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Abstract: Missing insulator caps are the key focus of transmission line inspection work. Insula-
tors with a missing cap will experience decreased insulation and mechanical strength and cause
transmission line safety accidents. As missing insulator caps often occur in glass and porcelain
insulators, this paper proposes a detection method for missing insulator caps in these materials. First,
according to the grayscale and color characteristics of these insulators, similar characteristic regions
of the insulators are extracted from inspection images, and candidate boxes are generated based on
these characteristic regions. Second, the images captured by these boxes are input into the classifier
composed of SVM (Support Vector Machine) to identify and locate the insulators. The accuracy,
recall and average accuracy of the classifier are all higher than 90%. Finally, this paper proposes
a processing method based on the insulator morphology to determine whether an insulator cap is
missing. The proposed method can also detect the number of remaining insulators, which can help
power supply enterprises to evaluate the degree of insulator damage.

Keywords: SVM; missing insulator slices; small-scale dataset; object region detection; machine
learning; morphological detection

1. Introduction

The functions of insulators, which play an important role in high-voltage transmission
lines, are to support power lines and provide electrical insulation [1–3]. Missing insulator
caps are usually found on glass and porcelain insulators, which are mainly caused by
tension on insulators from power lines and towers, and erosion of insulators by wind, acid
rain and other weather elements. The insulators of these materials age due to accumulated
weather erosion. Under the action of power line tension, the insulator cap is damaged
and falls off. In addition, glass insulators can eliminate a flashover cap, which is called
“zero-value self-explosion”. Thus, the insulator cap will be missing more frequently in
glass insulators. A missing insulator cap decreases the mechanical and electrical properties
of the whole insulator string, which will threaten power transmission system operations.
Therefore, the detection of missing insulator caps is one of the most important topics in
transmission line detection.

Computer vision, which is used to detect transmission line images collected by UAV
(Unmanned Aerial Vehicles), is the most popular transmission line detection method [4–6].
The main reason for its popularity in high-voltage transmission line detection is that its
efficiency and safety are higher than those of manual inspection and crewed helicopter de-
tection. Therefore, high-voltage transmission line detection technology based on computer
vision has great research significance and practical value [7–9].

The method of UAV transmission line detection is shown in Figure 1. It can be divided
into two types: detection images in workstation and detection images in UAV [10–12].
Transmission line images can be quickly and accurately detected by the detection method
of transmission equipment deployed in the workstation. However, this method not only
requires the UAV to transmit a large amount of data to the workstation, but struggles to
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realize the real-time online detection of UAV. In contrast, the detection algorithm deployed
in UAV only needs to transmit the information of fault equipment, which can realize the
real-time online detection of transmission equipment. However, the computing power of
CPU (Central Processing Unit) in UAV is limited, and thus is unsuitable for algorithms that
deal with large amounts of data.
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Figure 1. UAV inspection of transmission line.

Insulator detection methods are mainly based on machine learning methods, morpho-
logical detection method and their combination. Machine learning involves designing a
learning algorithm to extract experience from samples to optimize computer performance.
Morphological detection refers to establishing a model to describe the morphological
characteristics of the object to be detected.

Deep-learning-based detection methods can identify and position insulators well.
However, due to the small sample size of faulty insulators, deep-learning methods cannot be
directly used for insulator fault detection. R.M. Prates [13] designed an image classification
method based on a CNN (Convolutional Neural Network) to detect the integrity of four
specific types of insulators and used multitask learning to detect the type of insulator
and the degree of insulator damage.This method achieved high accuracy in the detection
of those four kinds of insulators. However, the proposed method can detect only those
four kinds of insulators, which means that it has a slight lack of generalizability. Q.
Huang [14] uses artificial intelligence based on a convolution neural network (CNN) to
achieve high-precision and high-yield automatic quality detection, highlighting a low-
complexity and low-cost neural network architecture based on CNN. However, the CNN
architecture is very complex and cannot be implemented on a computing platform with
limited resources. J. Zheng [15] proposed a method of transferable feature learning and
instance-level adaptation to improve the generalization ability of deep neural networks,
which greatly alleviates the challenge of domain transfer between fully labeled source
and sparsely labeled target domain points. Q. Zhang [16] used YOLOV3 (You Only Look
Once, Version 3) to locate insulator positions and introduced a transfer learning method to
train a deep neural network classifier to judge glass insulator self-explosion. To achieve a
high recognition rate, SCNS (Stochastic Configuration Networks) and a feedback transfer
learning mechanism were introduced into the training of the deep neural network. After
adding two kinds of feedback mechanisms, the accuracy rate of this method reached 89%.
To solve the problem of detecting missing caps of insulators. X. Tao [17] first used Faster
R-CNN (Region-based CNN) to locate a string of insulators and then used another Faster
R-CNN to locate the positions of missing caps in insulator images. The disadvantage of
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this method is that the dataset of a cap cannot meet the training needs of the Faster R-CNN.
Therefore, X. Tao proposed a series of methods to change the backgrounds of detection
images and expand the dataset several times. In a word, because the normal insulator
image is easy to collect, the method based on a deep neural network is usually used to
recognize it [18,19]. Due to the limited number of faulty insulator images, if a deep neural
network method is adopted, it is necessary to expand the dataset or introduce various
mechanisms into the neural network to adapt to small sample detection [20,21].

A deep neural network needs a huge amount of computation, which is usually de-
ployed to edge devices by heterogeneous computing units [22–24]. These heterogeneous
computing units are still in the research stage in China. Surface-learning-based detection
methods do not need to calculate a large number of data operations, so they have more ad-
vantages in edge detection than deep learning. X. Wang [25] extracted Gabor features from
detection images and trained an SVM classifier to separate insulators from the background.
P.S. Prasad [26] combined wavelet transform features and LBP (Local Binary Patterns)
features to train an SVM classifier for insulator detection. X. Huang [27] implmented image
segmentation of anti-shock hammers using threshold segmentation and morphological
processing to find rusted pixels in the segmented images and detected the rust degree of
anti-shock hammers by calculating the rust area ratio (RAR) and color difference index
(csl). Y. Qiu [28] extracted 935–1725 nm hyperspectral lines and characteristic wavelengths
of component spectral lines from hyperspectral images of pollutants and established char-
acteristic spectrum segments of cap and a random forest classification model based on the
full-band training data to identify pollution in insulator hyperspectral images. J. Lu [29]
designed a classifier based on SVM and realized the detection of a high-voltage line bird
nest. The classifier was learned by a multiple SVM ensemble, and the image features of
four bird nests were fused. In summary, surface learning classifiers still play an important
role in transmission line detection.

In transmission line inspection, the most commonly used machine learning detection
methods are RCNN, YOLO and SVM. The detection method based on RCNN has high
accuracy, but it needs a long detection time; thus, it is difficult to meet the requirements of
real-time detection task. In contrast, YOLO has a Faster detection speed and can carry out
real-time detection. However, they have high resource requirements for the deployment
environment, and thus are difficult to deploy to the edge devices. Thus, SVM is widely
used in edge deployment because its detection performance is better in shallow learners,
and it has the advantage of small computing resources.

Morphological processing is one of the most important tools in image processing.
The image morphology is a mathematical element with a certain shape, which is used
to extract the corresponding shape, texture, color and other information from the image.
W. Chen [30] designed an image segmentation algorithm for insulators based on the
color characteristics of the insulators, transformed insulator images into binary images
and then used the regional pixel threshold method to judge the position of the missing
insulator cap. T. Guo [31] proposed a processing algorithm that combines deep learning
and morphology. First, Faster R-CNN is used to locate the insulator position, and after the
insulator is extracted, the distance between each adjacent insulator cap is measured using
the morphological method to determine whether there are any missing insulator caps. W.
Pin [32] compared and analyzed traditional machine learning and deep learning image
classification algorithms, and found that traditional machine learning is better for solving
small sample datasets and the deep learning framework more accurate for recognizing
large sample datasets. Y. Zhai [33] analyzed the color features of insulators and proposed
a method based on color features to extract aerial insulators from images. According
to the arrangement characteristics of insulators, a morphological detection method for
missing insulator caps is proposed. It is necessary to segment the insulator string from the
image to judge whether there is a missing insulator cap when using the morphological
method. Insulator image segmentation techniques mainly include threshold segmentation,
cluster segmentation and deep learning image segmentation methods [34–36]. Different
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segmentation methods should be selected according to the needs of insulator fault diagnosis.
Clustering segmentation is very effective for cluster classification segmentation and is
particularly suitable for insulator segmentation. Although deep-learning-based image
segmentation achieves a high segmentation accuracy and good effect, it requires a large
training sample. Different segmentation methods should be selected according to the needs
of insulator fault diagnosis.

Deep learning detection methods must expand the dataset or introduce various mech-
anisms in the neural network to accommodate small sample detection when the sample
size of faulty insulators is small. Additionally, deep neural networks require a large amount
of computation and cannot be deployed directly to edge devices through heterogeneous
computing units, so deep learning methods cannot be adapted to small sample insulator
fault detection. Therefore, this paper proposes a detection method based on machine learn-
ing and morphology to extract grayscale and color features of insulators; extract similar
feature regions of insulators from the detection images and generate candidate frames
based on these feature regions; and input the captured images into a classifier consisting of
SVM (Support Vector Machine) to identify and locate insulators. This method can better
quantify the degree of equipment failure and is used in tasks with small sample sizes of
faulty insulators to determine if insulator caps are missing, and the proposed method can
also detect the number of remaining insulators.

2. Proposed Method

The missing insulator cap detection method proposed in this paper is divided into
two steps. First, the insulator is located and identified in the transmission line detection
image, and then the morphological method is used to determine whether there is a missing
insulator cap. The specific steps of this method are shown in Figure 2.

Sensors 2023, 23, x FOR PEER REVIEW 4 of 21 
 

 

method. Insulator image segmentation techniques mainly include threshold segmenta-

tion, cluster segmentation and deep learning image segmentation methods [34-36]. Differ-

ent segmentation methods should be selected according to the needs of insulator fault 

diagnosis. Clustering segmentation is very effective for cluster classification segmentation 

and is particularly suitable for insulator segmentation. Although deep-learning-based im-

age segmentation achieves a high segmentation accuracy and good effect, it requires a 

large training sample. Different segmentation methods should be selected according to 

the needs of insulator fault diagnosis. 

Deep learning detection methods must expand the dataset or introduce various 

mechanisms in the neural network to accommodate small sample detection when the sam-

ple size of faulty insulators is small. Additionally, deep neural networks require a large 

amount of computation and cannot be deployed directly to edge devices through hetero-

geneous computing units, so deep learning methods cannot be adapted to small sample 

insulator fault detection. Therefore, this paper proposes a detection method based on ma-

chine learning and morphology to extract grayscale and color features of insulators; ex-

tract similar feature regions of insulators from the detection images and generate candi-

date frames based on these feature regions; and input the captured images into a classifier 

consisting of SVM (Support Vector Machine) to identify and locate insulators. This 

method can better quantify the degree of equipment failure and is used in tasks with small 

sample sizes of faulty insulators to determine if insulator caps are missing, and the pro-

posed method can also detect the number of remaining insulators. 

2. Proposed Method 

The missing insulator cap detection method proposed in this paper is divided into 

two steps. First, the insulator is located and identified in the transmission line detection 

image, and then the morphological method is used to determine whether there is a miss-

ing insulator cap. The specific steps of this method are shown in Figure 2. 

 

Figure 2. Insulator detection method. Figure 2. Insulator detection method.



Sensors 2023, 23, 1557 5 of 21

First, similar feature regions of the insulator are extracted from the transmission
line inspection image. According to the material characteristics of porcelain and glass
insulators and the relevant electrical regulations, it can be concluded that the gray levels
of these two insulator images and the values of the red and blue channels in the RGB
images are relatively large. Second, these features are used to extract feature regions from
the transmission line inspection images. Then, candidate boxes are generated according
to these regions, and these boxes are used to separate the candidate images from the
inspection images. These candidate images are input into the SVM-based classifier to
recognize the insulator, the insulator position is regressed and the target image of the
insulator is obtained.

The insulator target image acquisition will be described in detail in Section 3. The
structure of the insulator image classifier used in target image acquisition is described in
Section 4. Finally, the pixel points belonging to the insulator are segmented from the target
image, and the proposed pixel-based statistical method is used to determine the faults. The
contents of these steps will be described in detail in Section 5.

The main contributions of this study are as follows. According to the insulator color
and gray features, a region search method based on insulator features is proposed. It
can remove a large number of insulator-independent regions in the inspection image and
simplify the insulator candidate frame extraction. According to the idea of selective search,
a regional target detection method is designed. Due to the guidance of insulator feature
regions, the insulator candidate feature region can be quickly found, and an insulator
target image can be obtained. The K-means clustering algorithm is improved according
to the morphological characteristics of the insulator. It is used to remove the background
of an insulator target image. Most importantly, a defect detection method for missing
insulator caps is proposed. The image data are projected into one-dimensional data that
can describe the arrangement of the insulating cap, reducing the amount of calculation
needed for defect detection. The detection method in this paper can not only detect the
missing position of the insulator cap but can also judge the damage level by calculating
the number of remaining insulator caps. In order to prove the robustness of the algorithm,
the detection effect of this method under different noises is compared. The fault detection
conditions under different shooting angles are analyzed, and the drone adjustment method
is provided for the acquisition of insulator keyframes.

3. Insulator Target Detection

SVM-based regional positioning usually adopts multiscale windows, edge boxes and
BING (binarized normed gradients). However, the background of the inspection image of
an insulator is very complicated, so using these methods will slow down the inspection
speed. To solve this problem, candidate frame images are generated by extracting similar
feature regions of the insulators, which are combined with the SVM classifier to locate
the insulators.

3.1. Feature Region Extraction

The red porcelain insulator and the blue glass insulator are taken as the research
objects, and the feature region extraction method based on color and gray is designed.
Insulators made of glass and porcelain have higher grayscale characteristics than the
backgrounds. So, the grayscale threshold segmentation can be used to extract their similar
feature regions. The grayscale conversion formula of human vision is shown in (2) [37].

gray(x, y) = 0.3∗R(x, y) + 0.59∗G(x, y) + 0.11∗B(x, y) (1)

According to the color features of the two types of insulators, a method based on a
color feature map is proposed, as shown in (2).

RBFeat(x,y) =

√
(R(x, y)− B(x, y))2 (2)
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In (1) and (2), RB_Feat (x, y) represents the value of pixel (x, y) in the RGB color feature
image and gray (x, y) represents the value of this pixel in the grayscale image. R(x, y),
G(x, y) and B(x, y) represent the points where the position is the (x, y) values of the R, G,
and B channels, respectively, of the original image.

The acquisition of the characteristic area is shown in Figure 3. The proposed method
is not suitable for high-resolution image processing. Therefore, the subsampled operation
is carried out on the insulator inspection image to reduce the image resolution and obtain
Figure 3a. Figure 3a is converted into the images shown in Figure 3b,c according to (1) and
(2), respectively. Figure 3b,c are segmented using Otsu’s thresholding method to obtain
their corresponding binary images, as shown in Figure 3d,e, respectively. The two binary
images are subjected to an intersection logic operation, and the combined image is subjected
to an open operation of the binary image to obtain a binary representation image of the
characteristic image of the insulator, as shown in Figure 3f.
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Figure 3. The process of obtaining similar areas of insulators. (a) Reduced insulator inspection image,
(b) grayscale insulator detection image, (c) “RB color” feature insulator detection image, (d) binary
image for gray-level threshold segmentation, (e) binary image for “RB color” feature image threshold
segmentation, and (f) binary image representation of the insulator feature image.

Multiple feature regions can be obtained by detecting the connected regions in the
binary image. According to the feature region, candidate images of insulators can be
obtained to realize the recognition and location of insulators. The proposed method is not
only suitable for red and blue insulator feature region extraction, but also for yellow, cyan,
brown and purple insulators. The characteristic of these colors is that the value difference
between R channel and B channel is large.
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3.2. Generation of the Candidate Boxes

According to the binary representation of the insulator features, the original RGB
image can be marked with bounding boxes, as shown in Figure 4.
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The images captured by these bounding boxes cannot be candidate frames for area
object detection because of the following problems:

(1) A string of insulators may be divided into multiple connected regions in the feature
map represented by the binary image.

(2) The insulator and the background pixels with similar features to the insulator are
in the same communication area.

(3) There is another string of insulators in the candidate box of insulators, leading to
missed detections.

To solve these problems, a method similar to a selective search is proposed to merge
regions and generate candidate boxes. Although the color and grayscale features of these
regions are similar to those of the insulators, they are still very different from the color fea-
tures of the insulators in the RGB images. Therefore, candidate regions can be determined
according to these features. The color feature is judged by the distance from the mean RGB
value, and the similarity judgment formula is as follows:

similarity = 1−
2
√
(R1ave − R2ave)

2 + (G1ave − G2ave)
2 + (B1ave − B2ave)

2

gray1ave + gray2ave
(3)

This equation represents the similarity judgment of image 1 and image 2. R1ave, G1ave
and B1ave represent the average values of the R, G, and B channels in image 1; R2ave, G2ave
and B2ave represent the average values corresponding to image 2. According to (3), the
candidate frame generation and insulator region location method is as follows:

(1) For each adjacent or intersecting feature box, the similarity is calculated based on
the RGB color features of the area connected by the similar features of the insulator in the
box. If the similarity exceeds 80%, they will be merged into one box. For two intersecting
boxes with the same color feature, the position information of the original box should be
retained after the merge to judge whether there are multiple different insulators in a box.
This step is repeated until the color feature similarity between each adjacent box is less than
this value. (Note: adjacent boxes refer to the distance of the nearest box in each direction
and not the nearest box.)

(2) The following process is performed on the image captured by the feature frame
generated in Step (1). The image is divided into multiple cells (the central cell in the image
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and the edge cells on the four sides of the rectangular image, according to the location of
the cell). Then, the color characteristics of the image edge cell and the image center cell are
compared. If the color feature of each edge cell on one side of the rectangle is less than
40% similar to that of the center cell, all the edge cells on that side are deleted. This step is
repeated until one or more cells with the same color characteristics as the center cell appear
on the edge.

(3) The images captured by all the boxes are subsampled to a uniform size and then
input into the SVM base classifier for classification. All the boxes whose classification
results are not insulators are deleted.

(4) For two boxes that intersect and whose captured images are judged as “insulators”
by the classifier, we propose a method to judge whether they are different positions of the
same string of insulators. The areas of the two intersecting boxes are calculated separately.
If the area of a box is less than 20% of the combination of the two boxes, the box is directly
regarded as another string of insulators.

4. Classifier for Insulator Recognition

The trained SVM base classifier and the candidate frame generation proposed in the
previous section can be combined to realize the insulator’s location.

4.1. Feature Extraction

Feature engineering refers to the process of transforming the original data into the
training data of the model. Image processing can reduce the dimensions of data and obtain
better training data features.

4.1.1. LBP

The texture and color feature of insulator string is obviously different from that of
the background, so these features can be used for classification and recognition. LBP is an
effective texture description operator, and its principle is shown in Figure 5.
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Figure 5. LBP feature histogram extraction.

First, the original image is converted into a grayscale image, and then the entire image
is divided into multiple cells of the same size. Then, the periphery is binarized according
to the center of each cell and converted into a decimal number. Finally, by counting the
decimal numbers obtained through all the cell operations, the LBP feature histogram of
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the image is obtained. A binary cyclic shift of the LBP feature data is performed on the
histogram, and the smallest decimal number in the displacement is selected to replace
the original value to reduce the scope of the histogram. The purpose of this step is not
only to preserve the LBP feature rotation data, but also to reduce the amount of input
data for the SV.

4.1.2. GLCM

GLCM is a description of image texture. It counts the relationship between two pixels
of equal distance in the same direction in the gray image. The acquisition method of GLCM
is shown in Figure 6.
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Figure 6. Acquisition of GLCM.

It can be seen from this figure that the scale of GLCM is related to the depth of the
gray-level image. The gray value range of the original gray image is 0~255, so there are
65,536 kinds of gray relations between two points. The data volume of GLCM can be
reduced by a decline in the gray depth of the image, as shown in (4).

g = dgray/16e (4)

The “gray” is the gray image of the original detection, and “g” is the gray image after
a decline in the gray depth. In the image g, pixels satisfying a distance of 1 and a direction
of 0 degrees are regarded as a group, the relationship between two points in all groups is
counted and GLCM is generated.

4.1.3. RGB Histogram

Because the insulator has distinct color features, a RGB histogram is used to extract its
color features as the input data of SVM. The RGB histogram is used to calculate the number
of pixels of each color depth in the image.

Figure 7 is the RGB histogram of the insulator. The red, blue, and green lines represent
the number of pixels for each color depth in the insulator image. It can be clearly seen
that most of its pixels have larger values in the red channel, so it is a red insulator. The
distribution of 256 groups of color depth in R, G and B channels can be obtained by loading
the RGB image of insulator with 8 bit color depth. Therefore, the amount of RGB data input
to the classifier is 768.
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Figure 7. RGB histogram of insulator.

4.2. Structure of Classifier

The classifier for identifying insulators is integrated by four SVM classifiers, and its
structure is shown in Figure 8.
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The fusion of multiple image features can increase the accuracy of the classifier, but it
increases the scale of the classifier at the same time. The proposed classifier integrates SVM
classifiers with different image features. It not only improves the accuracy of insulator
identification, but also reduces the computational complexity.

SVM is a classifier that performs binary classification on data based on supervised
learning. The principle is to find a separating hyperplane that can correctly divide the
training dataset and has the largest geometric interval.

The classification principle of the SVM is shown in Figure 9 [38], circles and squares
represent different categories, the solid line is the decision boundary between the two
categories, and the dotted line represents the interval between the two categories. and the
hyperplane is calculated as:

w ∗ x + b = 0 (5)

w is the normal vector of the hyperplane, and b is the offset. According to the hyper-
plane, two decision-making boundaries parallel to it are constructed to realize the two
classifications of the samples.{

w ∗ xi + b ≥ 1⇒ yi = 1
w ∗ xi + b ≤ −1⇒ yi = −1

(6)

xi represents the i-th sample, and yi represents the classification prediction results of
the sample. 2

‖w‖ is the distance between the two decision boundaries.
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5. Insulator Detection

After extracting the feature region of the insulator detection image and using the
SVM classifier to judge it, the target insulator image can be taken from the original image.
According to the statistical data of the insulator pixel distribution, this method determines
whether there is a cap missing in the insulator string. To obtain the insulator pixel statistics,
we first use image segmentation technology to convert the target image of the insulator
into a binary image.

5.1. Segmentation of the Insulator from the Target Image

In the feature region extraction step proposed in this paper, image segmentation
technology is used to extract similar feature regions of insulators; however, using this
method to segment the target image of insulators will lead to the over-segmentation of
insulators. In order to better remove the background of the image and extract the insulator,
we propose an improved k-means clustering algorithm to segment the target image for the
insulators. The steps of this method are as follows:

(1) According to the RGB value of the pixel and the position information in the image,
all the pixels are transferred to a five-dimensional coordinate system.

(2) Calculate the R + b value of each pixel in the image. The pixel corresponding to
the minimum value is randomly selected as the cluster center of cluster 0, and the pixel
corresponding to the maximum value is selected as the drama center of cluster 1.

(3) For each pixel, the distance d between it and each cluster center is calculated in the
coordinate system. It is divided into a cluster with the nearest cluster center.

d =

√
(Rs− Rc)2 + (Gs− Gc)2 + (Bs− Bc)2 + (Xs− Xc)2 + (Ys−Yc)2 (7)

Rs, Gs and Bs are the R, G and B channel values of the sample pixels, respectively,
and Xs and Ys represent the coordinates of the sample pixels. Similarly, Rc, Gc and Bc are
the R, G and B channel values of the cluster center, respectively; Xc and Yc represent the
coordinates of the cluster center.

(4) The mean value of all pixels in each cluster is calculated, and a new cluster center
is generated according to the value.

(5) Repeat steps (3) and (4) until the mean value no longer changes or the range of
change is less than the threshold value. Finally, according to the grouping information of
each pixel, a segmented binary image of the insulator is generated.

Since the method knows the color characteristics of the insulator, it can choose the
points with the largest and smallest sums of the R and B channel components as the two
initial cluster centers in the k-means clustering algorithm. In this way, the problem of slow
fitting due to the random selection of initial points can be avoided.
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Figure 10a,c,e show the most common types of insulators made from glass and porce-
lain; the missing cap phenomenon often occurs in these three types of insulators. The binary
images obtained after the k-means clustering segmentation of Figure 10a,c,e are shown in
Figure 10b,d,f, respectively. Although there is still some noise and over segmentation in the
segmented binary image, these factors do not affect the “missing insulator-cap” judgment.
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Figure 10. Segmentation effects of different types of insulators. (a) Glass insulators, (b) binary image
of glass insulators, (c) porcelain insulators 1, (d) binary image of porcelain insulators 1, (e) porcelain
insulators 2, (f) binary image of porcelain insulators 2.

5.2. Determine Whether the Insulator Cap Is Missing

Analyzing the distribution characteristics of the insulator pixels in a binary image of
the insulator can determine whether a cap is missing. In this paper, a new insulator pixel
distribution method is proposed. According to the shape characteristics of the insulator,
the extracted insulator image is first rotated so that the angle between the central axis of
the insulator strip and the horizontal axis of the image is less than 30◦. Second, the number
the insulator pixels in each column of the insulator binary image is counted. Because the
insulator pixels are given values of one and the background pixels are given values of zero
after the image is segmented, the statistical formula for each column of insulator pixels is
as follows:

yi = ∑N−1
j=0 A[i][j] (8)

In (8), M * N is the resolution of the binary image, and A [i] [j] is the value of the pixel
in the i-th row and j-th column. The binary image and its corresponding insulator pixel
content statistics in each column are shown in Figure 11. It can be seen from the figure
that when the insulator segmentation effect is ideal, the missing position of the cap can be
quickly found from the pixel statistics chart.
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Figure 11. Binary images of insulators and their corresponding pixel statistical charts. (a) Binary
image of insulators, (b) pixel statistical chart, (c) location of the missing cap in the RGB image,
(d) binary image of insulators with noise, (e) pixel statistical chart with noise, (f) location of the
missing cap in the RGB image.

In the pixel statistical diagram of an insulator, the approximate position of the abscissa
of the missing cap can be quickly located. The position in the RGB image of the insulator
missing cap is shown in the red box in Figure 11f. In Figure 11b, the distance between
adjacent peaks is almost equal, and the wave crest of the missing cap position is obviously
much smaller than those of the other peaks. Since the insulators in the figure are arranged in
double strings, it is necessary to return to the binary image to locate the “missing insulator-
cap”. The abscissa range of the missing cap is obtained according to the pixel statistical
graph, and then the ordinate of the missing cap is further determined according to the
arrangement of insulator caps and two strings of insulators in the abscissa range. Due to
the influence of complex background factors, there may be some noise in the segmented
binary image, as shown in Figure 11d. However, the location of the missing cap can still be
clearly found in its pixel content statistical graph, as shown in Figure 11e.

Through the statistical graph of insulator pixels, the phenomenon of the missing cap
can be judged. However, for insulators installed in parallel, the number of remaining
insulator caps cannot be calculated. Therefore, it is necessary to further process the binary
image of the insulator.

For example, in a high-voltage line, M insulators are installed in parallel, and each
insulator has N insulator caps. According to the statistical graph of insulator pixels, the
binary image of insulator is cut into N images. The connected regions in the segmented
image whose area reaches the set threshold are marked, and the center coordinates of all
marked connected regions are calculated. Due to the camera angle and image segmentation,
a connected region may contain multiple insulator caps. Therefore, it is necessary to
calculate the area of connecting area to judge how many insulator caps this area represents.
By comparing the number and area of connected regions and the position of connected
regions in n images, the position of missing caps and the number of remaining caps
can be obtained.
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6. Experimental Section
6.1. Environment and Dataset

The experimental operating system is ubuntu, and the deployment code of the pro-
posed insulator detection method is python 3.5. The classifier for insulator recognition is
constructed using scikit-learn and OpenCV is used to extract image features.

We collect 500 insulator detection images and use the insulator feature area extraction
method to generate candidate boxes. Among these boxes, we manually select the box
belonging to the insulator and the background box. Finally, we manually label the images
captured by these boxes and generate a dataset. The dataset is divided into two categories:
“insulators” and “background”. The “background” is mainly the background target de-
tected in the detection image through the proposed similar feature area of the insulator,
and there are a total of 450 background images. The “insulators” include 225 porcelain
insulators and 225 glass insulators. When training the SVM classifier, the insulator and
background samples are randomly divided into a training set and test set at a ratio of 7:3.
The required image features are extracted and the four basic classifiers of the ensemble
classifier are trained, respectively.

6.2. Penalty Parameter “C”

To solve the overfitting problem of the SVM and improve the generalization ability of
the classifier, the penalty function “C” is introduced to relax the edges, and the samples
with incorrect classifications are treated as noise. The classification deviation of the sample
by the SVM classifier can be expressed as a loss function:

loss = max(0, 1− y(wx + b)) (9)

After introducing the relaxation variable, the optimization problem mentioned above
can be transformed into the following formula:

min
w,b,ζ

=
1
2
‖w‖2 + C ∑n

i=1 ζi (10)

The formula follows the following rule:

yi(wxi + b) ≥ 1− ζi(ζi ≥ 0) (11)

C is the penalty factor and w is the hyperplane in (11).
ζi is the classification loss of the i-th sample and ∑n

i=1 ζi is the composite error. The
value of C represents the attention given to the sample value during training. When C is
infinite, samples with classification errors are not allowed, so this problem becomes a hard-
boundary SVM problem. When C infinitely approaches 0, the formula no longer focuses on
whether the classification of the sample is correct, and the SVM loses the meaning of the
classification. The debugging process of the penalty factor C is shown in Figure 12.

The basic classifier of the proposed classification framework is independent training.
All the basic classifiers are trained and debugged to the best performance before ensemble
detection. In the proposed classification framework, the penalty parameters of four basic
learners are 2, 4, 16 and 32, respectively.

6.3. Comparison with a Single-Image Feature Classifier

The common Surface classifiers are SVM, KNN (K-Nearest Neighbor) and RF (Random
Forest). The comparison results between the detection method proposed in this paper and
common machine learning classifier methods are shown in Table 1.
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Table 1. Compared with single image feature classifier.

Classifier Accuracy AP Recall

Our method 0.9333 0.9076 0.9433
LBP-SVM 0.8716 0.8040 0.8867
RGB-SVM 0.8938 0.8394 0.8867

GLCM-SVM 0.8628 0.7926 0.8773
HOG-SVM 0.7155 0.6624 0.6460

LBP-RF 0.8672 0.7024 0.8773
RGB-RF 0.8672 0.7830 0.7452

GLCM-RF 0.8539 0.7779 0.8867
HOG-RF 0.7244 0.6544 0.6857

LBP-KNN 0.8903 0.8475 0.8584
RGB-KNN 0.7831 0.7830 0.7452

GLCM-KNN 0.8716 0.8040 0.8867

It can be seen from the table that the accuracy, recall and AP (Average Precision) of
the classifier integrated with multiple features are higher than those of the unary classifier
with only one input feature.

6.4. Compared with Ensemble Classifier or Multi-Feature Classifier

The comparative experiments of multi-feature fusion machine learning detection and
multi-classifier ensemble detection are shown in Table 2.

Table 2. Compared with ensemble classifier or multi feature classifier.

Classifier Accuracy AP

LBP→SVM + RF + KNN (voting) 0.90 0.85
LBP + RGB→SVM 0.91 0.85

LBP + RGB + GLCM→SVM 0.94 0.88
LBP-SVM + RGB-SVM + GLCM-SVM (voting) 0.93 0.86

LBP + HOG→ SVM 0.85 0.80
LBP + RGB + GLCM + HOG→ SVM 0.91 0.86

Our method 0.93 0.90

The LBP input into the classifier integrated by SVM, RF and KNN has higher accuracy
than that of the SVM classifier based on LBP. This shows that the performance of the
ensemble classifier is better than that of the unit classifier. For multi-feature fusion classifier,
it is necessary to evaluate the performance of all features. Combining the image features that
are not suitable for insulator classification will lead to a decline in classification accuracy.
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The proposed classification framework in this paper integrates three features, and its
classification performance is similar to that of a single SVM classifier based on the fusion of
these features. In contrast, the proposed classifier is faster and employs fewer computing
resources. This is conducive to the deployment of edge computing.

6.5. Verification of Our Detection Method

To verify the feasibility of the approach, the proposed method detects 100 insulator
inspection images, half of which are missing cap insulators. The detection results are shown
in Table 3.

Table 3. Compared with ensemble classifier or multi feature classifier.

Test Object Total Omission False Accuracy

missing-cap insulator 50 5 1
0.90Normal insulator 50 4 0

The detection accuracy is 90%, which meets the detection requirements of transmission
lines in China. The main reason for the failure of detection is the lack of insulator target
detection due to the low accuracy of the classifier. For the insulator detected by the
proposed target detection method, we can almost accurately detect whether it is missing
a cap. The insulators tested by the proposed method are shown in Figure 13. Only the
common insulator test in Figure 13a was missed, and all other pictures were tested correctly.
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Figure 13. Missing insulator cap detection. (a) Glass insulator with 1 * 16 installation, (b) glass
insulator with 2 * 16 installation, (c) glass insulator with 1 * 8 installation, (d) porcelain insulator with
2 * 30 installation.

In the detection work, the drone shakes due to the effect of the airflow, which affects
the detection image. In order to verify the robustness of the proposed detection method,
100 pictures were processed with noise before fault detection. The detection results are
shown in Table 4.

It can be seen from the table that the noise has a certain influence on the detection
accuracy of insulators. However, the detection accuracy is still higher than 80%, so the
proposed method has a certain anti-interference ability.
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Table 4. The influence of noise on the detection effect.

Noise Variance Omission False Accuracy

Gaussian 0.001 9 1 0.90
Gaussian 0.005 9 1 0.88
Gaussian 0.01 12 3 0.85
Poisson / 10 1 0.89

Salt and pepper 0.001 9 1 0.90
Salt and pepper 0.005 11 2 0.87
Salt and pepper 0.01 12 8 0.80

7. Discussion
7.1. Key Frame Acquisition

The proposed detection method can quickly and accurately locate a missing insulator
cap in an insulator string when the distance between each insulator cap is similar. Although
the specifications of transmission line insulators require that the distance between each
insulator cap is equal, the distance between insulators will be considerably different due
to the different shooting angles of patrolling UAVs or line-walking robots. In addition,
insulators photographed from certain angles have the problem of blind spots in their field
of view. In theory, it is impossible to detect defects through image processing. In the
actual insulator detection work, the “key frame” acquisition technology is used to solve
this problem.

Figure 14 shows the insulator detection images taken by the camera at different angles.
The spacing between the insulator caps in Figure 14a is clear, and this can be used as a
key frame for defect detection. In Figure 14b, the cap of the insulator is partially blocked,
and the spacing is very small. It can only detect the defect position and cannot detect the
number of remaining caps. In Figure 14c, one row of insulators is completely shielded by
the other row of insulators, and defect detection cannot be performed.

Since the position of the insulator is known, the best shooting position of the insulator
detection image can be determined according to the type of tower. Therefore, most of the
inspection images are of the type shown in Figure 14a,b. In order to obtain better detection
results, a method for judging camera angles is proposed. This method can provide the UAV
with adjusted direction navigation through image processing technology.

The adjustment method of the shooting position is shown in Figure 15. The camera
position of the insulator in Figure 15a is to the right, so the distance between the insulator
cap on the left of the insulator is small, which makes it impossible to judge the position
between each cap from Figure 15c. Therefore, the offset between the camera and the key
frame position can be derived from the pixel statistics of the insulator. At this time, the
drone moves to the left until the distance between the insulator caps is equal. Therefore, the
shooting position of the drone can be automatically adjusted according to the information
obtained via the insulator pixel statistical map.
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7.2. Degree of Damage of the Insulator

The replacement of insulators in transmission lines requires that power is off, so
the scheduling of insulator replacement work is very important. Compared with the
positioning of the missing insulator cap, the power supply company is more concerned
about whether the insulation capacity of the insulator is still qualified. The number of
insulator cap is specified based on the different voltages of transmission lines. In China,
the number of glass insulators for 110 kV transmission lines cannot be less than 7, and
the number of insulators in 500 kV transmission lines cannot be less than 25. Moreover,
the number of insulator caps made of different materials is different under the same
voltage. The power supply company deploys insulators according to these regulations,
and the number of insulator cap deployed is usually greater than the specified number.
When the number of insulator caps is lower than that specified, the power company must
replace the insulators.

The proposed detection method is capable not only of locating the position of the
missing cap, but also of calculating the number of remaining caps. In the previous research
on missing insulator caps, only the position of missing insulator caps was detected, and
the detection of the remaining insulator cap was ignored. According to the number of
remaining insulators to be detected and the voltage of the transmission line, the fault
degree of insulators can be classified. This method is helpful for power supply enterprises,
allowing them to create a replacement plan according to the degree of insulator damage.

8. Conclusions

According to the gray and color features of insulators, this paper proposes a method
for insulator feature region extraction and candidate frame generation. Then, the method
inputs the pictures captured by these boxes into the SVM base classifier to identify the
insulators. Finally, a method for the subregional judgment of insulator pixels is proposed
to determine whether there is a missing insulator cap and to locate the position of any
missing caps in the string of insulators. The proposed feature region extraction method can
effectively extract feature regions of insulators and generate candidate frames. The accuracy,
average accuracy and recall rate of the proposed classifier are higher than 90%, which meets
the performance requirements of power supply enterprises in China. The accuracy of this
method is 90%, and most of the errors are caused by omission detect of insulators.

Aiming at the robustness of the algorithm in practical applications, a key frame
extraction scheme in the image acquisition process is proposed. Developers can write
control algorithms for UAVs to automatically obtain key frames based on the proposed
method for determining the shooting angle of insulators. In addition, the number of
remaining insulator caps can be detected after obtaining the pixel statistics chart of the
insulators. Compared with other insulator detection methods, this method is more suitable
for the actual detection needs of high voltage lines.
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