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Abstract: Currently, a significant focus has been established on the privacy protection of multi-
dimensional data publishing in various application scenarios, such as scientific research and policy-
making. The K-anonymity mechanism based on clustering is the main method of shared-data
desensitization, but it will cause problems of inconsistent clustering results and low clustering accu-
racy. It also cannot defend against several common attacks, such as skewness and similarity attacks
at the same time. To defend against these attacks, we propose a K-anonymity privacy protection
algorithm for multi-dimensional data against skewness and similarity attacks (KAPP) combined with
t-closeness. Firstly, we propose a multi-dimensional sensitive data clustering algorithm based on
improved African vultures optimization. More specifically, we improve the initialization, fitness
calculation, and solution update strategy of the clustering center. The improved African vultures
optimization can provide the optimal solution with various dimensions and achieve highly accu-
rate clustering of the multi-dimensional dataset based on multiple sensitive attributes. It ensures
that multi-dimensional data of different clusters are different in sensitive data. After the dataset
anonymization, similar sensitive data of the same equivalence class will become less, and it eventually
does not satisfy the premise of being theft by skewness and similarity attacks. We also propose an
equivalence class partition method based on the sensitive data distribution difference value mea-
surement and t-closeness. Namely, we calculate the sensitive data distribution’s difference value
of each equivalence class and then combine the equivalence classes with larger difference values.
Each equivalence class satisfies t-closeness. This method can ensure that multi-dimensional data
of the same equivalence class are different in multiple sensitive attributes, and thus can effectively
defend against skewness and similarity attacks. Moreover, we generalize sensitive attributes with
significant weight and all quasi-identifier attributes to achieve anonymous protection of the dataset.
The experimental results show that KAPP improves clustering accuracy, diversity, and anonymity
compared to other similar methods under skewness and similarity attacks.

Keywords: K-anonymity; multi-dimensional data; skewness attack; similarity attack; privacy protection

1. Introduction

With the arrival of the big data era, the amount of digital information continues to
surge. The analysis, mining, and application of massive data have attracted great attention to
governments, industries, and research departments, etc [1]. It is not rare that health sectors and
hospitals may share patient details with organizations such as research institutions for further
analysis [2,3]. Although data sharing has given us convenience, it may also bring challenges
in privacy and ethics. The published datasets typically contain large amounts of multi-
dimensional sensitive data. That is to say, each individual has multiple sensitive information
(e.g., shopping habits, medical history, and driving records) [4]. Attackers can use public
data to analyze sensitive personal information, which may result in privacy disclosure. It is
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necessary for both data owners and data publishers to protect privacy in data publication and
data use [5–7]. Thus, a publicly published privacy protection method for multi-dimensional
data is needed to prevent the privacy disclosure of multiple sensitive attributes.

The privacy protection methods for multi-dimensional data, including encryption,
difference privacy, K-anonymity, and so on [8]. The encryption methods have high computa-
tional complexity and are unsuitable for the encryption of extensive multi-dimensional data.
Moreover, they cannot guarantee the privacy security of multi-dimensional data-sharing
receivers. The difference privacy methods need to add a large amount of randomization
into the structure, and it will cause a decline in the availability of multi-dimensional data.
The K-anonymity methods use some methods (e.g., generalization, clustering, decomposi-
tion, and replacement) to anonymize multi-dimensional data before data sharing and have
attracted much attention in recent years. In K-anonymity algorithms, a certain amount (≥k)
of shared data is required to make the quasi-identifier data indistinguishable. Attackers
can only associate the identifier attributes through the quasi-identifier attributes with a
probability of 1/k at most. Thus K-anonymity algorithms can help achieve the privacy
protection of data. Although K-anonymity can help prevent identity disclosure, it cannot
guarantee the protection of sensitive attributes. Thus the algorithms may face the challenge
of semantic attacks, such as skewness attacks and similarity attacks.

Currently, several anonymization techniques, such as l-diversity, (α, k)-anonymity,
ε-differential privacy, and t-closeness, can defend against skewness or similarity attacks.
The l-diversity model based on the k-anonymity model can defend against these attacks by
guaranteeing that each equivalence class’s sensitive attribute has at least l values. However,
when the sensitive attribute values in the same equivalence class are skewed, or the sensitive
attribute values belong to the same class, the privacy model is still vulnerable to skewness
and similarity attacks, and it can lead to privacy disclosure. The (α, k)-anonymity model
can defend against attacks by limiting the frequency of each sensitive attribute value in
the equivalence class. It can help alleviate the skewness attacks to a certain extent, but
it fails to guarantee the values of sensitive attributes do not belong to the same category,
and it is vulnerable to similarity attacks. The ε-differential privacy model defends against
skewness or similarity attacks by adding noise, but results in the decline of data availability.
It is only practical on large datasets and is not suitable for the publishing of small datasets.
The t-closeness model can defend against skewness or similarity attacks by measuring the
distribution distance of sensitive values between equivalence classes and the dataset. It
can guarantee that the distribution of both sensitive data in each equivalence class and
the entire dataset does not exceed the threshold t. This privacy model restricts the relation
between the global distribution of quasi-identifier attributes and sensitive attributes. It
also weakens the relation between quasi-identifier attributes and specific sensitive data,
and reduces the possibility that attackers launch skewness and similarity attacks by the
distribution of sensitive data. In short, the t-closeness model considers the distribution of
sensitive attributes rather than sensitive attribute values. Therefore, it is more secure and
practical than the aforementioned privacy models.

The t-closeness model has the strictest privacy guarantee among the various privacy
models. Moreover, the clustering algorithm can quickly aggregate multiple similar quasi-
identifier data, which will help improve the data availability and reduce the algorithm’s
execution time [9]. It is necessary to investigate a K-anonymity algorithm based on t-
closeness and clustering to defend against skewness and similarity attacks. But there still
remain the following problems: (1) The current clustering methods for multi-dimensional
data have poor clustering quality and low clustering accuracy. It leads to the existence of
multiple similar sensitive data in different clusters, and there are more similar sensitive
data in the equivalence class after data anonymization. (2) The equivalence class partition
methods based on the t-closeness model cannot reflect the diversity of sensitive data for
each equivalence class, which will result in the existence of similar sensitive data in some
equivalence classes. Note that they cannot defend against skewness and similarity attacks
at the same time.
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In view of the above problems, we study the clustering of the anonymous data. Specifi-
cally, we study the clustering of anonymous multi-dimensional sensitive data and improve
the clustering algorithm of multi-dimensional sensitive data, as well as the equivalence class
partition method based on the t-closeness model. Moreover, we propose a K-anonymity
privacy protection algorithm for multi-dimensional data against skewness and similarity
attacks (KAPP). KAPP effectively defends skewness and similarity attacks and improves the
anonymity of multi-dimensional sensitive data. The contributions of the paper are as follows:

(1) We propose a multi-dimensional sensitive data clustering algorithm based on im-
proved African vultures optimization. More specifically, we introduce chaotic tent
mapping to improve the initialization of the cluster centers and propose a clustering
fitness function for multi-dimensional sensitive data based on the traditional African
vultures optimization method. We also improve the global search stage and local
search stage as well as optimize the selection of cluster centers.

(2) We propose an equivalence class partition and generalization method based on the
measurement of sensitive data’s distribution difference value. That is to say, we
propose the calculation equation of the distribution difference value of sensitive data.
We also merge the equivalence classes with larger difference values and increase the
generalization processing of sensitive data with the most significant weight.

The remainder of the paper is organized as follows. Section 2 introduces some general
concepts. Section 3 details the current protection methods against skewness and similarity
attacks. Section 4 details the principles and processes of the algorithm. Section 5 describes
the implementation process and pseudo-code of the algorithm. Section 6 analyzes the
security of the algorithm. Section 7 conducts experimental simulations to compare and
analyze algorithms. Section 8 discusses our contribution and future direction, and Section 9
presents the conclusions.

2. Background

In this section, we briefly introduce some general concepts and definitions used in
this paper.

Definition 1. The identifier attributes can directly determine personal identities, such as name and
identity card. (identifier attributes).

Definition 2. The quasi-identifier attributes can indirectly determine personal identity by as-
sociating multiple attributes, such as age and zip code. A quasi-identifier attribute value is a
quasi-identifier data. (quasi-identifier attributes).

Definition 3. The sensitive attributes are relevant to personal privacy information, such as disease
names and medical costs. A sensitive attribute value is a sensitive data. (sensitive attributes).

Definition 4. The multi-dimensional data can be presented in a data table in which each record(row)
corresponds to one person and each column to a specific attribute. Table 1 shows an example of
multi-dimensional data, where each record represents the multi-dimensional data of a person.
(multi-dimensional data).

Definition 5. An equivalence class is a set of anonymized records with the same values for all the
quasi-identifier attributes, i.e., all the records in each equivalence class are indistinguishable in terms
of their quasi-identifier attributes. (equivalence class).

Definition 6. If the proportion of the same sensitive data in the same equivalence class is greater
than the threshold τ %, the attacker can predict the sensitive value of an individual with high
probability and thus launch the skewness attack [10]. Table 2 shows an anonymized skewness attack
version of Table 1, which means the multi-dimensional data in Table 2 are vulnerable to skewness
attacks. Where “***” represents that data are suppressed. In Table 2, all multi-dimensional data
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within each equivalence class have the same quasi-identifier data for the zip code and age attributes.
However, in the first equivalence class, the frequency of sensitive data in disease attributes of
pneumonia is large. In this way, an attacker can exactly tell the disease of the patients in the
first equivalence class if he or she knows their personal information in the first equivalence class.
(skewness attack).

Table 1. Example of personal electronic health record.

No. Name Age Zip Code Disease Medical Cost

1 Ackerley 23 47506 Pneumonia 1000
2 Gael 26 47571 Pneumonia 1000
3 Rehor 29 47575 Breast cancer 4200
4 Jerzy 34 47603 Flu 132
5 Cade 38 47614 Colon cancer 5000
6 Finley 40 47627 Bronchitis 2000
7 Eartha 45 47709 Colitis 1500
8 Keyon 39 47714 Colon cancer 6500

Table 2. A skewness attack version of Table 1.

No. Age Zip Code Disease Medical Cost

1 23–29 47 *** Pneumonia 1000
2 23–29 47 *** Pneumonia 1000
3 23–29 47 *** Breast cancer 4200
4 34–40 47 *** Colon cancer 6500
5 34–40 47 *** Bronchitis 2000
6 34–40 47 *** Flu 132
7 38–49 47 *** Colitis 1500
8 38–49 47 *** Stomach cancer 8000

Definition 7. If the sensitive data in the same equivalence class with semantic similarity (i.e., the
sensitive data in the same equivalence class belongs to the same category), the attacker can infer the
category of an individual with high probability [11]. Table 3 shows another anonymized version of
Table 1, i.e., a similarity attack version of Table 1. Similarly, the data in Table 3 are vulnerable to
similarity attacks. In Table 3, all the sensitive data in the first equivalence class’s disease attribute
are different, but they all belong to cancer. In this way, if an attacker knows the personal information
of a patient in the first equivalence class, the attacker will know that the patient has cancer, although
he or she cannot determine what type of cancer the patient has. (similarity attack).

Table 3. A similarity attack version of Table 1.

No. Age Zip Code Disease Medical Cost

1 29–49 47 *** Breast cancer 4200
2 29–49 47 *** Stomach cancer 8000
3 29–49 47 *** Colon cancer 6500
4 23–38 47 *** Pneumonia 1000
5 23–38 47 *** Colon cancer 5000
6 23–38 47 *** Flu 132
7 26–45 47 *** Colitis 1500
8 26–45 47 *** Pneumonia 1000

3. Related Work

K-anonymity can effectively prevent privacy disclosure and is well-known as an effec-
tive anonymity method. Although K-anonymity can avoid identity disclosure, there may
exist attacks such as skewness and similarity, which make it unavailable for sensitive at-
tribute protection. Therefore, many privacy protection methods have been proposed, such
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as those based on slicing [12] and Bucketization [13]. Since the clustering algorithm can
quickly aggregate multiple similar quasi-identifier data, which can improve the availability
of data and reduce the execution time of the algorithm. Therefore, some scholars propose
clustering-based multi-dimensional K-anonymity privacy protection algorithms. For example,
Piao et al. [14] propose a clustering-based privacy-preserving anonymity approach (CPPA).
CPPA can achieve the privacy protection of multi-dimensional data through the K-medoid
clustering and generalization algorithm. However, every cluster center selected by this clus-
tering method must be a sample point, which will cause a decline in the clustering quality.
Thaeter et al. [15] propose a scalable K-anonymous microaggregation (SKAM), which can
achieve records clustering based on quasi-identifier data and can generalize quasi-identifier
data by calculating each cluster center. Unfortunately, the clustering quality of this cluster-
ing algorithm is related to dimensions, and may be limited to high-dimensional datasets.
Yan et al. [16] propose a weighted K-member clustering algorithm, which can realize K-
anonymity for records. The algorithm uses a weighting stage and a series of weighting
indicators to evaluate the outliers of records, which is convenient for screening outliers so
as to maximize the availability of anonymous data. However, the clustering effect of multi-
dimensional data in the above literature [14–16] depends on the random selection of the initial
clustering center, and the clustering results are unstable. Moreover, semantic attacks such as
skewness attacks and similarity attacks in the anonymity process are not considered in the
aforementioned literature, which brings certain security risks.

Therefore, some scholars combine the K-anonymity algorithm with various privacy
models and focus on the K-anonymity privacy protection algorithm against skewness and
similarity attacks. We classify skewness attacks and similarity attacks protection schemes
based on four classic privacy models, i.e., l-diversity, (α, k)-anonymity, ε-differential privacy
model, and t-closeness, as shown in Table 4. In terms of the l-diversity model, Zhang et al. [17]
improve the selection of the initial clustering center of the K-means clustering algorithm and
cluster the sensitive attributes by calculating the sensitivity factors of sensitive attributes. It
can ensure that records with similar sensitivity are partitioned into one equivalence class,
and the equivalence class also satisfies l-diversity. The limitation of the algorithm is that
it does not consider outliers, and thus will cause the degradation in clustering quality.
Ren et al. [18] use anonymous vertexes and edges, as well as the influence matrix based
on background knowledge, to achieve the sensitive attribute diversity and privacy protec-
tion of individuals. This algorithm catches the k-isomorphism graph, and generalizes the
k-isomorphism graph vertex group about identifier attributes and sensitive attributes. Then,
the algorithm generalizes the edge group about identifier attributes and sensitive attributes.
Parameshwarappa et al. [19] propose a novel multi-level clustering method, which uses a
non-metric weighted distance measure to improve the clustering quality. This algorithm
partitions equivalence classes by multi-level clustering and requires that each equivalence
class should satisfy the l-diversity. However, the above literatures [17–19] fail to guarantee
that the sensitive data in each equivalence class is evenly distributed and do not belong to the
same category.

Table 4. Summary of anonymization algorithms.

Literature Privacy Model Anonymity
Technique Methods Utility Metrics

[17]

l-diversity,
k-anonymity

suppression k-means clustering,
personalized constraints

discernibility metric,
hidden ratio

[18] suppression,
generalization

anonymous vertexes and edges,
influence matrix information loss

[19] generalization multi-level clustering information loss,
execution time
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Table 4. Cont.

Literature Privacy Model Anonymity
Technique Methods Utility Metrics

[20]

(α, k)-
anonymity

generalization greedy clustering,
personalized constraints

sensitive group recognition
rate, information loss

[21] suppression,
generalization bottom-up clustering NCP, discernibility metric,

execution time

[22] generalization adapted Mondrian algorithm NCP, discernibility metric,
classification metric

[23]

ε-differential privacy,
k-anonymity

randomization,
generalization greedy algorithm information loss

[24] randomization random projection error rate,
misclassification rate

[25] randomization,
generalization

principle component analysis, KD-Tree
clustering error rate

[26]
randomization,
generalization,

suppression
greedy algorithm, clustering

objective ratio, feasibility,
execution time, suppression

rate

[27]

t-closeness,
k-anonymity

generalization principal component analysis, fuzzy
C-means clustering

information loss,
execution time

[28] randomization similarity function distribution distance,
execution time

[29] generalization shortest path information loss, NCP

[30] pseudonymization k-member
fuzzy clustering, firefly algorithm

clustering error, information
loss,

execution time

[31] edge
anonymization

multiple-graph-properties-based
clustering

anonymization degree,
information loss,
execution time

In terms of the (α, k)-anonymity model, Wang et al. [20] quantify the privacy re-
quirements of sensitive values and sensitive groups, and partition sensitive groups by
agglomerative hierarchical clustering. Then, this algorithm uses the designed global search
and local search clustering algorithms to partition equivalence classes and achieve data
anonymity through generalization. The algorithm requires that the frequency of sensitive
data in the same equivalent class with high sensitivity is less than the threshold, but it
cannot guarantee the security of sensitive data with low sensitivity. Onesimu et al. [21]
and Dosselmann et al. [22] generate equivalence classes through a bottom-up clustering
algorithm and an improved Mondrian algorithm, respectively. Then, they generalize each
equivalence class to achieve data anonymity. These algorithms limit the frequency of each
sensitive data in all equivalence classes, but they can only ensure that sensitive data are
different and cannot guarantee that sensitive data do not belong to the same class.

In terms of the ε-differential privacy model, Raffael et al. [23] propose a data anonymiza-
tion algorithm that provides guarantees for k-anonymity and differential privacy. This
algorithm uses attribute taxonomies together with a randomization approach and is im-
plemented via sampling to meet differential privacy. More specifically, the search strategy
employs a (randomized) best-first search through the generalization hierarchies by using a
score calculated based on the given data quality metrics (i.e., information loss, discernibility,
and group size). This will help release a randomized version of a given dataset. Xu et al. [24]
propose a differentially private algorithm for high-dimensional data release through ran-
dom projection to maximize utility, while guaranteeing privacy. More specifically, this
algorithm projects a d-dimensional vector representation of a user’s feature attributes into a
lower k-dimensional space by first applying a random projection, and then adding Gaussian
noise to each resulting vector. However, this algorithm uses randomness to establish the
projection matrix, which will cause a large amount of noise in each calculation, such that its
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generated synthetic data sets are hampered by the unstable utility. Tsou et al. [25] propose
the (k, ε, δ)-anonymization synthetic data set generation mechanism before releasing the
data sets to protect data privacy. This algorithm rationally replaces high-dimensional
datasets with lower-dimensional datasets by using principle component analysis, and then
it introduces and modifies a k-anonymity clustering algorithm based on the KD-Tree data
structure. Moreover, this algorithm uses a random sampling procedure to generate the
synthetic datasets. Li et al. [26] propose two different privacy-preserving data publishing
methods. One method generates a lattice including all the possible generalization results
of the input dataset with a given hierarchy, and then uses the exponential mechanism
to output a specific generalization according to the utility. This method adds noise to
the mapping function, and involves sampling, suppression and generalization selection.
However, the sampling and suppression will only make a proportion of the data being
processed. The other method clusters the data based on the number of occurrences, and
then adds Laplacian noise to each cluster. This method directly adds noise to the data,
resulting in a shorter runtime but introducing more noise, which has an impact on the
performance. Thus, the above literatures [23–26] usually needs to add randomization to
the shared data, resulting in the decline of data availability. Therefore, they are suitable for
large datasets but difficult to be applied to a small dataset.

In terms of the t-closeness model, Wang et al. [27] propose a privacy-preserving algo-
rithm for multiple sensitive attributes (PAMS). PAMS uses principal component analysis
to reduce the multiple sensitive attributes to one-dimensional data space, sorts the new
data in ascending order and partitions them into different groups. Then, PAMS selects
data from each group to generate equivalence classes through the fuzzy c-means cluster-
ing method. This algorithm satisfies the t-closeness anonymous model, but it requires
feature dimensionality reduction, resulting in a decline in the clustering quality of multi-
dimensional data. Sei et al. [28] propose a privacy model containing an anonymization
algorithm. In order to satisfy t-closeness, the algorithm changes the original records with a
fixed probability and adds some completely random records. Therefore, the reconstructed
records are significantly affected by these random records, and the utility of the data is
reduced. Fathalizadeh et al. [29] generalize the sensitive data and use the shortest path
algorithm to find k records with similar sensitive data to partition the equivalence classes,
then can realize data anonymity by generalizing the quasi-identifier data. However, it
causes a heavy cost resulting from the rearrangement of records that satisfy the equivalence
class partitioning conditions after the creation of each cluster. Langari et al. [30] propose
a combined anonymizing algorithm based on K-member fuzzy clustering and a firefly
algorithm for anonymized database protection. This algorithm uses a modified K-member
version of fuzzy c-means to create balanced clusters with at least K members in each cluster.
Then, it uses the firefly algorithm to optimize the primary clusters and anonymize the
network graph and data. Ganarde et al. [31] propose a novel anonymizing method based on
multiple-graph-properties-based clustering. This method proposed a data normalization
algorithm to preprocess and enhance the quality of raw data. Then, it divides the data into
different clusters using multiple graph properties to satisfy the k-anonymization. However,
the above literatures [27–31] usually cannot guarantee that the distribution of sensitive
attributes of the equivalence class is skewed.

In summary, the current methods against skewness and similarity attacks have certain
limitations. More specifically, the clustering quality for multi-dimensional data of the
traditional clustering algorithm is not ideal, and the equivalence class partition is still prone
to the same or similarly sensitive data, which is unavailable for defending against both
skewness and similarity attacks.

4. Algorithm Principle

Some important notation in this article are described in Table 5. The implementation
scheme is as follows.
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Table 5. Notations and definitions.

Notation Definition

sas Number of sensitive attributes
a Number of numerical attributes
b Number of categorical attributes
m Number of solutions
k Number of clusters
n Total number of multi-dimensional data

BV(it) Best solution
HR Starvation rate

Maxit Maximum number of iterations
P1 Probability parameter of update mechanism in the global search phase
P2 Probability parameter of update mechanism in the local search phase
P3 Probability parameter of update mechanism in the local development phase

x(it + 1) Updated solution location

SADNh
z

Distribution difference value of the h-th numerical sensitive attribute in the z-th
equivalence class

SADC f
z

Distribution difference value of the f -th categorical sensitive attribute in the z-th
equivalence class

SADVz Distribution difference value of sensitive data of the z-th equivalence class
t Maximum distribution difference value

Personal multi-dimensional data are required to be collected and published in practical
applications of scientific research and policy-making, e.g., disease research and epidemic
prevention, which need to be processed anonymously. Therefore, we propose the K-anonymity
algorithm named KAPP, which is shown in Figure 1. First, KAPP preprocesses the multi-
dimensional data table to be published. Secondly, KAPP improves the African vultures
optimization method. It clusters multi-dimensional data according to the sensitive data
distance and selects the data with the smallest quasi-identifier distance from each cluster to
form the initial equivalence classes. Then, KAPP optimizes the equivalence classes with large
difference values by calculating the distribution difference value between each equivalence
class and the data table. Finally, KAPP generalized quasi-identifier and sensitive data with
the highest sensitivity weight to achieve anonymous publication of data tables.
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Figure 1. Schematic diagram of KAPP.

4.1. Multi-Dimensional Data Preprocessing

The multi-dimensional data consist of identifier data, quasi-identifier data of the nu-
merical type and categorical type, and sensitive data of the numerical type and categorical
type. Note that all the multi-dimensional data should be preprocessed before sharing.
Namely, KAPP deletes all identifier data, which will prevent attackers from directly as-
sociating personal information with identifier data to obtain sensitive data. Since the
multi-dimensional data are divided into numerical and categorical types, it is necessary to
cluster all multi-dimensional data according to numerical and categorical data. Therefore,
the categorical data is transferred to a specific value. After clustering, it can be restored to
the categorical data before the transformation.

4.2. Multi-Dimensional Data Clustering Based on Improved African Vultures Optimization

If the multi-dimensional data is partitioned into clusters and equivalence classes
directly according to the pre-processed quasi-identifier data, it is easy to suffer skewness
and similarity attacks. Therefore, KAPP considers clustering multi-dimensional data based
on sensitive data. At the same time, the fuzzy C-means clustering algorithm can realize a
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flexible partition of sample points by calculating the membership degree of each sample
point to all cluster centers [32]. Compared with the hard partition of other clusters, this
clustering algorithm is more suitable for multi-dimensional data clustering. However,
it is easy to fall into the optimal local solution in the process of solving, resulting in
its clustering effect could be worse. Considering that the African vulture optimization
algorithm (AVOA) divides multiple stages in solving the optimal solution and simulates
the vulture’s predatory behavior to avoid local optimization [33,34]. It also has a short
optimization execution time and can provide optimal solutions for various dimensions.
Therefore, based on the fuzzy C-means clustering algorithm, KAPP introduces the optimal
solution-searching method of AVOA. However, the initial clustering center of the fuzzy
C-means clustering algorithm is randomly generated, which leads to a long convergence
time in the early stage of the algorithm and an unstable clustering effect. In addition,
AVOA only considers the current optimal solution to update the current solution in the
global search phase, which may lead to a poor effect of the updated solution and slow
convergence speed in the medium-term of the algorithm. At the same time, in the local
search phase of AVOA, different optimal cluster center solutions have the same weight for
updating the current solution. It cannot adjust the update effect of the optimal solution and
the suboptimal solution on the current solution, resulting in the algorithm not reaching the
convergence state in a short time. Therefore, we improve the cluster center’s initialization,
the fitness value calculation method, and the solution update strategy in the global and
local search stages. Finally, we propose a multi-dimensional data clustering algorithm
based on improved African vultures optimization that can cluster multi-dimensional data
based on sensitive data. The clustering process is as follows:

4.2.1. Solution Initialization Based on Chaotic Mapping

KAPP initializes the solution by combining numerically sensitive data and numerically
transformed categorically sensitive data. Namely, the dimension is determined according
to the number of sensitive attributes in multi-dimensional data and constructs the search
space for solutions. But the long convergence time caused by the random generation of
the initial cluster center will make the clustering effect unstable. Considering that chaotic
tent mapping can generate random sequences with pseudo randomness and distribution
uniformity [35], and the distribution of the generated data can be more evenly. There-
fore, KAPP combines chaotic tent mapping to randomly generate solution x composed of
k cluster centers to cover the entire solution space. It improves the global search ability
of the algorithm and improves the accuracy of multi-dimensional data clustering based
on sensitive data. Namely, it generates a sensitive data of a single cluster center in solu-
tion x through Equation (1) and executes sas repeatedly to obtain a single cluster center
x(it) = {csa1, · · · , csasi, · · · , csasas}.

csasi = rsasi × (upsa− dnsa) + dnsa (1)

where upsa and dnsa represents the maximum and minimum sensitive data of the current
sensitive attribute in the dataset. Note that rsasi represents the si-th random number of the
chaotic tent mapping, which can be expressed as:

rsasi =


rand1

0, si = 0
rsasi−1 × 2, 0 ≤ rsasi−1 < 0.5
(1− rsasi−1)× 2, 0.5 ≤ rsasi−1 ≤ 1

(2)

where randr
l represents the random number between l and r. The process repeats the cluster

center selection for k times to obtain an initial solution, and generates m initial solutions.
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4.2.2. Adaptation Calculation and Solution Selection Improvement

KAPP takes the membership of multi-dimensional data belonging to different cluster
centers as the optimization objective and proposes the fitness calculation function of the solution.

fzi =
k

∑
q=1

n

∑
j=1

(uq
j )

e × Dist(rj, cq) (3)

where fzi represents the fitness value of the zi-th solution, e represents the fuzzy weight,
uq

j represents the membership of the j-th multi-dimensional data in the q-th cluster, which
can be expressed as:

uq
j =

1

Dist(rj, cq)
2 /

k

∑
l=1

1

Dist(rj, cl)
2 (4)

where rj represents the j-th multi-dimensional data, cq represents the multi-dimensional
data of the q-th cluster center, cl represents the multi-dimensional data of the l-th cluster
center. Dist(rj, cq) represents the distance between rj and cq. Dist(rj, cl) represents the
distance between rj and cl , which can be expressed as:

Dist(rj, cq) =
a

∑
l=1

∣∣∣Numl
rj − Numl

cq

∣∣∣
n

+
b

∑
l=1

h(Catel
rj, Catel

cq)

h(H)
(5)

where Numl
j represents the l-th numerical data in rj, Numl

j represents the l-th numerical

data in cq, h(Catel
rj, Catel

cq) represents the number of leaf node in the parent node of the
l-th categorical data in rj and cq [36], h(H) represents the total number of sensitive data of
the current categorical attributes.

KAPP calculates the fitness values of all current solutions and selects the two solutions
with the lowest fitness values as the optimal solution BV1(it) and suboptimal solution
BV2(it). Then, it randomly selects a solution from BV1(it) and BV2(it) as the best solution
BV(it) by roulette. Where it represents the current number of iterations.

4.2.3. Solution Update Based on Improved African Vultures Optimization

According to the current solution, KAPP introduces and improves the African vulture
algorithm to update the solution. We compare each solution to a vulture. We simulate the
behavior of vultures looking for food and calculate the starvation rate HR of each solution
by Equation (6). If the starvation rate of the solutions is high, they have enough energy to
go a long distance and look for the optimal solution. Otherwise, they look for the optimal
solution in a nearby area.

HR = rand2
−2× (sinop(

π

2
× it

Maxit
) + cos(

π

2
× it

Maxit
)− 1) + rand3

−3× (1− it
Maxit

) (6)

where op represents the probability parameter of entering the global search stage. The
specific updates are as follows:

(a) When HR ≥ 1, KAPP is in the global search stage. Since AVOA only considers the
best solution BV(it) to update the current solution, the solution search space area is
too large, which makes the algorithm’s medium-term convergence slow. Therefore,
we record the historical optimal solution of each solution at the global search node.
Then, we use the current solution’s historical optimal solution to update it to ensure
that the solution is not too bad and improve the early convergence speed. Namely,
the solution must be updated with the improved Equation (7). If the probability
parameter is P1 < rand1

0, it is necessary to quickly determine the search range of the
optimal solution by simulating vultures searching for food in different spatial areas
by Equation (7). Otherwise, it is necessary to further narrow the search range of the
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optimal solution by simulating vultures searching for food in the area around the
random distance of the optimal solution by Equation (7).

x(it + 1) =

{
BV(it)−

∣∣∣rand2
0 × (BV(it) + H(it))× 1

2 − x(it)
∣∣∣×HR, P1 ≥ rand1

0

rand1
0 × ((upsa− dnsa)× rand1

0 + dnsa) + BV(it)− HR, P1 < rand1
0

(7)

where H(it) represents the historical optimal solution of the current solution.

(b) When 1 ≥ HR ≥ 0.5, KAPP is in the first stage of local search. Namely, the solution
must be updated with the improved Equation (8). If the probability parameter is
P2 < rand1

0, it is necessary to quickly approach the local range of the optimal solution
by simulating vultures rotating and flying close to food by Equation (8). Otherwise,
it is necessary to determine the global range of the optimal solution by simulating
vultures competing for food by Equation (8).

x(it + 1) =

{
x(it)− BV(it) + (HR + rand1

0)×
∣∣rand2

0 × BV(it)− x(it)
∣∣, P2 ≥ rand1

0

BV(it)× (1− (
rand1

0×x(it)
2×π )× cos(x(it))− (

rand1
0×x(it)

2×π )× sin(x(it))), P2 < rand1
0

(8)

(c) When HR < 0.5, KAPP is in the second stage of local search. Since the weight of
BV1(it) and BV2(it) to the updated solution is the same in AVOA, the algorithm cannot
adjust the updated impact of the optimal solution and the suboptimal solution to the
current solution, resulting in a poor convergence effect of fitness value. Therefore, we
introduce weights ω1 and ω2 to control the updated impact of BV1(it) and BV2(it)
on the current solution. It updates the solution by adjusting the most appropriate
weights to improve later local search capabilities and cluster accuracy. Namely, it is
necessary to update the solution with the improved Equation (9). If the probability
parameter is P3 ≥ rand1

0, it is necessary to gradually approach the optimal solution
location by simulating the massive competition of vultures for food by Equation (9).
Otherwise, it is necessary to accurately capture the optimal cluster center position by
simulating the fierce competition of vultures for food by Equation (9).

x(it + 1) =


ω1 × BV1(it)× (1− x(it)×HR

BV1(it)−x(it)2 )

+ω2 × BV2(it)× (1− x(it)×HR
BV2(it)−x(it)2 ),

P3 ≥ rand1
0

BV(it)−|BV(it)− x(it)|×HR× Levy, P3 < rand1
0

(9)

where ω1 represents the weight parameter of BV1(it), ω2 represents the weight parameter
of BV2(it), |BV(it)− x(it)| represents the distance between the current solution and the
optimal solution, Levy represents the linear feedback coefficient.

If KAPP completes the calculation and update of K cluster centers of each solution
in the current iteration, it will update the membership between each multi-dimensional
data of all solutions and each cluster center by Equation (4). Then, it updates the fitness
values of all solutions by Equation (3) and starts the following iteration process to cluster
all multi-dimensional data by sensitive data until the iterative calculation is completed.

4.3. Equivalence Class Division Based on Sensitive Data Distribution Difference Measurement

According to the multi-dimensional data clustering results of sensitive data, the
distance increase of sensitive data of the same equivalence class can effectively defend
against skewness and similar attacks. Therefore, in KAPP, we propose an equivalence
class partition algorithm based on the measurement of the distribution difference value
of sensitive data. The algorithm builds equivalence classes, including initialization and
optimization of equivalence classes, to obtain equivalence classes that can defend against
skewness and similarity attacks.
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4.3.1. Equivalence Class Initialization

Since the equivalence class partition affects the information loss rate of anonymous
data and affects the availability of shared data. Therefore, based on the clustering results,
KAPP selects the multi-dimensional data with the most similar quasi-identifier data from
each cluster by Equation (5) to form an equivalence class. It can complete the initialization
of n/k equivalence classes, making the sensitive data of multi-dimensional data in the same
equivalence class different. However, the quasi-identifier data is similar. It can reduce the
information loss rate.

4.3.2. Measurement and Calculation of Sensitive Data Distribution Differences and
Optimization of Equivalence Classes

After the initialization of the equivalence class, all data has been partitioned into n/k
equivalence classes. However, considering the different numbers of multi-dimensional data
in each cluster, some with similar sensitive data are still partitioned into the same equivalence
class at the later stage of equivalence class initialization, resulting in reduced diversity. It is
also considered that sensitive data with high sensitivity should be protected first. Therefore,
KAPP allocates weights and calculates distribution variance values for all sensitive data in
multi-dimensional data of each equivalence class. Then, KAPP uses distribution difference
values for numerical and categorical data in sensitive data and optimizes the equivalence
classes. The specific equivalence optimization process is as follows.

For numerical data, all sensitive data in multi-dimensional data are partitioned into
Nav levels. The interval range size of each level is (avmax − avmin)/Nav, and corresponding
weights ϕh

y are set for each level. Where avmax represents the maximum sensitive data of the
current level, avmin represents the minimum sensitive data of the current level. Combining
the weight of sensitive data and the weight of its attribute, KAPP calculates the absolute
value of the difference between k sensitive data of the equivalence class and the average
sensitive data. Namely, it calculates the distribution difference value of each numerical
sensitive attribute of any equivalence class by the following Equation (10):

SADNh
z = θh ×

1
k
×

k

∑
y=1

∣∣∣Nph
y × ϕh

y − Naveh × ϕave
h

∣∣∣ (10)

where θh represents the weight value of the h-th sensitive attribute. Nph
y represents the

y-th sensitive data of the h-th sensitive attribute. ϕh
y represents the weight value of Nph

y.
Naveh represents the average value of all sensitive data for the h-th sensitive attribute.
ϕave

h represents the weight value of Naveh.
For categorical data attributes, each sensitive data serves as a leaf node of the gen-

eralization tree [36]. KAPP determines the number of levels based on the number of the
leaf node of the parent node. It also determines the sensitive data in each level according
to all leaf nodes under the parent node and sets corresponding weights for each level.
Then, it combines the weight of sensitive data and its attribute weight and calculates the
distribution difference value of a categorical sensitive data by the following Equation (11):

SDDC f
s =

1
n
×

n

∑
δ=1

(
h(Dp f

s , Dq f
δ )

h(H)
× |ϕ f

s − ϕ
f
δ |) (11)

where SDDC f
s represents the distribution difference value of the s-th sensitive data of the

f -th sensitive attribute in the equivalence class. Dp f
s represents the s-th sensitive data of

the f -th sensitive attribute in the equivalence class. Dq f
δ represents the δ-th sensitive data

of the f -th sensitive attribute in the dataset. h(Dp f
s , Dq f

δ ) represents the number of the

leaf node in the parent node of sensitive data Dp f
s and Dq f

δ . h(H) represents the total

number of sensitive data of the current sensitive attribute. ϕ
f
s represents the weight value
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of sensitive data Dp f
s . ϕ

f
δ represents the weight value of sensitive data Dq f

δ . Therefore, the
equation for calculating the differential value of distribution for each sensitive attribute of
any equivalence class is as follows:

SADC f
z =

1
k
× θ f+c ×

k

∑
s=1

SDDCs
z (12)

where θ f+c represents the weight value of the f -th categorical sensitive attribute.
KAPP calculates the distribution difference value of sensitive data of each equivalence

class by the following Equation (13):

SADVz =

√√√√ asa

∑
h=1

SADNh
z +

bsa

∑
f=1

SADC f
z (13)

where asa represents the number of numerical sensitive attributes. bsa represents the
number of categorical sensitive attributes.

After KAPP calculates the distribution difference value of sensitive data of all equiva-
lence classes, if the difference value of sensitive data distribution of the equivalence class is
greater than the threshold t, it merges the equivalence class closest to the quasi-identifier
data of the equivalence class to reduce the distribution difference value. When the dis-
tribution difference values of all equivalence classes are less than t, the optimization of
equivalence classes is completed so that the sensitive data of the same equivalence class are
different and do not belong to the same category, thus effectively defending skewness and
similarity attacks. Finally, all equivalence classes need to be generalized.

4.4. Data Generalization

After completing the equivalence class optimization, KAPP generalizes all quasi-
identifier data according to the equivalence class partition results. Namely, for numerical
attributes, it uniformly modifies the quasi-identifier data to the interval range of the
minimum and maximum values of the equivalence class. For categorical attributes, it
modifies the quasi-identifier data of the same equivalence class to the parent node through
the generalization tree so that the identity information of at least k individuals cannot
be distinguished. In addition, it generalizes sensitive data with high weight, further
preventing the privacy disclosure of sensitive data with high sensitivity.

5. Algorithm Implementation

The data publishers execute KAPP to realize the anonymous publishing of multi-
dimensional data and avoid privacy disclosure of anonymous data caused by skewness
and similarity attacks. The pseudo-code of KAPP is shown in Algorithm 1. In line 1,
the data publishers initialize all algorithm parameters. In line 2, the data publishers
delete all identifier data and convert categorical data to the numerical value. In lines 3–7,
the algorithm starts to cluster multi-dimensional data based on sensitive attributes. The
data publisher calculates the si-th value csasi of the current initial cluster center through
the equation. The process continues until the initialization of m solutions is completed.
Where each solution contains k cluster centers, and each cluster center contains sas values.
In line 8, m solutions begin to be updated iteratively. In lines 9–11, the data publisher
calculates the membership and fitness values of the m solutions in the current iteration.
In lines 12–32, the algorithm updates all cluster center positions of m solutions. More
specifically, the data publisher calculates the starvation rate HR of the current solution.
Then, according to the values of HR, P1, P2, P3 and random number, the data publisher
selects the corresponding equation to update the cluster center position of the current
solution. The process continues until all solutions are updated in the current iteration. In
line 33, m solutions of the current iteration are updated, and the process continues until
the maximum number of iterations is reached. In lines 34–35, m solutions are updated.
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The data publisher selects the solution with the lowest fitness value as the final clustering
result, and then selects the multi-dimensional data with the most similar quasi-identifier
from each cluster to form n/k initial equivalence classes. In lines 36–41, the data publisher
calculates the sensitive data distribution difference value between each initial equivalence
class and the dataset. If the distribution difference value of the current equivalence class
is greater than the threshold t, the data publisher merges it with the equivalence class
whose quasi-identifier distance is the closest. The process continues until the distribution
difference value of all equivalence classes is less than the threshold t. In line 42, the data
publisher generalizes the quasi-identifier data of all equivalence classes and sensitive
data with significant sensitive weight and outputs anonymous multi-dimensional data.

Algorithm 1. K-Anonymity Privacy Protection Algorithm for Multi-Dimensional Data Against Skewness and
Similarity Attacks (KAPP)

Input: original multi-dimensional data
Output: anonymous multi-dimensional data
1: n = 6000; k = 7; m = 30; Maxit = 200; sas = 6; t = 0.1;
2: Deleting all identifier data, and converting categorical data to numerical value;
3: while (current solution zi ≤ m) do
4: while (current cluster center j ≤ k) do
5: csasi = rsasi × (upsa− dnsa) + dnsa;
6: end
7: end
8: while (current iteration it ≤Maxit) do
9: while (current solution zi ≤ m) do

10: uq
j =

1
Dist(rj ,cq)

2 /
k
∑

l=1

1
Dist(rj ,cl )

2 , fzi =
k
∑

q=1

n
∑

j=1
(uq

j )
e × Dist(rj, cq);

11: end
12: while (current solution zi ≤ m) do
13: HR = rand2

−2 × (sinop( π
2 ×

it
Maxit ) + cos( π

2 ×
it

Maxit )− 1) + rand3
−3 × (1− it

Maxit );
14: if (HR ≥ 1) then
15: if (P1 ≥ rand1

0) then

16: x(it + 1) = BV(it)−
∣∣∣rand2

0 × (BV(it) + H(it))× 1
2 − x(it)

∣∣∣×HR ;
17: else
18: x(it + 1) = rand1

0 × ((upsa− dnsa)× rand1
0 + dnsa) + BV(it)− HR;

19: end if
20: else if (1 ≥ HR ≥ 0.5) then
21: if (P2 ≥ rand1

0) then
22: x(it + 1) = (HR + rand1

0)− BV(it) + x(it)×
∣∣rand2

0 × BV(it)− x(it)
∣∣;

23: else
24: x(it + 1) = BV(it)× (1− (

rand1
0×x(it)

2×π )× cos(x(it))− (
rand1

0×x(it)
2×π )× sin(x(it)));

25: end if
26: else
27: if (P3 ≥ rand1

0) then
28: x(it + 1) = ω1 × BV1(it)× (1− x(it)×HR

BV1(it)−x(it)2 ) + ω2 × BV2(it)× (1− x(it)×HR
BV2(it)−x(it)2 );

29: else
30: x(it + 1) = BV(it)−|BV(it)− x(it)|×HR× Levy ;
31: end if
32: end if
33: end
34: end
35: Selecting the most similar data to form n/k equivalence classes;
36: while (current equivalence class v ≤ n/k) do

37: SADVz =

√
a
∑

h=1
SADNh

z +
b
∑

f=1
SADC f

z ;

38: while (SADVz > t) then
39: Combining the most similar equivalence classes to the quasi-identifier data;
40: end
41: end
42: Generalizing data and outputting anonymous multi-dimensional data;
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6. Security Analysis

After anonymous data sharing and publishing, attackers in the network can obtain
individual identifier data and quasi-identifier data in other ways. They expect to analyze the
individual’s corresponding sensitive data from the shared anonymous data to obtain illegal
profits. Therefore, attackers will launch different types of attacks on shared anonymous
data, such as skewness attacks and similarity attacks. The anonymous algorithm KAPP
proposed in this paper has high security. The specific security analysis is as follows.

Theorem 1. Let an attacker try to discern the similarity between the sensitive attributes by skewness
attacks and similarity attacks, then the distribution of sensitive attributes is t, and the probability of
sensitive information disclosure is less than 1/k.

Proof. KAPP requires that the distribution of sensitive attributes of each equivalence
class and the dataset is less than the threshold t, so it can effectively protect sensitive
attributes. Specifically, the KAPP is mainly divided into three stages: multi-dimensional
data clustering, equivalence class optimization, and data generalization. In the multi-
dimensional data clustering stage, KAPP clusters multi-dimensional data according to
sensitive data through the multi-dimensional data clustering algorithm based on improved
AVOA. It ensures that the sensitive data of multi-dimensional data in different clusters are
different. In the equivalence class optimization stage, according to the clustering results,
KAPP selects a piece of data with the most similar quasi-identification from different
clusters to complete the initialization of the equivalence class. It ensures that the sensitive
data of each multi-dimensional data in the same equivalence class is different. Therefore,
KAPP reduces the probability of accurate analysis of attackers and improves the diversity
and anonymity of algorithms. Moreover, we consider that the number of multi-dimensional
data in each cluster is different. Some multi-dimensional data with similar sensitive data
are still partitioned into the same equivalence class after the initialization. It increases the
probability of accurate analysis by attackers, resulting in a decline in algorithm diversity
and anonymity in the later stage. Therefore, KAPP finds the equivalence classes with
low diversity by the difference value of sensitive data distribution of each equivalence
class. Then, it merges the most similar equivalence classes of quasi-identifiers to reduce
the distribution difference between the equivalence classes and the dataset. It ensures that
the distribution of sensitive data of equivalence classes is similar to that of the dataset,
thus reducing the number of individual sensitive data analyzed by attackers. Therefore,
there are at least k multi-dimensional data in each equivalence class, and the probability of
sensitive information disclosure is less than 1/k. �

7. Experimental Simulation
7.1. Simulation Parameters and Performance Parameters

Our experimental dataset comes from a cooperative medical information technology
company in Hangzhou, China, whose total number of instances is 7527. The dataset contains
the patient’s personal information and hospital visit data (14 attributes in total), including
the number, age, gender, work category, visit card type, person source, visit zone, hospital
name, admission time, discharge time, diagnosis name, medical cost, overall pooling cost, and
payment time. Note that each patient number is unique, and is categorized as an identifier
attribute. However, age, gender, work category, and person source are general information
to patients, and are categorized as quasi-identifier attributes. Moreover, age is a numerical
attribute, and the remaining quasi-identifier attributes are categorical attributes. Visit card
type, visit zone, hospital name, admission time, discharge time, diagnosis name, medical cost,
overall pooling cost, and payment time are sensitive medical information of patients, and they
are categorized as sensitive attributes. Medical cost and overall pooling cost are numerical
attributes, while other sensitive attributes are category attributes.
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In order to verify the performance of KAPP in the test environment of Intel i5-9400F
CPU 2.20 GHz, 16 G memory, and GTX1660 graphics card, this paper uses the experimental
parameters shown in Table 6 and Python language to achieve the privacy protection for
multi-dimensional data. The probability parameters {P1, P2, P3} and weight parameters
{ω1, ω2} are determined by experiments. The fuzzy weight e is determined by relevant
literature [32], and other parameters are consistent with AVOA [33]. We replicate skewness
and similarity attacks in the experiment and attack the anonymized data. After the data
anonymization, we count the equivalence classes whose proportion of the same number
on sensitive attribute values or their ancestor node values is greater than the threshold
τ%. Thus, the attackers can successfully analyze the privacy information of individuals
from the equivalence classes. Based on the attack results, we study the impact of the
maximum number of iterations on the convergence effect of the algorithm’s fitness value.
Then, we study the impact of the constraint parameter t and the number of clusters K on
anonymity. We use KAPP, CPPA [14], SKAM [15], and PAMS [27] to study the diversity,
clustering accuracy, anonymity, and information loss rate under the different numbers of
multi-dimensional data and the different numbers of sensitive attributes. The diversity VD
reflects the distribution of sensitive data in the same equivalence class [37]. The greater the
diversity of the K-anonymity algorithm, the higher the degree of privacy protection is, the
more evenly the sensitive data distributed in the equivalence class becomes, and the more
difficult it is for the attacker to derive the sensitive data of specific individuals.

Table 6. Simulation parameters table.

Parameter Number Parameter Number

probability parameters op 2.5 probability parameters p1 0.6
number of solutions m 30 probability parameters p2 0.4

dimension of sensitive data o 6 probability parameters p3 0.6
coefficient of linear

feedback Levy 0.01 weight value of optimal solution ω1 0.6

fuzzy weight e 2 weight value of suboptimal
solution ω2

0.4

The equation for calculating the diversity of equivalence classes is as follows:

VD(Ev) = (
q−1

∑
i=1

q

∑
j=i+1

Dist(rv
i , rv

j ))/q (14)

where VD(Ev) represents the diversity of the v-th equivalence class. Dist(rv
i , rv

j ) repre-
sents the sensitive data distance between the i-th and j-th multi-dimensional data of the
v-th equivalence class. q represents the number of multi-dimensional data in the current
equivalence class. The equation for calculating the diversity of an anonymous multi-
dimensional data table is as follows:

VD(T) =
cn

∑
v=1

VD(Ev))/cn (15)

where VD(T) represents the average diversity of an anonymous multi-dimensional table.
The clustering accuracy reflects the clustering algorithm’s division of clusters. It is defined
as the correctly divided number of multi-dimensional data divided by the total number of
data. The anonymity reflects the privacy protection of shared data after anonymity [38]. It is
defined as the number of specific individuals’ real sensitive data that cannot be successfully
analyzed by attackers divided by the total number of data under skewness and similarity
attacks. The calculation equation is as follows.
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Anony =
n− RecoNumsim − RecoNumskew

n
(16)

where RecoNumsim represents the total number of multi-dimensional data whose all sensi-
tive data of a sensitive attribute in the same equivalence class belong to the same parent
node. RecoNumskew represents the total number of multi-dimensional data whose propor-
tion of sensitive data in the same equivalence class is greater than the threshold τ%. The
information loss rate reflects the availability of shared data after anonymity. We use the de
facto standard information loss metric in [27] to measure the information loss.

7.2. Simulation Analysis
7.2.1. Influence of Parameter Selection

We analyze the impact of iteration number, probability parameter{P1, P2, P3}, weight
parameter{ω1, ω2}, classification number K and constraint parameter t on the algorithm
performance through experiments. Moreover, we take iteration number, classification num-
ber K, and constraint parameter t as examples to illustrate the impact of some parameters
on algorithm clustering and equivalence class partition.

First, we select the maximum number of iterations as 200, and other parameters are
shown in Table 6. Then, we analyze the influence of the algorithm iteration number on
the fitness value. As shown in Figure 2, when the number of iterations is less than 150,
the fitness value decreases rapidly with the number of iterations. When the number of
iterations is more significant than 150, the fitness value converges to the optimal solution.
The reason is that KAPP combines chaotic mapping and improves solution initialization
to make the initial solution more evenly distributed. At the same time, we select weight
parameters {ω1, ω2} and probability parameters {P1, P2, P3} at different stages through
experiments. In the global search phase, KAPP updates the solution by combining the
solution’s historical information to reduce the algorithm’s divergence in the global search
phase and jump out of the optimal local solution. In the local search phase, KAPP uses
weights ω1 and ω2 to control the update impact of the optimal and suboptimal solutions
on the solution. It can adjust the most suitable weight to update the solution to improve the
local search ability and accelerate the convergence speed in the later period. Therefore, as
the number of iterations increases, the fitness value decreases rapidly and finally converges.
Moreover, the maximum number of iterations Maxit is set to 150.

Figure 2. The fitness values of different iteration times.
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Next, we select the number of multi-dimensional data as 1000, 2000, 3000, 4000, 5000,
and 6000, respectively. The number of clusters is respectively selected as 4, 5, 6, 7, and 8.
Let the parameter t be 0.1, and other parameters are shown in Table 6. Then, we analyze the
influence of cluster number K on anonymity. As shown in Figure 3, as the number of multi-
dimensional data increases, the number of equivalence classes with similar sensitive data
attributes increases. The attackers can successfully analyze the number of sensitive data of
patients, so anonymity is slowly declining. As the number of clusters increases, the number
of multi-dimensional data in each equivalence class starts to increase, and the proportion of
sensitive attribute values and their parent node values in each equivalence class that is the
same decreases. The attackers can successfully analyze that the number of patient-sensitive
data decreases and the anonymity increases. However, as the number of clusters increases,
the number of multi-dimensional data to be uniformly generalized increases gradually,
leading to the increase of information loss rate. Therefore, anonymity and information loss
rate should be comprehensively considered when selecting the number of clusters. When
the number of clusters K is 7 and 8, there is little difference in anonymity. Considering
that the increase in the number of clusters increases the information loss rate. Therefore,
when the number of clusters K is 7, it can ensure that the algorithm has a high degree of
anonymity, and the information loss rate tends to be the lowest.

Figure 3. Algorithm anonymity of different clustering number K.

Then, we select the number of multi-dimensional data as 1000, 2000, 3000, 4000, 5000,
and 6000, respectively. The constraint parameter t is respectively selected as 0.1, 0.2, 0.3,
0.4, and 0.5, and other parameters are shown in Table 6. Then, we analyze the influence of
constraint parameter t on anonymity. As shown in Figure 4, more equivalence classes of
similar sensitive data are generated with the increase in the number of multi-dimensional
data. It leads to a smaller average diversity of sensitive data in equivalence classes and
more equivalence classes with the same number of sensitive attribute values and their
parent node value accounting for more than the threshold τ%. The attackers successfully
analyze more sensitive data of patients. Therefore, the anonymity of KAPP decreases, but
the decrease is limited. With the gradual increase of the constraint threshold parameter t,
the distribution requirements of sensitive data for equivalence class partition are reduced,
and the number of equivalence classes that do not meet the constraint is reduced. Sensitive
data in the same equivalence class are similar, so it is challenging to show diversity. It
leads attackers to analyze the number of sensitive data of patients successfully, so its
anonymity decreases. When the parameter t is 0.4 and 0.5, in the process of equivalence
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class partition, fewer equivalence classes do not meet the constraint conditions and are
merged. At this time, the parameter t has little influence on the equivalence class partition,
and its anonymity has little difference. Therefore, when the parameter t is 0.1, the algorithm
has a high degree of anonymity.

Figure 4. Algorithm anonymity of different constraint parameters t.

7.2.2. Performance Analysis as the Amount of Multi-Dimensional Data Changes

The number of multi-dimensional data is selected as 1000, 2000, 3000, 4000, 5000, and
6000, respectively. Let the parameter t be 0.1, the number of clusters is 7, and other parameters
are shown in Table 6. Then, we analyze and compare the clustering accuracy, diversity,
anonymity, and information loss rate of KAPP, CPPA, PAMS, and SKAM under the different
numbers of multi-dimensional data. First, we analyze the clustering accuracy of algorithms
with the different numbers of multi-dimensional data. As shown in Figure 5, with the
increase in the number of multi-dimensional data, the clustering accuracy of PAMS, CPPA,
and SKAM fluctuates wildly. In contrast, the clustering accuracy of KAPP fluctuates slightly
and is significantly higher than other algorithms. The reason is that KAPP combines a multi-
dimensional data clustering algorithm and generates the initial population through chaotic
tent mapping. It can search for a better initial cluster center position before each clustering
and combine the fuzzy C-means clustering algorithm and African vultures optimization
algorithm. It can also accurately search the optimal global solution by improving the fitness
calculation method and the current solution update strategy to achieve clustering according
to the multi-dimensional data of sensitive data, which is more suitable for multi-dimensional
data clustering. However, the clustering effect of other algorithms depends on the random
selection of the initial clustering center. They tend to fall into the optimal local solution, and
the clustering effect could be better. Therefore, KAPP’s clustering accuracy fluctuates less and
is always higher than other algorithms.

We further analyze the algorithm diversity with different numbers of multi-dimensional
data. As shown in Figure 6, with the increase in the number of multi-dimensional data, the
diversity of KAPP, PAMS, CPPA, and SKAM shows a downward trend. Note that the diversity
of KAPP is significantly higher than that of PAMS, CPPA, and SKAM. The reason is that KAPP
completes the clustering of multi-dimensional data and initialization of equivalence classes
based on sensitive data and merges equivalence classes that do not meet the distribution
conditions. It makes the distribution of sensitive data in equivalence classes become more
evenly, and each equivalence class’s multi-dimensional data increase in the sensitive data
distance. However, other algorithms only consider quasi-identifier data rather than sensitive
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data. It will make the sensitive data of the same equivalence class more similar, and the
sensitive data distance between multi-dimensional data is smaller. Therefore, the diversity of
KAPP is always superior to other algorithms.

Figure 5. Comparison of clustering accuracy.

Figure 6. Comparison of diversity.

Then, we analyze the anonymity of algorithms with different numbers of multi-
dimensional data. As shown in Figure 7, as the number of multi-dimensional data increases,
the anonymity of KAPP, PAMS, CPPA, and SKAM remains unchanged. However, the
anonymity of KAPP is higher than that of other algorithms. The reason is that KAPP
uses a multi-dimensional data clustering algorithm based on improved African vultures
optimization to cluster multi-dimensional data with high accuracy. Then, it partitions
the equivalence classes according to the quasi-identifier data and merges the equivalence
classes that do not meet the constraint conditions. It makes the sensitive data of the same
equivalence class different and does not belong to the same category. Attackers successfully
analyze less patient-sensitive data. However, the clustering effect of other algorithms is



Sensors 2023, 23, 1554 21 of 26

not ideal. In addition, they only consider that sensitive data of the same equivalence class
is different and do not consider that sensitive data of the same class also cause privacy
disclosure. Therefore, the anonymity of KAPP is significantly higher than that of other
algorithms under skewness and similarity attacks.

Figure 7. Comparison of anonymity.

Finally, we analyze the information loss rate of each algorithm with the different
numbers of multi-dimensional data. As shown in Figure 8, with the increase in the number
of multi-dimensional data, the information loss rate of KAPP, PAMS, CPPA, and SKAM
shows a downward trend. Moreover, the information loss rate of KAPP is lower than that of
PAMS and slightly higher than that of CPPA and SKAM. The reason is that with the increase
in the number of multi-dimensional data, the number of multi-dimensional data similar
to quasi-identifier data increases, and each equivalence class can find more similar multi-
dimensional data, so the information loss rate appears to be declining. At the same time, in
optimizing the privacy protection model, KAPP considers that similar sensitive data in the
same equivalence class are vulnerable to attacks and clusters multi-dimensional data with
similar sensitive data. Then, it selects the most similar multi-dimensional data of quasi-
identifier data from each cluster to form an equivalence class and optimizes the equivalence
class that does not meet the constraint conditions. Therefore, KAPP increases the process of
protecting sensitive data and has higher requirements for classifying multi-dimensional
data equivalence classes. Its information loss rate slightly increases. However, CPPA
and SKAM are not considered the distance of sensitive data in the process of equivalence
classification and only partition the equivalence class for quasi-identifier data, so their
information loss rates are slightly lower than KAPP. PAMS partitions equivalence classes
through traditional clustering, and the clustering effect is not ideal, so its information
loss rate is the highest. However, the information loss rate of KAPP is similar to that of
PAMS and CPPA. Although KAPP has sacrificed some information loss, it has dramatically
improved its diversity and anonymity.
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Figure 8. Comparison of information loss rate.

7.2.3. Performance Analysis as the Number of Sensitive Attributes Changes

We analyze and compare the diversity, anonymity, and information loss rate of KAPP,
CPPA, PAMS, and SKAM under the different numbers of sensitive attributes. Let the
parameter t be 0.1, the number of clusters is 7, the number of multi-dimensional data still
be 6000, and other parameters are shown in Table 6. Firstly, we analyze the algorithm
diversity with different numbers of sensitive attributes. As shown in Figure 9, as the
number of sensitive attributes increases, the diversity of KAPP, PAMS, CPPA, and SKAM
shows a downward trend. Moreover, the KAPP’s diversity is significantly higher than
that of other algorithms. The reason is that with the increase in the number of sensitive
attributes, it is difficult to ensure that each dimension of sensitive attributes meets the
diversity requirements. The number of equivalence classes that do not meet diversity rises.
Thus diversity tends to decline. Moreover, KAPP improves AVOA and can find the optimal
solution with different dimensions. At the same time, KAPP merges equivalence classes to
improve diversity. However, other algorithms are inaccurate for multi-dimensional data
clustering, and they balance privacy and availability by finding the optimal equivalence
class. They cannot highlight the diversity of equivalence classes. Therefore, the diversity of
KAPP is superior to other algorithms.

Then, we analyze the anonymity of the aforementioned algorithms with the different
numbers of sensitive attributes. As shown in Figure 10, as the number of sensitive attributes
increases, the anonymity of KAPP, PAMS, CPPA, and SKAM shows a downward trend.
Moreover, KAPP’s diversity is significantly higher than that of other algorithms. The reason
is that KAPP improves the AVOA and merges equivalence classes with small diversity.
The diversity of KAPP with different numbers of sensitive attributes is always higher than
that of other algorithms. The greater the diversity is, the smaller the number of patients’
sensitive data that can be successfully analyzed by attackers. Therefore, it can be concluded
that the anonymity of KAPP is superior to other algorithms.

Finally, we analyze the algorithms’ information loss rate with different numbers of
sensitive attributes. As shown in Figure 11, with the increase in the number of sensitive
attributes, the information loss rates of KAPP, PAMS, CPPA, and SKAM all show an
upward trend. The reason is that with the increasing number of sensitive attributes, it will
be difficult to ensure the diversity of each equivalence class’s multi-dimensional sensitive
data. Many equivalence classes do not satisfy the partition conditions, and KAPP needs
to merge more equivalence classes. It leads to an increased information loss rate after
the generalization of each equivalence class. Other algorithms must constantly adjust the
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equivalence class, and the algorithm diversity is guaranteed by sacrificing the information
loss rate, resulting in a larger rate of information loss over time.

Figure 9. Diversity of the different numbers of sensitive attributes.

Figure 10. Anonymity of the different numbers of sensitive attributes.

Figure 11. Information loss rate with different numbers of sensitive attributes.
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8. Discussion

The proposed KAPP algorithm combines the improved African vultures optimization
and the proposed equivalence class partition method to anonymize the multi-dimensional
dataset. The algorithm aims to improve the diversity of sensitive data in each equivalence
class to defend against skewness attacks and similarity attacks, so as to prevent the attacker
from re-identifying the sensitive data of individuals. More specifically, the improved
African vultures optimization method first uses chaotic tent mapping to initialize cluster
centers and achieve more stable clustering results. Then, it introduces the concept of
membership degree in the calculation of fitness value to achieve more reasonable multi-
dimensional data clustering. Finally, in the equation of updating the cluster center position,
it introduces the historical optimal solution of the cluster center, and adds weight value to
better update the cluster center position and improve the clustering accuracy. We consider
the multi-dimensional data clustering based on sensitive data, where the multi-dimensional
data in each cluster are not similar to sensitive data. The proposed equivalence class
partition method first selects a multi-dimensional data with the most similar quasi-identifier
data from each cluster to complete the equivalence class initialization, so as to ensure that
the sensitive data in each equivalence class are as different as possible. Then, it uses the
proposed equation to calculate the sensitive data’s distribution difference value of each
equivalence class and dataset. It also reduces the distribution difference value by merging
the equivalence classes whose distribution difference values are large until t-closeness
is satisfied. In addition, the method introduces weight into the calculation equation of
distribution difference value, so as to preferentially protect the multi-dimensional data
that is more sensitive. The effectiveness evaluation of this method is based on measuring
the clustering accuracy, diversity and anonymity. The experimental results show that
the clustering accuracy of KAPP is high and relatively stable. KAPP first clusters multi-
dimensional data based on sensitive data, and then selects multi-dimensional data from
each cluster to partition equivalence classes. It improves diversity and helps defend against
skewness and similarity attacks, which is superior to other similar methods.

Next, we discuss the future direction. It is worth mentioning that our proposed
method is available for the privacy protection of static datasets. However, with the con-
tinuous development of cloud computing, the Internet of Things and other technologies,
dynamic datasets publishing will become more common in practical applications. If the
data in several consecutively published data tables changes, to avoid privacy disclosure,
it is necessary to eliminate the inner link between the anonymous tables after multiple
publishing as possible. In addition, the sensitive information application disclosure of data
subjects can result from the applications of data analytics and machine learning methods
to large distributed data archives. Data often contains sensitive identifiable information,
and even if these are protected, the excessive processing capabilities of current machine
learning methods might facilitate the identification of individuals, raising privacy concerns.
Therefore, the future direction can be the integration of anonymous methods suitable for
dynamic datasets with data analytics and machine learning methods.

9. Conclusions

In this paper, in order to achieve the privacy protection of multi-dimensional data,
we propose a multi-dimensional data K-anonymity privacy protection algorithm (KAPP)
against skewness and similarity attacks. Firstly, we preprocess the multi-dimensional data
to be published. Secondly, we propose a clustering algorithm based on improved African
vultures optimization, which can accurately and efficiently cluster multi-dimensional data
based on sensitive attributes. More specifically, we improve the initialization, fitness
calculation, and solution update strategy of the clustering center. Thirdly, we select the
nearest quasi-identifier data from each cluster to form the initial equivalence class. Then, we
propose the calculation equation of the distribution difference value of sensitive data, and
optimize the equivalence class by calculating the distribution difference value of sensitive
data. Finally, we generalize all equivalence classes to realize multi-dimensional data
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anonymity. Moreover, we analyze the security of KAPP against skewness and similarity
attacks, as well as the influence of parameter selection on KAPP. We also analyze the
clustering accuracy, diversity, anonymity, and information loss rate of KAPP. Then we
compare the performance of KAPP, SKAM, PAMS, and CPPA. The experimental results
show that KAPP improves clustering accuracy, diversity, and anonymity more than other
similar methods under skewness and similarity attacks, and the average information loss is
not much different.

In the future, we plan to study efficient anonymization algorithms for dynamic data
with data analytics and machine learning methods. This may help solve the privacy
disclosure problem caused by the internal relationship among anonymous tables with
similar multi-dimensional data.
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