathered in their a posteriori
distribution after observing the data. An optimal (Bayesian) test between H0 and H1 is
given by the ratio,

p(H1|Zi)

p(H0|Zi)

H1
≷
H0

1 , (14)

in which case we basically favor the model with the largest a posteriori probability. This
can be further expanded in terms of the likelihood and a priori distributions as

p(Zi|H1)

p(Zi|H0)

P(H1)

P(H0)

H1
≷
H0

1 , (15)

where we readily identify that P(Hi) denotes the a priori probability of the i-th hypothesis. In
the absence of better priors, we may assume equally likely hypotheses P(H0) = P(H1) = 1/2.
Otherwise, we might incorporate that information in the hypothesis test, resulting in the
adjustment of a threshold γ. The resulting test statistic is such that

T (Zi) ,
p(Zi|H1)

p(Zi|H0)

H1
≷
H0

γ , (16)

which would substitute the standard acquisition test defined in (9). Since the test statistic is
a ratio of probabilities, we have that 0 < T (Zi) < ∞.

The trained NNs (explained below) are then providing the probabilities of each of
the two hypotheses in (16). Therefore, the input data would be Zi and the output of the
NN would be the estimated probability for the i-th satellite to be absent or present in the
dataset y used to build Zi.

If the test in (16) results in favor ofH1, then an estimate of the delay/Doppler for the
i-th satellite is given by the arguments of the largest element in Zi. That is,

{m̂, n̂} = arg max
m,n
T ([Zi]m,n) (17)

such that τ̂i = [τ]m̂ and f̂d,i = [fd]n̂. As a consequence, once a signal is detected at a specific
delay/Doppler bin, that would become the coarse estimate for those parameters.

NNs are models composed of neurons, which are information processing units for
complex data processing. An NN consists of an input layer, one or more hidden layers,
and an output layer, as well as predefined activation functions that connect adjacent layers.
Each layer has a specific weight, which is usually determined with backpropagation during
a training process that involves large amounts of data with known labels [49,50]. The
network design process is important in order to achieve high accuracy while keeping the
network complexity within feasible bounds. Some aspects are effective in designing the
network, such as the number of layers, number of neurons, and type of optimizer. In this
work, we considered the pretrained VGG16 neural network model as a baseline, where
some heuristic modifications to adapt those hyperparameters to the problem at hand were
implemented after several trials. The use of VGG16 is common in image processing tasks,
which resembles the type of classification challenges the proposed algorithm needs to
tackle. More automated approaches to select the NN architecture can be considered in
future works, such as the use of Bayesian Optimization [51]. Additional details on the NN
structure are provided in Section 4.

3.2. Model Structure

CNNs are one of the most popular models for deep learning, with demonstrated
performance in label classification in the context of image datasets. A CNN can have tens
or hundreds of layers, where each of these layers learn to identify different features of
an image [52,53]. At each layer, a cascade of filters is applied to input images, whose
parameters were previously learned from pairs of known input/output images. The output
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of each layer is used as an input to the next layer sequentially. Figure 2 illustrates a CNN
structure, as employed in this work. In contrast to other neural networks such as MLPs,
CNNs are composed of an input, convolutional layers (whereby the image is filtered
through convolution with filters learned from the data), several fully connected hidden
layers, and an output layer. During training, the input size of the CNN is fixed; the input
goes through a stack of convolutional layers with the same or different filter sizes. In each
convolution layer, the filter sweeps the input image from left to right and up to down by
using a stride with a size of 2 pixels, which is the number of pixels for each time the filter
shifts. In the end, the convolution layers are followed by fully connected (FC) layers and a
final softmax layer, which is used for classification purposes and produces the desired class
probabilities [53].

Figure 2. Classification of signal (H1) or noise (H0) in CAFs as part of the proposed GNSS signal
acquisition scheme. Particularly, a set of convolutional layers followed by fully connected layers
provide the capabilities of deep learning from large datasets.

The CNN structure is shown in the central box of Figure 2, which features several
convolution and fully connected layers. Each convolution layer consists of a number of
filters (C), with filter size (F) and channel size (D). The `-th convolutional layer transforms
its input images from the previous layer with dimensions of W`−1×H`−1×D`−1 through a
set of convolution filters, each of these filters activates certain features from the images and
creates an output with dimensions of W` × H` × D` as an input to the next layer. Notice
that initial dimensions are such that W0 = nτ and H0 = n f , whereas D` = 1, ∀`, since the
data are matrices.

After each layer, a batch normalization is used to speed up learning, and an activation
function is employed before generating the layer output. The number of convolution
layers depends on the structure that is used, where the tradeoff is between complexity
(reduced number of convolutional layers) and performance (high accuracy). After the last
convolution layer, the CNN architecture has a set of fully connected layers in charge of
the classification task, and the output of these last layer has the dimensions of the number
of classes (two in the case of this article, where a binary test is solved in (2)) that will be
predicted. The output would be the predicted probabilities for each class, as required to
compute the test in (16).

The main objectives of this work are to classify the absence/presence of satellite
signals in CAF maps, as well as to accurately estimate their delay/Doppler parameters
in case of their positive detection. To achieve the latter, a CAF map is computed in a
dense delay/Doppler grid—as it is common for standard acquisition schemes—which is
then fed to the NN model in charge of producing the posterior class probabilities. As a
consequence, the input matrix size can be potentially large (i.e., nτn f ), which might not only
pose a computational complexity limit but also increase the expense, since the processing
device needs a GPU with larger memory. In order to alleviate this issue, a sliding scheme
is proposed in this work, whereby the large-input CAF matrix is scanned using lower
dimensional images as the input to the NN classifier. More precisely, the input dataset
image is split into several subimages, each corresponding to a test delay/Doppler value.
The objective being to reduce the initial dimensions W0 and H0, such that the processing
is computationally affordable and parallelized. These subimages are separately fed to
multiple (parallelized) NNs that provide the corresponding class probability conditional on
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a specific delay/Doppler hypothesis or bin. The concept is sketched in Figure 3, where the
{m, n}-th subimage corresponds to the correct location of the delay/Doppler. The output
of the DNN structure, labeled as K = 1 in the plot, is the probability ratio map derived by
the Bayesian hypothesis test.

Figure 3. Proposed acquisition method, where the CAF map Zi is split into smaller subimages Z(m,n)
i

which are fed to a bank of parallel DNN binary classifiers to produce probability ratio maps. To
increase accuracy, several (K > 1) probability ratio maps can be noncoherently fused, as shown in the
rightmost plot.

The subimages are possibly overlapping regions of the full CAF map, which are
centered at a specific delay/Doppler bin hypothesis. While this might increase the over-
all computational complexity, it enables direct parallelization of the task, which would
counteract such complexity. Recall that indices m and n map to the corresponding delay
[τ]m and Doppler [fd]n values, respectively. Therefore, the {m, n}-th subimage for the i-th
satellite will be defined as

Z(m,n)
i = [Zi]m+δm ,n+δn (18)

where δm = [−∆m, . . . , 0, . . . , ∆m] and δn = [−∆n, . . . , 0, . . . , ∆n] for some positive integers
∆m, ∆n ∈ Z+, thus resulting in a su-image dimension of (2∆m + 1)× (2∆n + 1), which is
much smaller than the original CAF dimension of nτ × n f . Figure 4 provides an example

of an arbitrary subimage Z(m,n)
i . As a consequence of the splitting image approach, the

statistical test in (14) is in reality implemented for each subimage, such that

T (Z(m,n)
i ) ,

p(H1|Z
(m,n)
i )

p(H0|Z
(m,n)
i )

H1
≷
H0

1 (19)

is computed for each {m, n} pair, resulting in a probability ratio map (in contrast to the CAF
map) for every test delay and Doppler value in τ and fd. Recall that m = {1, . . . , nτ} and
n = {1, . . . , n f }.

It is worth noting that the probability ratio map may contain false peaks, as shown in
Figure 3 under K = 1. To mitigate those potential false detections, Section 3.3 describes a
methodology to fuse noncoherent integrations of K DNN outputs. The effect of those inte-
grations is depicted in Figure 3 in the rightmost panel for K = 6 noncoherent integrations,
where the signal probability is accentuated in the correct delay/Doppler bin, while false
peaks arising from noise are attenuated in the fused probability ratio map.
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(a) Signal is absent,H0 (b) Signal is present,H1

Figure 4. Portions of the CAF fed for processing to the NN with ∆m = 18 and ∆n = 5 defining the

size of the {m, n}-th subimage The resulting subimage Z(m,n)
i is shown on the reduced delay/Doppler

grid in the case of the (a) absence and (b) presence of a GNSS signal with C/N0 = 39 dB-Hz. In
the absence of signal, samples are i.i.d., while a time–frequency correlation can be observed in the
presence of signal.

3.3. Noncoherent Integration through Fusion of Classifiers

Coherent integration of long code sequences can be implemented in computing the
CAF map, Ci(·, ·), in the usual manner. In implementing noncoherent integrations, an
alternative is to fuse the multiple probability ratio maps resulting from processing CAF
images through the NN architecture described earlier in Section 3.2. We denote by K ∈ Z+

the total number of noncoherent integrations. This section discusses the data fusion of
such multiple classifiers. It is known that increasing integration time (both coherently
and noncoherently) improves the overall detection performance of the acquisition process,
this same rational holds in the case of the data-driven classifier proposed here, whereby
noncoherent integrations (i.e., fusion of multiple classifier solutions) improves the reliability
of the so-called probability maps (i.e., by attenuating falsely detected peaks or enhancing
locations where actual signals reside).

When processing noncoherent snapshots of data, a set of K CAF maps is computed.
In the standard approach, this would correspond to full CAF maps Zi,k with k = 1, . . . , K.
In the subimage approach, the result is a different subimage for every integration period,
Z(m,n)

i,k . In order to combine the class probabilities of the K classifiers (which are assumed
conditionally independent given their own data), we use Bayes’ rule to derive an optimal
fusion rule. For an arbitrary {m, n} pair, the optimal Bayes detector based on the K
noncoherent integrations is

T (Z(m,n)
i,1 , . . . , Z(m,n)

i,K ) =
p(H1|Z

(m,n)
i,1 , . . . , Z(m,n)

i,K )

p(H0|Z
(m,n)
i,1 , . . . , Z(m,n)

i,K )

H1
≷
H0

1 , (20)

where, by using the conditional independence assumption of the K snapshots, we obtain

p(H1|Z
(m,n)
i,1 , . . . , Z(m,n)

i,K ) =
P(H1)∏K

k=1 p(Z(m,n)
i,k |H1)

p(Z(m,n)
i,1 , . . . , Z(m,n)

i,K )

∝

[
K−1

∏
k′=1

P(H1)

]−1 K

∏
k=1

p(H1|Z
(m,n)
i,k ) (21)
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and

p(H0|Z
(m,n)
i,1 , . . . , Z(m,n)

i,K ) =
P(H0)∏K

k=1 p(Z(m,n)
i,k |H0)

p(Z(m,n)
i,1 , . . . , Z(m,n)

i,K )

∝

[
K−1

∏
k′=1

P(H0)

]−1 K

∏
k=1

p(H0|Z
(m,n)
i,k ) (22)

which explicitly contain the binary class probabilities of the K classifiers: p(H0|Z
(m,n)
i,k ) and

p(H1|Z
(m,n)
i,k ). The statistical test can then be formulated as

T (Z(m,n)
i,1 , . . . , Z(m,n)

i,K ) =
K

∏
k=1

p(H1|Z
(m,n)
i,k )

p(H0|Z
(m,n)
i,k )

H1
≷
H0

(P(H1)

P(H0)

)K−1
, γ (23)

such that the decision threshold becomes γ = 1 when P(H0) = P(H1). It can be observed
that the optimal fusion rule is to multiply the K binary class probabilities (similar to what
was shown in [54]) resulting from the K noncoherent integrations processed by the NN
classifier. The role of the decision threshold is relevant, as is discussed later, in establishing
the Pd and Pf a of the overall classifier. A reasonable choice is to assume that both hypotheses
are equally probable, such that γ = 1.

A qualitative example of how the fusion rule impacts the performance of the classifier
is provided in Figure 5. On the one hand, Figure 5a shows the CAF delay/Doppler map
used in standard signal acquisition without any noncoherent integration and just 1 ms
coherent integration. It can be seen, as it is known from the GNSS literature, that outside
the true peak (denoted with a red circle) the noise floor is relatively spiky and can cause
substantial false alarms, particularly at low C/N0 values. On the other hand, the proposed
data-driven method takes the CAF values and processes them to produce the so-called
probability ratio maps, as defined on the right-hand side of (23). The probability ratio
map resulting from processing the CAF in Figure 5a can be observed in Figure 5b, where
it is clear that the variability in the noise floor was reduced, although residual spikes
can still be detected at delay/Doppler bins where no signal was present. This effect is
smoothed further with the fusion method, as shown in Figure 5c, where K = 6 noncoherent
integrations were considered. Notice that the NN uses subimages as inputs to produce a
class probability pair, as depicted in Figure 4. As a consequence, the posterior probabilities
are taking into consideration the delay/Doppler correlations of the CAF around the signal
peak, in contrast to the standard method which only considers the maximum value of the
CAF, thus neglecting the waveform arising from the noise form (i.e., the autocorrelation
function of the corresponding spreading code).

(a) CAF, K = 1 (b) Probability ratio map, K = 1 (c) Probability ratio map, K = 6

Figure 5. Comparison of the delay/Doppler grid for (a) standard CAF map with coherent integration
only, (b) probability map produced by the data-driven classifier with coherent integration only, and
(c) probability map after fusing K = 6 noncoherent classifier outputs. The GNSS signal had a C/N0

of 42 dB-Hz and the red circled highlights the location of the peak generated by the GNSS signal.
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4. Model Training

This section provides details on how the model was trained. Particularly, we used a
realistic GNSS signal simulator to generate I&Q samples from GPS L1 C/A satellites with
various parameters according to the training plan described here. In order to increase the
detection and localization accuracy, a larger sampling frequency might be desirable, since
that accentuates the correlated samples around the CAF peak and helps in increasing the
accuracy. However, this has an impact on the number of samples to be processed, and a
tradeoff needs to be considered. Therefore, here, we increased the sampling frequency to
4 MHz, compared with the 2 MHz that was considered in our preliminary work [22]. As
discussed earlier in Section 3.2, increasing the sampling frequency can make the CAF image
become high-dimensional if applied directly to a DNN model for classification. That would
make the use of DNN more complex and expensive; in that case, the processing device
might be required to have a GPU with larger memory to process the GNSS acquisition. In
order to reduce the complexity and the expense regardless of increasing fs, the full CAF
image is split, and a sliding DNN scheme is considered in this work.

More precisely, a dataset consisting of three thousand snapshots of GPS L1 C/A, I&Q
samples was generated for model training purposes. The dataset consisted of a range of
representative carrier-to-noise-density ratios (C/N0) varying between 33 and 45 dB-Hz.
The length of these snapshots was 1 ms, the duration of a code, such that this constitutes
the coherent integration time of the approach. Additionally, the dataset was generated
with random delays between 0 to 1 ms and Doppler shifts between −4000 and 4000 Hz.
These I&Q samples were then processed to compute the CAF maps over the Doppler-delay
grid, which is then split and processed through the DNN model considered in this article.
An analogy to images can be made for these CAFs, where each Doppler/delay cell is
a pixel whose value is that of the CAF, Zi. As discussed earlier in Section 3.2, this can
be computationally expensive if a single NN has to process Zi entirely. For instance, if
50 Doppler bins are considered (i.e., 200 Hz bins, such that the DNN has more resolution
to identify the CAF peak) in generating the CAF for a GPS L1 C/A signal, those images
would be 4000× 50-dimensional for the fs considered in this work. Alternatively, if Zi is
split into smaller images of size 11× 36 (read as: Doppler × delay), there are a total of
158,600 low-dimensional subimages to be efficiently processed by the NN, potentially in
parallel. A sub-image with the size 11× 36 was considered to provide a reasonable tradeoff
between sub-image size and model complexity; since, in this method, we consider the
subimages with the complete CAF peak exactly in the middle of the subimage. Considering
that subimages of smaller sizes than the current size might cause issues, in which the CAF
peak might not be included in any of the subimages, larger subimage sizes would cause
multiple peaks to appear and higher computational complexity.

An interpretation of the sliding concept proposed in this article has some similarities to
how the convolutional layers in a CNN are processed through the so-called stride parameter.
In the proposed scheme, the CAF is scanned in smaller windows, each of which can contain
the signal peak of interest. This peak, in contrast to peaks generated by random noise,
shows a correlation in the delay and (more noticeably) in the Doppler domains that can be
exploited by the NN classifier. The NN-based classifier uses a subimage (so a collection
of delay/Doppler bins) to produce a classification result, as opposed to classical GNSS
acquisition methods which use bin-by-bin detection strategies (i.e., every delay/Doppler
bin is compared with a threshold to decide for presence/absence of a signal), which seems
to bring accuracy benefits to the NN.

In order to train the NN-based classifier, the generated dataset contained either signal-
plus-noise (H1) or noise only (H0) snapshots, which were then split into subimages, as
shown in Figure 4. Since there will be many subimages that contain the CAF peak, in this
method, the specific subimage that contains the complete CAF peak exactly in the middle
of the subimage is considered as a correctly detected peak, and these types of snapshots
are fed to the NN for training. The classifier learned its parameters by observing a set of
3000 input/output pairs in a supervised manner. The output of the NN was a softmax layer
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with dropout, such that the resulting outcome of the NN are the binary class probabilities
required to compute the test in (19), or its noncoherent version in (23).

The particular convolutional neural network’s structure was based on the architecture
in [52], containing 7 convolution layers and 3 fully connected layers. Each convolutional
layer was followed by a batch normalization layer and a ReLu activation function. The
batch normalization layers are used to normalize the activation and gradients propagation
through the network between the convolution and ReLu layers, which is known to speed
up network training tasks [55]. Each fully connected layer follows up with the ReLu
activation function and a dropout layer with 1/2 probability rate. Since the task is a binary
classification, the last fully connected layer contains two neurons, predicting the posterior
probabilities of each hypothesis. Other relevant training options were specified, such as
the use of a stochastic gradient descent with momentum (SGDM) optimizer with an initial
learning rate of 0.001. The maximum number of epochs, which is a full training cycle on
the entire training dataset, was set to 30 and, at every epoch, the data were shuffled. After
20 epochs, the learning rate dropped by a factor of 0.1.

The loss, which SGDM optimizes, was the cross-entropy loss, and the accuracy was
defined as the percentage of inputs that the network classified correctly. Particularly, the
validation accuracy after training the model reached 93%, which is deemed a high enough
rate to consider the NN ready for deployment. Section 5 provides testing results of the
trained and validated model, showing ROC performances and other relevant metrics.

5. Results

The proposed data-driven signal detection scheme was tested, and its performance
was assessed through simulated data. The details of the model can be consulted in Section 3,
while the training process is discussed in Section 4. While the training of the model was
conducted using CAF images produced by 1 ms coherent integration times, the overall
method was tested with and without noncoherent integration schemes. Particularly, when
considering noncoherent integration times, K = 6 was considered.

To assess the performance of the detection scheme, its ROC curves were empirically
obtained through simulations and compared with the theoretical performance of standard
methods (as reviewed in Section 2.2 or more in-depth in [10]). Figure 6 provides results for
K = 6 noncoherent integration periods (dashed lines), as compared with the theoretical
performance (solid lines) of standard methods (aiming at maximizing the CAF) with the
coherent/noncoherent values. Results show that whereas at low C/N0 values the proposed
method can barely achieve the state-of-the-art performance, it does remarkably well at
larger C/N0 values. It is worth noting that the improved performance starts at C/N0 as
low as 36 dB-Hz, which could be considered to be on the limit of the moderate–low range.

An explanation is that for low C/N0, the DNN cannot extract the relevant features
from the corresponding subimage, Z(m,n)

i , but at higher C/N0 values, the relevant features
can be extracted, and the classification task successfully performed with desirable Pd and
Pf a rates.

Surprisingly, the results in Figure 6 also show that the proposed data-driven scheme
outperforms current performance bounds, suggesting it is leveraging additional informa-
tion. This additional information comes from the prior that is embedded in the classifier
through the seen training dataset. More precisely, whereas standard methods are based on
the maximization of the CAF and identifying the associated bin, the proposed data-driven
method exploits the correlation across neighboring bins to compute the class probability.
That is, the classifier uses a subimage that contain a detail of the CAF that, under H1,
contains the relevant waveform of the CAF and its delay/Doppler correlated values.

On the other side, it is worth mentioning that the performance of the scheme for K = 1
is substantially degraded compared with standard model-based schemes. This is explained
by the low signal-to-noise ratio in this situation, as argued similarly earlier.
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Figure 6. ROC curves (detection versus false-alarm probability) for a recording with 1 ms coherent
integration and K = 6 noncoherently processed blocks. Several relevant C/N0 values are shown.
The detection performance of the proposed scheme (dashed lines) is compared with the theoretical
performance of standard methods (solid lines).

A benefit of the Bayes test approach considered in this work is that the adjustment
of the detection threshold γ in (19) (or the one in (23) when K > 1) has a probabilistic
interpretation: how much larger the posterior probability of H1 has to be from H0 to be
accepted. A reasonable choice would be γ = 1, such that one picks the class with the largest
posterior probability. Figure 6 shows the ROC results when such a choice is made for the
detection threshold.

According to the results, γ = 1 provides good results for C/N0 > 36 dB-Hz, with low
false alarm and outstanding detection probabilities. For the sake of completeness, Figure 7
shows the false alarm and the detection probabilities corresponding to the ROC in Figure 6.

(a) Pf a(γ) (b) Pd(γ)

Figure 7. Probabilities for a 1 ms coherently integrated snapshot, K = 6 noncoherent processing, and
a variety of C/N0 values.
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The impact of low C/N0 values on ROC curves is further explained by the histograms
of the test statistic T (Z(m,n)

i ), which are shown in Figures 8 and 9 for the cases of K = 1
and K = 6, respectively. Recall that one would like to have the histograms underH0 and
H1 as distant as possible, which happens for large C/N0 but clearly does not for low C/N0
values. In Figure 9, the empirical distributions can be clearly distinguished in comparison
with Figure 8, however, a sample from T (Zi) cannot be statistically discerned between
both distributions.

More precisely, without the noncoherent fusion rule, it is hard for the DNN to distin-
guish the difference between noise and signal subimages, particularly when the C/N0 is
low, which is shown in Figure 8. Although for large C/N0 the separation increases, it is still
far from desirable ROC regions. On the other hand, when noncoherent integration is con-
sidered, Figure 9 shows that there is no overlap between the two histograms, which causes
an increased detection accuracy. In summary, when the signal power is high enough (or
when noncoherent integration is used to increase that power), the DNN classifier performs
remarkably well, even exceeding current state-of-the-art well-known performance results.

(a) C/N0 = 36 dB-Hz, K = 1 (b) C/N0 = 39 dB-Hz, K = 1

(c) C/N0 = 42 dB-Hz, K = 1 (d) C/N0 = 45 dB-Hz, K = 1

Figure 8. Test statistic histograms underH0 andH1 hypotheses for a 1 ms coherent integration time
for a range of relevant C/N0 values. The two histograms have overlapping areas, which suggests
poor detection performance in these conditions.
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(a) C/N0 = 36 dB-Hz, K = 6 (b) C/N0 = 39 dB-Hz, K = 6

(c) C/N0 = 42 dB-Hz, K = 6 (d) C/N0 = 45 dB-Hz, K = 6

Figure 9. Test statistic histograms under H0 and H1 hypotheses for a 1 ms coherent integration
time and K = 6 noncoherent integrations for a range of relevant C/N0 values. In this case, the two
histograms are clearly separated, which supports the performance results in Figure 6.

6. Conclusions and Future Work

Deep learning is a powerful data-driven tool which is increasingly being used in
multiple fields and applications. This work proposes to use deep learning as a substitute to
standard GNSS signal acquisition processing, a well-understood block present in all GNSS
receivers. The proposed approach leverages a DNN classifier to output posterior class
probabilities when the input is a region of the CAF for a specific satellite. The splitting of
the CAF enables the flexible use of the method on CAFs of different dimensions (depending
on the delay/Doppler bin sizes), as well as allowing for the parallelization of the process
through multiple smaller DNN models. It is shown that the deep learning method can
outperform standard approaches, even exceeding their fundamental limits in moderate-to-
high signal-to-noise ratios. This result can be explained by the fact that standard methods
are based on the bin maximization of the CAF, whereas the proposed data-driven method
exploits the correlation across neighboring bins. Additionally, an optimal fusion rule is
provided in order to extend the methodology to noncoherent integration schemes, which is
also seen to improve the overall classification performance. The use of deep learning for
advanced GNSS receiver design is in its infancy, from which many research directions can
be foreseen. In the context of the framework proposed in this paper, future work includes
the study of the proposed deep learning methodology in the presence of other sources of
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errors, such as receiver clock instabilities, higher receiver dynamics and the presence of
jamming interferences or spoofing signals, as well as testing on real datasets.
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