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Abstract: Numerous studies have been conducted to prove the calming and stress-reducing effects
on humans of visiting aquatic environments. As a result, many institutions have utilized fish to
provide entertainment and treat patients. The most common issue in this approach is controlling the
movement of fish to facilitate human interaction. This study proposed an interactive robot, a robotic
fish, to alter fish swarm behaviors by performing an effective, unobstructed, yet necessary, defined
set of actions to enhance human interaction. The approach incorporated a minimalistic but futuristic
physical design of the robotic fish with cameras and infrared (IR) sensors, and developed a fish-
detecting and swarm pattern-recognizing algorithm. The fish-detecting algorithm was implemented
using background subtraction and moving average algorithms with an accuracy of 78%, while the
swarm pattern detection implemented with a Convolutional Neural Network (CNN) resulted in a
77.32% accuracy rate. By effectively controlling the behavior and swimming patterns of fish through
the smooth movements of the robotic fish, we evaluated the success through repeated trials. Feedback
from a randomly selected unbiased group of subjects revealed that the robotic fish improved human
interaction with fish by using the proposed set of maneuvers and behavior.

Keywords: underwater robotics; robotic fish; ostraciiform fish; motion detection; tracking; fish
image processing

1. Introduction

People tend to work under stress due to the workload exceeding human cognitive
limits. They often engage in various activities to relax and calm themselves [1]. Spending
time with fish kept for decorative purposes is one of the most popular activities to promote
stress-reducing and calming effects [2]. Fish are beautiful creatures of mother nature. Due to
their magnificent swimming behaviors, people enjoy spending their leisure time with fish,
inspiring them to carry out inventions, the most obvious being related to transportation
and the most recent being robotic fish [3]. Considering the therapeutic inclinations of
fish, medical institutions have installed fish tanks to calm stressed patients and as a pre-
treatment for anxiety, fear, frustration, and depression [4–6].

Spending time with ornamental fish is one of the most popular time-pass activities for
stress reduction, it has also been revealed that observing fish at an aquarium reduces stress,
lowers blood pressure effectively, and provides numerous health benefits [2,7–9]. While
observing fish can provide stress-reducing benefits, it is important to note that fish may
not always be active or perform attractive maneuvers. In these situations, people may not
be able to fully engage with the aquatic environment and may not be able to achieve the
full calming effects. To ensure that people receive maximum benefits, there needs to be a
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way to make the aquarium environment more interactive, even when fish are not active.
Keeping a person on-hand to do this is not practical, so there is a need for an agent or
system that can make the environment more active and engaging when people are present.
Additionally, this agent should be able to monitor fish swarm behaviors and ensure that
the fish are living in good conditions.

Robotic fish can serve as automated agents in various endeavors to enhance human–
fish interaction. At present, a significant portion of robotic fish research is dedicated
to creating biomimetic robots, monitoring ocean conditions, and analyzing fish behav-
ior [10–13]. Additionally, they can be utilized in aquaculture to monitor fish behavior and
optimize fish farming conditions. Some robotic fish also feature cameras, sensors, and other
apparatus to gather data on water quality, temperature, and other parameters.

Previous studies have not utilized a robotic fish to enhance human interaction and
guide the alteration of fish swarm patterns. Robotic technologies can be used not only for
biomimicry but also to enhance human–fish interaction. This research aims to explore the
suitable design for a robotic fish, the behavior of fish in response to the robot’s behavior,
and methods for recognizing fish swarm patterns. Therefore, the key contributions of this
research are:

• Designing a futuristic and minimalistic robotic fish with an Ostraciiform tail that can
operate in a wide range of water environments.

• Analyzing fish behaviors and fish swarm patterns using the robotic fish and recogniz-
ing these patterns using a proposed machine learning algorithm.

• Performing fish-food drop activity based on the identified fish swarm patterns and
analyzing the resulting changes in fish behavior.

• Collecting user feedback about the robot fish and its behavior.

2. Literature Review

Over the past two decades, significant research has been conducted on the social
effects of fish on humans. For example, a study by Deborah et al. found that aquarium
settings with higher-level fish species were linked to greater decreases in heart rate [8].
Kidd et al.’s study concludes that interacting with fish has a significant impact on patients
with mental disorders [14]. Gee et al.’s study suggests that fish movements are primarily
responsible for the calming effects of watching them, as their weightless and otherworldly
movements immediately reduce tension [15]. Many studies have attempted to modify fish
behavior in artificial aquatic settings through techniques such as lighting and decorative
items. The most substantial research indicates that feeding fish can directly affect their
behavior and activity [16].

Underwater robotics is a rapidly growing field with a wide range of applications. It is
already being used for various tasks such as object identification, vessel hull inspections,
and underwater survey missions [10–12]. The locomotion of fish has inspired researchers
to design robots to mimic the motion and dynamics of natural fish, namely robotic fish,
which is an Autonomous Underwater Vehicle (AUV) designed to obtain fish-like swim-
ming behaviors [3,17,18]. Robotuna was the first-ever robotic fish prototype in the world,
designed and developed by MIT in 1994. Since then, underwater robotics has reached new
heights in achieving biomimicry in robotic fish [19]. A study by Wei Zhao et al. conducted
using a Proportional Integral Derivative (PID) control algorithm, which controls the depth
at which the fish was operated using sonar, three infrared (IR) sensors, and one wireless
duplex communication module, marks a milestone in underwater robotics [20]. The re-
search mainly focused on enhancing swimming performance and achieving smooth gait
transitions of the robot fish. A free-locomotive robotic fish propelled by Ionic Polymer
Metal Composites (IPMCs) was highlighted in a study by Matteo et al. [21]. K. H. Low
et al. designed a robotic fish fin that can mimic the fin locomotion capability of a natural
fish [22]. Kopman et al. developed a heading control algorithm for the robotic fish pro-
pelled by the tail undulation [23]. A world-first bionic underwater fish drone (BIKI) utilizes
Ostraciiform fish-like swimming developed and based on a business model that brings
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more powerful features to the spotlight [24]. The setbacks that were prominent in earlier
designs, e.g., being noisy, unsafe, the requirement of wire for moving, short battery life, and
high production and maintenance costs, were significantly lowered by BIKI. Cazenille et
al. designed a biomimetic robotic fish that has similar behavior to a zebrafish and showed
that the robot can be integrated into a group of zebrafish, mimic their behavior, and exhibit
similar collective dynamics compared to fish-only groups [25].

The area of underwater object detection and tracking has been vastly improving.
However, despite prior studies, this area is still searching for perfection. Zivkovic et al.
proposed a method for background subtraction with an improved adaptive Gaussian
mixture model [26]. A study by Yi et al. proposed a background subtraction technique and
a temporal difference that requires minimal computational complexity yet yield higher
accuracy than the prevailing approaches [27]. Detecting fish underwater is challenging
due to varying external factors: fluid vortexes significantly affect the camera’s vibration,
resulting in impaired quality video, and disturbances from aquatic plants, decorative
items, and rocks add to the challenge [28,29]. Tracking fish is more challenging with a
dynamic camera, which has drawn the minds of researchers and resulted in numerous
studies on detecting, counting, and monitoring fish underwater using different methods
and applications [30]. Spampinato et al. proposed using the Continuously Adaptive Mean
Shift (CamShift) algorithm to detect and count fish in the water, giving significant results in
low contrast and unconstrained environments [31]. A method to study fish behaviors and
estimate fish trajectories by overcoming underwater environmental changes was proposed
by Morais et al. [32].

The use of robotic fish is mostly in the areas of exploration and inspection of under-
water life [33,34]. Altering fish swarm patterns to manipulate the fish behavior in order
to increase human interaction is rather a newer area of research. Biomimicry in robotic
fish has been vastly improved while lesser attention has been given to the use of a robotic
fish to change the behavior of fish to improve human interaction [35,36]. In addition to
the use of robotic fish in the exploration and examination of aquatic life, another benefit of
robotic fish is to improve human interaction with fish. In order to increase the interaction
of humans with fish, the behavior of the fish can be altered.

The literature review revealed a significant amount of research on creating robots
that mimic fish behaviors and identifying fish underwater, as well as the impact of fish
on the human mind. However, we found that no previous studies have been conducted
on recognizing fish swarm patterns or using robotics to enhance human–fish interaction.
Therefore, there is a need to develop a robot that can actively change and track the swarm
patterns of fish, in order to make the aquatic environment more dynamic. This study
proposes a robotic fish to keep track of the swarm behavior of fish and manipulate that
behavior by performing an effective and necessary pre-defined set of actions. The robotic
fish is designed using a minimalistic approach including a rigid body, and robotic fish fins.
A customized fish-food dropping unit is included in the robotic fish in order to achieve
behavioral changes in the fish whereby the robotic fish gains the attention of the fish while
guiding them to change their behavior. The effectiveness of these maneuvers is evaluated in
the study. The robotic fish is capable of identifying fish in the water, accurately identifying
the fish swarm patterns, and changing the behavior of the fish swarm patterns through
synchronous pre-defined moves.

3. Design and Methodology
3.1. Design of the Robotic Fish

Research on social robots incorporates a minimalistic approach when designing the
exterior to obtain optimum human–robot interaction [37]. The most common approach to
creating robotic fish typically uses a slim body shape with a multi-jointed body structure [3].
The body displacement of fish categorizes fish into five main categories: Anguilliform,
Subcarangiform, Carangiforrm, Thunniform, and Ostraciiform [13]. Our approach is to
develop a model that imitates the Ostraciiform motion; thus, unlike the other methods
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involving carangiform and sub-carangiform locomotion, the robotic fish generates thrusts
using only its caudal fin [38,39]. In designing the robotic body, the space and strength
required to mount the hardware devices must be considered, resulting in a round-shaped
rigid body design with an oscillating tail that is 20 cm long and 15 cm tall. The approach
of this study suggests a minimalistic design without affecting its dynamic model while
encouraging interaction with humans. Figure 1 shows the implemented design of the robot
that was built.

⠀挀⤀

⠀搀⤀

⠀戀⤀

㔀挀洀

⠀愀⤀

㈀　挀洀

Figure 1. Basic appearance of the robot. From left to right. (1) Final Design of the robotic fish.
(a) Robot fish fins. (2) Robot floating in a fish tank, (b) Tail of the robot. (3,4) Rigid robotic fish
body and internal structure of the robotic fish. (c) Two acrylic boards are used for the front, and
bottom to place cameras inside the robot. Front: IR camera to capture the fish behaviors around the
water surface. Bottom: GoPro camera for capturing fish behaviors at the bottom area of the fish tank.
(d) Servo motor placements for robot fins.

For the hardware implementation, four principal parts were considered.

3.1.1. Rigid Body

As in Figure 1, the exterior structure of the robotic fish consists of two parts: body and
fish fins. The body structure was constructed by supporting the weight of the hardware
mounted on the fish while maintaining buoyancy. The main concern in being thorough
in the body’s construction was to guarantee the waterproofing so the hardware would
function correctly. A three-dimensional (3D) model for the top cover was designed with
Auto desk fusion 360 and printed with a 3D Printer using Acrylonitrile Butadiene Styrene
(ABS) as the printing material with a 2 mm thickness and a solidity ratio of 90, following
the same procedure to smooth out and waterproof the surface.

3.1.2. Robotic Fish Fins

The robotic fish consists of a caudal fin and two equivalent pectoral fins, where previ-
ous studies propose rectangular, trapezoidal, and bio-inspired fin geometries considering
the higher body mass of the robotic fish, as per a study by Matteo et al. [21]. The robotic
tail was constructed with flexible material to obtain a smooth undulation instead of a
rigid tail. As in Figure 1, fins built with plastic and 2 mm thick lightweight rubber sheets
were attached to the bent copper arms connected directly to the servo motors inside the
robot body.

3.1.3. Internal Structure

As in Figures 1 and 2, three servo motors were balanced on the left, right, and back of
the base, and a screw was fixed to the metallic frame of the body to control the fins. The
Raspberry Pi camera was mounted vertically at the front area of the body in a specially
printed 3D casing to capture the behavior of the fish in front of the robotic fish.

3.1.4. Food Dropping Unit

Activating the aquatic environment by providing fish food is one of the main objectives
of this study. The custom-made food dropping unit consists of a food container, a wheel,
and an outer canal, as shown in Figure 2. The Cyprinus carpio (common carp) fish used
in this research are bottom-feed fish types [40]. In order to detect fish, it is important to
keep fish near the bottom of the fish tank. Hence, dried hand-made fish food is selected for
simplicity of fish detecting and tracking purposes. Once the fish food was loaded into the
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container by rotating the wheel, it discharges the food through the channel to the fish tank
as in Figure 2.

䤀渀昀愀爀愀爀攀搀
匀攀渀猀漀爀
匀攀爀瘀漀
䴀漀琀漀爀猀

䜀漀倀爀漀 䠀攀爀漀
匀攀猀猀椀漀渀 㔀䤀渀昀愀爀爀攀搀 䌀愀洀攀爀愀 䴀漀搀甀氀攀

䘀漀漀搀 䐀爀漀瀀瀀椀渀最
唀渀椀琀

Figure 2. From left to right. (Left) Illustration of the 3D model of the robot with sensors. (Middle)
3D printed fish dropping unit and its 3D design. (Right) Sensors are put into the robot in the initial
stage of development.

This functionality starts after receiving the signal from a proximity sensor which
is located outside the aquatic environment. Fish are provided food in the water for a
predefined time period. The time for each fish drop pattern is variable. Providing fish food
at regular intervals may affect the water quality. Hence, according to the fish sample size of
our study, 5 is the maximum number of times food drop behavior can occur per day.

3.2. Hardware Architecture of the System
Internal Structure

In this study, two Raspberry Pi Model B micro-controllers, each equipped with a
2.4 GHz 802.11n wireless network, were utilized. One Raspberry Pi (referred to as the
“server”) was placed inside the robot’s rigid body and was responsible for controlling the
servo motors, cameras, and sensors. The video frames captured by two cameras were
transmitted to a computer (referred to as “client1”) and received the necessary control
signals via web sockets. The second Raspberry Pi (referred to as “client2”) was installed
outside of the aquatic environment and was equipped with a proximity sensor system to
detect human presence. Figure 3 displays the schematic diagram of the hardware for the
robotic system.

Figure 3. Hardware architecture of the developed robotic system with sensors.
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Three types of servo motors were used in this study. A Savox SW-0250MG waterproof
servo motor was used to control the caudal fin and had a speed of 60 degrees per 0.11 s and
generated a torque of 5 kg per 1 cm. However, the robot required a more powerful torque-
generating servo motor with momentum towards the front direction, so the TowerPro
MG995 servo motors were used to control the pectoral fins. These servo motors had a speed
of 60 degrees per 0.13 s and generated a torque of 12 kg per cm. In addition, a custom-made
food dropper unit was built using an SM-S4303R 360-degree rotation servo motor, which
operated at a speed of 60 rounds per minute and generated a torque of 4.8 kg per cm.

The GoPro Hero 5 Session, a waterproof camera capable of operating in depths of up
to 30 feet and taking high-resolution photos, was used as the bottom camera in this study. It
was used to collect images for training the neural network and to capture real-time images
while the robot was in operation. An IR camera module, v2 (Pi NoIR), was used as the front
camera of the robotic fish. This camera was used to detect and track fish swarms, allowing
the robot to maneuver towards them. The camera was fixed to the server Raspberry Pi and
controlled by the main program of the robotic fish. Additionally, the camera was able to
capture fish that were swimming and behaving closer to the surface of the water.

An FC-51 IR Obstacle Avoidance sensor module was used in this study. It consisted
of a pair of IR transmitters, an IR emitting tube, and a receiver tube. The module also
included a potentiometer knob to adjust the detection distance. In this study, four sensors
of this module were used to detect fish tank surfaces and other obstacles in the aquatic
environment. The sensors were named front, rear, left, and right, respectively, and were
horizontally located 4 cm below the robotic fish’s roof. The left and right sensor detection
distance was set to 10 cm, whereas the front and rear sensor obstacle detection distances
were set to 20 cm and 25 cm, respectively. The output port of the sensors was directly
connected to the Raspberry Pi microcontroller. The HC-SR04 Ultrasonic Sensor was used to
detect the presence of humans in the aquatic environment. This module had a detection
range of 2 cm to 400 cm, allowing the robotic fish to respond in a timely manner by
changing its behavior. Four sensors were installed outside the fish tank and all sensors
were connected to the client2 Raspberry Pi and controlled by it.

3.3. Experimental Setup

The authors of this study, one of whom is an enthusiast for Cyprinus carpio fish
during his leisure activities, created an experimental setup in a home garden. An aquatic
environment measuring 240 cm × 120 cm × 90 cm was constructed to detect patterns and
develop algorithms. The tank was filled with fresh water and 10 Cyprinus carpio fish of
different sizes were placed inside. Ultrasonic sensors were installed around the fish tank.
The fish were introduced to the environment and the robotic fish was deployed. The fish
were given time to adapt to the new environment and to start performing their natural
swarm behaviors. Data collection for the fish-detecting algorithm was performed using the
GoPro camera located at the bottom of the robot. Additionally, a web camera was set up on
top of the tank to observe the behavior of the robot and the fish. Figure 4 illustrates the
experimental setup used in this research.

3.4. Software Implementation

Figure 5 illustrates the control flow of the robot. All video frames captured by the two
cameras were sent to the fish detection algorithm to detect the position of fish in each frame.
In order to ensure that the video frames are transmitted in the correct order, Transmission
Control Protocol (TCP) sockets were used to stream the video frames between the server
and the client.
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唀氀琀爀愀猀漀渀椀挀 匀攀渀猀漀爀

䘀椀猀栀 琀愀渀欀 昀椀氀氀攀搀 眀椀琀栀 昀椀猀栀

刀漀戀漀琀

Figure 4. An illustration of the experimental setup used in the research, which includes ultrasonic
sensors for detecting human presence.

Figure 5. The simplified software architecture of the robotic fish is illustrated with the use of color
coding, where sensors are represented in green, algorithms in yellow, and robot behaviors in blue.

3.4.1. Fish Detecting Algorithm

Detecting moving fish using moving robots brings more complexity to the system.
Removing the background noise of the video frames taken from the GoPro camera, caused
by the surrounding fluid and other environmental obstacles makes detecting fish more chal-
lenging. We incorporated background subtraction with the moving average method [41].
Let BS be the output image after applying background subtraction, and MA be the out-
put image of the moving average algorithm. Following Equation (1), which describes
background subtraction,

‖l(x′, y′, t)− l(x′, y′, t− 1)‖ > Th. (1)

where x′ and y′ are the pixel position, t denotes the time, l denotes the photo label, and
Th represents the threshold value. We combined BS and MA using the bitwise “And”
operation and applied 15 times of image closing, 15 instances of image opening, 2 instances
of image eroding, and 10 instances of image closing, respectively, for the noise cancellation.
Furthermore, filters are used for both closing (with a kernel size of 2 × 2) and opening
(with a kernel size of 1 × 1) operations, and then the center points of each moving fish were
calculated. Figure 6 shows the sample output that is obtained from the fish detection.
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⠀愀⤀ ⠀戀⤀ ⠀挀⤀ ⠀搀⤀

Figure 6. The fish detection process is composed of four stages, as illustrated: (a) input image is
closed and then opened, (b) the closed and opened image is eroded, (c) the eroded image is closed,
(d) final output image with fish detection is obtained.

3.4.2. Classify Fish Swarm Patterns

The limited field of view of the robotic fish makes it impossible to classify all fish
swarm behaviors. Therefore, four patterns were defined as the corpus: Fish Schooling-
Following (pattern 1), Fish Schooling-Parallel (pattern 2), Shoal (pattern 3), and Fish
Schooling-Tornado (pattern 4). A Convolutional Neural Network (CNN) was used to
classify fish swarm behavior. Images taken from the camera set up on top of the tank
were used for this purpose. A Python program in OpenCV was created that captures fish
positions and saves frames every minute. The program first generates a blank image and,
then, depending on the fish’s moving direction, it places a marker on the empty image.
Figure 7 illustrates the four fish swarm patterns selected for the study and the outcome
image of the detection algorithm.

⠀愀⤀ ⠀戀⤀ ⠀挀⤀ ⠀搀⤀

Figure 7. The selected fish swarm patterns in the study are illustrated: (a) Fish Schooling-Following,
(b) Fish Schooling-Parallel, (c) Shoal, and (d) Fish Schooling-Tornado patterns.

The GoPro camera collected and labeled 1200 images according to fish swarm patterns,
which was not a sufficient training set. To increase the dataset, image augmentation
techniques such as image rotation, translation, flipping, and cropping were used to bring
the dataset up to 1620 images. The CNN classifier was used, the first layer of which
is the convolution layer, which extracts features from the input images and convolves
the features to the feature map, followed by applying the Rectified Linear Units (ReLU)
activation function, which is used after every convolution operation, and then followed by
the pooling layer. Equation (2) describes the ReLU activation function,

f (i) = max(0, i), (2)

where i denotes the input for a particular neuron. In this study, two sets of layers were
used before the fully connected layers. In the first set of layers, the convolution layer takes
224 × 224 × 3 images as input and learns 32 convolution filters with a size of 3 × 3. Then,
the ReLU activation function followed by a max-pooling layer with a 2 × 2 stride window
was applied. The second set of layers starts with a convolution layer with 64 convolution
filters of size 3 × 3 to increase the depth of the network. Then, the classifier includes a
flattened layer that flattens the previous layer’s output to a single vector array. We used two
fully connected layers (Dense layers); the first fully connected layer contains 1024 nodes
which take a single array provided by the flattened layer as input; then, the ReLU activation
function is applied. Since only four selected fish swarm behaviors were considered, the last
fully connected layer contains only four output nodes followed by a softmax activation
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function. Furthermore, the Adam optimizer was used to optimize the classifier. Since this
was a classification problem, categorical cross-entropy was used as the loss function.

3.5. Dynamic Model of Robotic Fish

Since the rigid body and oscillating tail are the two main parts of the robotic fish,
hydrodynamic forces are generated as opposed to the robot by the robotic fish actuating
tail, described by Lighthill’s large-amplitude elongated-body theory [42]. The dynamic
model used in our study combines both rigid body dynamics and Lighthill’s theory [43].
Figure 8 shows the top view of the robotic fish while undergoing planar motion.

Figure 8. Top view of robotic fish in Cartesian coordinate system undergoing planar motion.

Suppose [X, Y, Z] denote the Cartesian coordinates, and [x, y, z] represent the body-
fixed coordinates concerning to robotic fish. x̂, ŷ, ẑ are unit vectors along x, y, z, respectively.
Throughout this study, we assume the centroid and center of gravity coincide at point G
and that the robotic fishtail only oscillates in the xy-plane. Further, we assume that the
robotic fish’s rigid body is symmetric to the xz-plane. Moreover, m̂ denotes a unit vector
parallel to the tail and n̂ denotes a unit vector perpendicular to the tail. The velocity at
G and angular velocity can be expressed as,

−→
V G = [VGx, VGy, VGz]T , −→ω = [ωx, ωy, ωz]

T ,
respectively. The tail defection angle with respect to negative x-axis denoted by θ and α
denotes angle between X-axis and x-axis. Using Kirchhoff’s equations of motion,

−̇→
P =

−→
P ×−→ω +

−→
F , (3)

−̇→
H =

−→
H ×−→ω +

−→
P ×−→VG +

−→
M, (4)

where
−→
P denotes linear momentum and

−→
H represents angular momentum of the rigid

body [44,45].
−→
F = [Fx, Fy, Fz]

T ,
−→
M = [Mx, My, Mz]

T indicate external forces and moments
about G, respectively. Hydrodynamic forces exerted on the tail were evaluated by Lighthill’s
large-amplitude elongated-body theory [43]. For simplicity, we take VGx, VGy, ωz as u, v, r,
respectively,

(mb − Xu̇)u̇ = (mb −Yv̇)vr + Fx, (5)

(mb −Yv̇)v̇ = (mb − Xu̇)ur + Fy, (6)

(Jbz − Nṙ)ṙ = (Yv̇ − Xu̇)uv + Mz, (7)
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where Jbz is the inertia and mb is the mass of the robotic fish body, including pectoral fins.
Finally, Xu̇, Yv̇ and Nṙ represent hydrodynamic derivatives.

We designed the robot’s maneuvers to suit its minimalistic design; therefore, verti-
cal plane maneuvers, such as up/down swimming motions, acceleration, deceleration,
and hovering, were not included in the corpus. To mimic fish-like swimming behaviors,
carangiform and sub-carangiform robotic fish were developed with C-shape sharp turns,
and S-shape turns [38]. Figures 9 and 10 show video sequences of the two main rotating
patterns. The white object in the pictures is the robot.

Figure 9. Video Sequences of C-Shape turning maneuver of the robotic fish.

Figure 10. Video Sequences of S-Shape turning maneuver of the robotic fish.

3.6. Data Collection

The experiment was conducted with 15 participants of varied ages (18–57), sex, and
fish-rearing experience. The participants were instructed to stand in front of the fish tank,
as shown in Figure 11, and observe the behavior of the fish.
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Figure 11. Experimental Setup with a participant.

Participants were given a questionnaire consisting of two parts, one before the experi-
ment and the other after the investigation. For improved visibility and analysis purposes,
questions were categorized into five sections.

• Part 1: information about the participant (5 questions);
• Part 2: animacy of the robotic fish (3 questions);
• Part 3: design of the robotic fish (3 questions);
• Part 4: the effectiveness of robotic fish behaviors (3 questions);
• Part 5: the overall impression of robotic fish (3 questions).

The first part of the questionnaire contained questions to identify the participant.
Important quantitative and qualitative data such as sex, age, and prior fish-rearing experi-
ence were included in this section, which were utilized in the data analysis section. The
second part of the questionnaire included questions that evaluated the animacy level of
the robot. This part aimed to measure the participant’s first impressions towards the robot
and whether they perceived it as a real fish. Additionally, it aimed to measure whether
the robotic fish had a deviation from the real fish maneuvers or not. The third part of the
questionnaire contained questions that evaluated the physical appearance of the robot. This
part aimed to measure user acceptance of the robotic fish and also included the participant’s
impressions towards the robot, as well as whether they preferred the minimalistic and
futuristic design of the robotic fish. The fourth part of the questionnaire contained questions
to measure the effectiveness of the robot fish’s behaviors, including each maneuver. This
part focused on whether the robotic fish was able to change the whole fish swarm patterns
by its set of maneuvers. Furthermore, user feedback was used in this part to evaluate
whether the changed swarm patterns were suitable for the situation. The final part of the
questionnaire focused on the participant’s overall impression and satisfaction with the
robotic fish. This part included an overall impression of the robot’s behaviors and whether
the robotic fish was able to enhance the interaction while keeping the aquatic environment
lively and reducing the stress levels of the participants.

4. Results and Discussion
4.1. Fish Detection

When it comes to previous works, few researchers have examined fish detection in
the past few years. Almero et al. tried to detect common carp fish in a tank using a small
data size [46]. Rekha et al. used CNN for fish detection and had an accuracy rate of 90%.
However, they used images of the camera feeds from fishing boats, and the dataset was
populated with fish outside the water [47]. Research by Christensen et al. indicated a
low fish detection accuracy due to the complexity and clearness of the selected dataset
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images [48]. Han et al. tried to detect fish shoals using a top view camera placed on the
top of the tank [49]. The accuracy changed according to the different batch sizes they used.
Table 1 shows the summary of the previous works.

Table 1. Summary of previous research.

Author Data
Size

Training
Testing
Ratio

No. of
Classes

No. of
Layers Accuracy

Almero et al. [46] 369 2:1 2 4 79.00%
Rekha et al. [47] 16,000 8:2 8 15 90.00%
Christensen et al. [48] 13,124 NA 3 6 66.7%
Hanet et al. [49] 600 4:1 6 4 82%

To analyze the accuracy of the fish detection algorithm, a random sample of 200 images
was chosen from a population of 1620 images using a random sampling method. As
mentioned above, the confusion matrix generated by manually separating the sample
images into categories was used in analyzing the algorithm’s accuracy. The confusion
matrix is shown in Table 2, and the confusion matrix measurements are shown in Table 3.

Table 2. Confusion matrix for fish detection.

n = 200 Detected Yes Detected No

Fish Present Yes TP = 121 FN = 27
Fish Present No FP = 17 TN = 35

Table 3. Confusion matrix measurements for fish detection.

Measure Derivation Value

Accuracy ACC = (TP + TN)/(P + N) 78.00%
Sensitivity TPR = TP/(TP + FN) 81.75%
Specificity SPC = TN/(FP + TN) 67.30%
Precision PPV = TP/(TP + FP) 87.68%

As shown in Table 2, the images were manually separated into four categories to
generate a confusion matrix responding to the fish detection algorithm. Figure 12 shows
the images of the four categories.

⠀愀⤀ ⠀戀⤀ ⠀挀⤀ ⠀搀⤀

Figure 12. The categories of each type. From left to right: (a) True Positive (TP), (b) False Negative
(FN), (c) False Positive (FP), (d) True Negative (TN).

The calculated value for the accuracy of the fish-detecting algorithm was 78%. Swirling
vortexes and moving air bubbles from bottom to top may be the reason behind the false
positive score, and poor water quality and lightning issues may be the reason behind the
false-negative score. Therefore, the impact of these factors affected the accuracy of the fish
detection algorithms.
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4.2. Fish Swarm Pattern Recognition

Thirty percent of the dataset was randomly extracted as the test set (a total of 250 im-
ages), and CNN was trained for 25 epochs. Table 4 below shows the confusion matrix for
all classes (Patterns) without normalization.

Table 4. Confusion matrix for pattern recognition.

Actual
Classified Pattern 1 Pattern 2 Pattern 3 Pattern 4

Pattern 1 49 8 15 0
Pattern 2 2 73 6 13
Pattern 3 8 7 42 0
Pattern 4 0 8 1 18

Compared to other machine learning models, the accuracy of the fish swarm-pattern
recognition model is comparatively low [50]. The dataset’s quality may be the main reason
behind this since most of the images used for training and for testing were from two
completely different sessions. The accuracy of this model is 77%. There were studies with
better accuracy than the model created in this study. However, those models required
high-end computing resources and were not available for public use. Additionally, those
models took considerable time to produce outcomes, while this model’s average time to
create an outcome was 5–10 s per image.

4.3. Food Drop Patterns

In this study, robotic fish performed four contrasting food drop patterns to enhance
the aquatic environment’s liveliness by improving the fish’s attraction. Data captured for
the fish-food drop patterns and the classified fish swarm patterns were analyzed. Table 5
contains the number of results of fish-food drop patterns that produced the expected fish
swarm patterns.

Table 5. Relationship between fish swarm patterns and selected fish-food drop patterns.

Fish Swarm
Patterns

Food Drop
Patterns S-Shape C-Shape O-Shape Straight

Fish Schooling-Following 26.7% 23.3% 20.0% 30.0%
Fish Schooling-Parallel 11.1% 55.6% 11.1% 22.2%
Shoal 13.6% 9.1% 40.9% 36.4%
Fish Schooling-Tornado 5.9% 35.3% 47.1% 11.8%

According to the results, the C-shape food pattern had a higher percentage (55.6%)
with the fish Schooling-Parallel pattern (Pattern 2). In contrast, all patterns have similar
percentages to the fish Schooling-Following pattern (pattern 1). Furthermore, the O-shape
and Straight food patterns were 40.9% and 36.4%, percentages, respectively, with the Shoal
pattern (pattern 3). Compared with the Fish Schooling Parallel pattern, the C-shape food
pattern and O-shape food pattern were 35.3% and 47.1%, respectively. Fish response to
particular fish-food drop patterns varied according to the time. Figure 13 shows fish
responses for C-shape and O-shape patterns and that the fish lost their interest at 32 and
19 s, respectively. Table 6 contains the maximum time (in seconds) for each fish food pattern
along with fish interest.
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Table 6. Maximum fish response time for each fish food pattern.

Food Pattern Name Maximum Fish Response Time (s)

Straight pattern 22
S-shape pattern 28
C-shape pattern 32
O-shape pattern 19

Figure 13. Fish responses for each of the food drop patterns.

After analyzing the results on fish-food drop patterns and changing fish swarm
behaviors, pattern 1 behavior responded to all the food drop patterns. Pattern 2 behavior
of fish responded mostly to C-shape and straight food drop patterns. Furthermore, pattern
3 fish behavior reacted only to the O-shape food drop pattern, while pattern 4 fish behavior
responded to both O-shape and C-shape food drop patterns.

4.4. Data Collected through the Questionnaire

Table 7 shows the summarized feedback from the questionnaire for the robotic fish.

Table 7. Summarized results of the questionnaire.

User
Feedback

Strongly
Agree Agree Not Sure Disagree Strongly

Disagree

Part 2 20.0% 48.9% 31.1% 0.0% 0.0%
Part 3 51.1% 37.8% 11.1% 0.0% 0.0%
Part 4 22.2% 26.7% 33.3% 17.8% 0.0%
Part 5 35.6% 42.2% 22.2% 0.0% 0.0%

The animacy, design of the robotic fish, and overall satisfaction achieved better user
feedback compared to the effectiveness of robotic behaviors, which have achieved moderate
user feedback. Since all the questions from parts 2–5 are on the same Likert scale, the
average value of the output was obtained in each of the sections. As shown in Figure 14,
when the age increases, the overall impression of robotic fish is also increasing. As in
Figure 14, it was also found that there was no significant relationship between the amount
of experience and the average score for the overall impression of robotic fish. According to
the data collected from participants as feedback, some of them suggested that their moods
and stress levels were not the same throughout the experimental time. Some suggested that
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more fish drop patterns could generate different fish swarm patterns. Hence, additional
fish drop patterns should be used to change the fish swarm behaviors.

Figure 14. (Left) Relationship with age and the average score for overall impression. (Right) Rela-
tionship with experience and the average score for overall impression.

5. Conclusions and Future Works

The developed robotic fish could detect the fish in the water, and identify their swarm
pattern with a significant accuracy of 78% and 77%, respectively. The robotic fish was
able to alter fish swarm behavior through synchronous pre-defined maneuvers where the
highest percentage of 55.6% was shown for fish Schooling-Parallel swarm pattern for the
C-shape fish-food drop pattern. At the initial stage, the robotic maneuvers were not smooth,
and the fish-dropping mechanism did not perform to expectations; however, the revised
controlling algorithm objective was achieved, producing improved maneuvers. According
to the collected data using subjective feedback from the 15 participants, their stress was
comparatively enhanced mainly through the generated fish swarm patterns by the robotic
fish. A larger proportion of participants agreed that the overall impression of the robotic
fish was positive. Assessing the results obtained, it was evident that the robotic fish was
capable of detecting fish, identifying fish swarm patterns, and ultimately inducing swarm
behavior in the fish which successfully altered the swarm patterns of the fish.

We encountered difficulty obtaining clear pictures using the camera modules we
utilized to detect fish underwater, and at one point, the GoPro camera suffered water
damage. It is recommended to use more advanced camera sensors in future projects. The
food drop pattern was determined by a simple random assignment algorithm, which could
be improved by implementing a learning algorithm such as Q-learning to enable the robot
to predict the optimal drop pattern for maximum interaction. Additionally, the study was
limited to a single fish species and a small aquatic environment. The study could be further
strengthened by including multiple fish species and a larger marine environment.
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