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Abstract: The identification of instability problems in freight trains circulation such as unbalanced
loads is of particular importance for railways management companies and operators. The early
detection of unbalanced loads prevents significant damages that may cause service interruptions
or derailments with high financial costs. This study aims to develop a methodology capable of
automatically identifying unbalanced vertical loads considering the limits proposed by the reference
guidelines. The research relies on a 3D numerical simulation of the train–track dynamic response
to the presence of longitudinal and transverse scenarios of unbalanced vertical loads and resort-
ing to a virtual wayside monitoring system. This methodology is based on measured data from
accelerometers and strain gauges installed on the rail and involves the following steps: (i) feature
extraction, (ii) features normalization based on a latent variable method, (iii) data fusion, and (iv)
feature discrimination based on an outlier and a cluster analysis. Regarding feature extraction, the
performance of ARX and PCA models is compared. The results prove that the methodology is able to
accurately detect and classify longitudinal and transverse unbalanced loads with a reduced number
of sensors.

Keywords: unbalanced vertical loads; freight traffic loads; wayside condition monitoring; train–track
interaction; artificial intelligence

1. Introduction

Rail transport has increased in the last decade, and it is likely to further increase
not only in terms of passenger transportation but also in terms of freight transportation.
The shift from road and air to rail is an important demand due to the rising energy costs,
congestion of roads and sky, and the demand for reducing gas emissions. Vehicle running
safety is a major concern for railway administrations, as a derailment may cause high
financial costs [1]. Moreover, the cost-effectiveness of track maintenance and renewal
activities should be considered, and for that, track degradation and damage need to be
controlled [2]. The presence of unbalanced loads in the track induces damage in the track
components, such as rails, sleepers, and ballast, which has implications in maintenance
periodicity [3]; thus, detection of these instabilities is of major importance. Condition-based
monitoring systems aim to contribute to these two aspects: safety and optimization of
maintenance actions. The identification of instability problems in operation is of particular
importance for railways management companies and operators by increasing the reliability
of this mode of transport and ensuring safety during rail traffic.

Unbalanced loads are an instability problem affecting specially freight trains as they
have the potential for causing vehicle derailment. As important as not exceeding the
overload limit, the load should be properly distributed in the wagons so that neither the
axle nor wheel is overloaded. It is generally accepted that the ideal location of the cargo
gravity centre is laterally and longitudinally at the centre of the vehicle. Despite not existing
universal requirements on the mass distribution for a loaded wagon, loading guidelines of
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several rail organizations specified allowable offset values [4–6]. This is the case of UIC
code [6] which presents limits for the longitudinal and lateral offset of the payload centre
of mass.

An uneven mass distribution could result in an obvious unbalance of wheel load and
deteriorate the curving performance seriously, as shown by Zhang et al. [7,8] in studies
about the effects of mass distribution in curved tracks. According to Pan et al. [9], if
trains remain overloaded or unbalanced loaded for a long period of time, the wheels and
axles will be subjected to fatigue phenomena that can cause axle breaking, axle cutting,
derailment, train subversion, etc. Pagaimo et al. [10] conclude that lateral unbalance of the
cargo is one of the most adverse scenarios in studying the potential derailment of freight
trains. Moreover, the reports presented by the Rail Accident Investigation Branch in the
UK [11] confirm the same conclusion.

Currently, there are several commercial weigh-in-motion systems (WIM), composed of
a series of sensors designed to capture the dynamic vertical forces applied by the passage of
a vehicle over the rail [3,12–15]. Mosleh et al. [13] proposed a method to obtain the weigh-in-
motion of the train, considering different speeds. Moreover, their study showed how train
speed and track unevenness affect the loads assessed by the WIM system. In the study of
Pintao et al. [3], a WIM algorithm developed for ballasted tracks is proposed and validated
with synthetic data from trains that run in the Portuguese railway network. The proposed
methodology to estimate the wheel static load is successfully accomplished, as the load
falls within the confidence interval. Although very widespread and efficient, WIM systems
are more focused on identifying situations of vehicle weighing and overloading [16–19],
and reported literature on systems capable of detecting situations of instability in railway
circulation, such as unbalanced loads, has been limited so far.

Most of the unbalanced systems proposed in the literature are on-board, with some ex-
amples found where the detection devices are mounted on vehicle carbody [20], bogies [21],
or suspensions [22]. Although the high precision for monitoring unbalance loads of these
devices, they require a high installation cost in order to study a wider range of vehicles.
The sensors on the railway track allows extracting a lot of data referring to all circulating
vehicles and thus enabling the methodology to monitor various types of vehicles with a
reduced number of sensors. For example, Alotta et al. [23] show a WIM-based algorithm
to verify all types of loading conditions of a wide variety of vehicles using strain gauges.
Moreover, Pan et al. [9] present an application of Fibre Bragg Grating (FBG) strain gauges
for train overload and unbalanced load monitoring, by comparing the dynamic wheel
axle load values on the two rails. Additionally, Ding et al. [24] propose an overload and
unbalance load detection system composed of load cells that automatically detects loading
weight, total weight, front and rear unbalanced load, and left and right unbalanced load.
Qing et al. [25] designs an innovative detection system of cargo loading position on vehicles
based on CCD (Charge-Coupled Device) image sampling equipment. These examples
show different types of approaches for unbalanced load detection, but to the knowledge of
the authors, none of them use unsupervised automatic methodologies.

Recent technological advances allow the development of automatic methodologies for
detecting and classifying different types of damage in railway systems. These methodolo-
gies rely on advanced signal processing combined with machine learning techniques and
are typically based on the extraction of proper features to distinguish undamaged and dam-
aged situations. Previous studies demonstrate good results in railway defect detection using
these approaches, namely, in the detection of train wheel damages, such as flats [26–31],
out-of-roundness [32], and squats and corrugation [33]. Typically, these damage identifica-
tion techniques require several operations including [34,35]: (i) data acquisition, (ii) feature
extraction, (iii) feature normalization, (iv) feature fusion, and (v) feature classification.
Other innovative techniques for wheel flat fault detection include a time–frequency ridge
estimation method [36] or a multiscale morphology analysis [29] that can effectively ex-
tract the influential features of signals from strong background noise and under variable
speed conditions.
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After acquiring data from the wayside monitoring systems, feature extraction is per-
formed. This operation converts the time-series data into more condensed information,
allowing damage to be more easily observed. Symbolic data, continuous wavelet trans-
form [27,37], principal component analysis (PCA) [38,39], and autoregressive models [34,40]
are examples of effective techniques for extracting damage-sensitive features for both static
and dynamic monitoring. In applications where the measured quantity is acceleration,
autoregressive models (AR) have been widely disseminated, and the autoregressive model
with exogenous input (ARX) [35] shows a higher sensitivity to damage in relation to AR
due to its ability to capture cross information between sensors.

The feature normalization is an important operation because it allows removing
the environmental and operational effects (EOV’s) from the identified dynamic response.
The objective of this procedure is to obtain normalized features sensitive to the damage,
and typically, latent variable methods are used, such as principal components analysis
(PCA) [41] or regressive methods, as well as multiple linear regression (MLR) [42].

In continuation, features fusion operation allows data compression without losing
relevant information. The most used algorithms are kernel-based methods [43], manifold
learning methods [44], neural networks [45], neighbourhood preserving embedding [46],
and Mahalanobis distance [34].

The final operation of the damage detection methodology is feature classification.
Typically, two different approaches are used: (i) unsupervised methods, in which models
are trained using labelled data under the supervision of training data, such as k-means [34],
self-organizing maps (SOM) [47], and cluster analysis [35], or (ii) supervised methods, in
which models are not supervised using training dataset, such as Naive Bayes classifiers [48]
and k-Nearest Neighbour classifier [49].

The present research aims to design a low-cost monitoring system capable of de-
tecting situations of instability in railway circulation, such as unbalanced loads. The
proposed methodology is based on the dynamic rail responses obtained from accelerom-
eters and strain gauges installed on the track. In this research, two different feature
extraction methods are tested. The first one consists of a highly sensitive autoregressive
model, the ARX model, and the second is based on the PCA method, to transform the
time-series measurements into fault-sensitive features. A feature normalization step
is afterward implemented by applying the latent variable method PCA. To improve
unbalanced loads detection and classification, a three-stage fusion process is defined. In
the first and second levels, all features from the same-type sensors are merged, and in
the third level, the different measured quantities (accelerations and strains) are fused to
enhance the sensibility to the unbalances. The last step is feature discrimination which is
achieved by performing an outlier analysis to detect unbalances and a cluster analysis to
classify them.

Thus, this numerical study intends to give innovative contributions to the devel-
opment of an unsupervised AI-based methodology to automatically detect and classify
longitudinally and transversely unbalanced loads from evenly loads, with special emphasis
on the following aspects:

- This automatic AI-based methodology is an improvement regarding the common meth-
ods found in literature, based on direct observations and contact force calculations;

- This methodology is based on responses obtained not only from strain gauges but also
from accelerometers. The use of accelerometers in WIM systems is not so common but
brings some advantages. One is the ease of installation, and another is the possibility
of being used in a wider monitoring system to detect other types of vehicle damages;

- The proposed methodology is tested regarding the number and type of sensors show-
ing a very high accuracy even with a reduced number of sensors.
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2. Modelling
2.1. Freight Vehicle

The vehicle used in this study is a five-freight wagon of the Laagrss type, whose
numerical model was developed by Bragança et al. [50]. The Laagrss wagon is used for
container transportation, as depicted in Figure 1a. Each wagon has a tare weight of 13.5 t,
and a maximum overload of 30 t with one container layout, or 2 × 15 t in a two-container
layout. The three-dimensional (3D) multibody dynamic model, Figure 1b, was developed
in ANSYS® [51] using spring-dashpot elements to simulate the suspensions in all the
directions and mass point elements to represent the mass and inertial effects in the centre
of gravity of each component of the cars (carbody, bogies, and wheelsets). Rigid beam
elements are adopted to link the aforementioned elements.
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Figure 1. Laagrss type freight wagon: (a) double wagon overview; (b) numerical model.

The mechanical properties of the vehicle are presented in Table 1, namely mass (m)
and rotary inertias (I), stiffness (k) and damping (c) of the suspensions, as well as the
longitudinal (L), transverse (W) and vertical (H) geometric distances. The subscripts cb and
w indicate that the respective property is related to the carbody and wheelsets, respectively.
The freight wagon has only one level of suspension, without any bogie, and thus, the
wheelset is connected directly to the carbody through the suspension.

Table 1. Mechanical properties of the freight vehicle model.

Carbody Wheelset Suspensions

Parameter Value Parameter Value Parameter Value

Mass mcb (ton) 13.5 Mass mw (kg) 1247
Longitudinal

stiffness
k1,x (kN/m)

44,981

Roll moment of
inertia, Icb,x

(
t.m2) 49 Roll moment of

inertia Iw,x
(
kg.m2) 312 Lateral stiffness

k1,y (kN/m)
30,948

Pitch moment of
inertia, Icb,y

(
t.m2) 673 Yaw moment of

inertia Iw,z
(
kg.m2) 312 Vertical stiffness

k1,z (kN/m)
1860

Yaw moment of
inertia Icb,z

(
t.m2) 665 Vertical damping

c1,z (kN.s/m)
16.7

Length Lcb (m) 10

Height Hcb (m) 2.17

Width Wcb (m) 2.297
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2.2. Track

The track is modelled in ANSYS®, Canonsburg (PA), USA [51] with a multiple-layer
scheme, in which the ballast, sleepers, and rails are linked through elastic elements that
represent the mechanical behaviour of the interface, as shown in Figure 2. Figure 2a
schematically presents the track, while Figure 2b represents the track model in finite
elements. The ballast mass is simulated by discrete mass point elements, while the sleepers
and rails are modelled with beam elements with appropriate properties. The interfaces,
namely, the ballast and pads/fasteners, located below and above the sleepers, respectively,
have been considered by using spring-dashpot elements in the three directions. Finally,
spring-dashpot elements are used to consider the foundation’s flexibility. The properties
of the track model, including the description of the variables presented in Figure 2, are
presented in Table 2.
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Table 2. Stiffness properties of the railway track.

Parameter Value

Rail

Ar (m2) 7.67 × 10−4

ρr (kg.m3) 7850

Ir (m4) 30.38 × 10−6

Er (N/m2) 210 × 109

Rail pad
Kp (N/m) (Kx/Ky Kz) 20 × 106/20 × 106/500 × 106

Cp (N.s/m) (Cx/Cy Cz) 50 × 103/50 × 103/200 × 103

Sleeper ρs (N/m) 2590

Ballast
Kb (N/m) (Kx/Ky Kz) 900 × 103/2250 × 103/30 × 106

Cb (N/m) (Cx/Cy Cz) 15 × 103/15 × 103/15 × 103

Foundation Kf (N/m) (Kx/Ky Kz) 20 × 106/20 × 106/20 × 106

Four artificial irregularity track profiles are taken into consideration in this study.
Based on accurate data, power spectral density (PSD) curves are generated and then artifi-
cial irregularity profiles in vertical and transverse directions are created in the MATLAB®

software 2018a version [52]. Wavelengths between 1 m and 75 m with a sampling discretiza-
tion of 0.01 m are considered, covering the wavelength ranges D1 (3 m to 25 m) and D2
(25 m to 70 m) defined by the European Standard EN 1384-2 [53]. The four different vertical
irregularity profiles (1 to 4) created for both right and left rails are presented in Figure 3.
The generated irregularity profiles show amplitude peak values between 5–6 mm, which
are lower than those indicated in the European Standard [53].
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2.3. Vehicle–Track Interaction

The numerical vehicle–track dynamic interaction simulations are carried out with the
in-house software VSI—Vehicle-Structure Interaction Analysis validated and described
in detail by Montenegro et al. [54] and used in distinct applications [34,55,56]. The key
point of this model lies in the wheel–rail contact element connecting the two subsystems.
This element governs the contact interface, more precisely the evaluation of the wheel–rail
contact forces in the normal and tangential directions. After determining in each time step
the position of the contact point, the algorithm computes the normal contact force through
the Hertz nonlinear theory [57] and the lateral and longitudinal tangential creep forces
through the USETAB routine [58]. This numerical tool is implemented in MATLAB® [52]
and imports the structural matrices from both the vehicle and track previously modelled
in a finite element (FE) package, which in this study is ANSYS® [51]. Note that, although
the models of both subsystems are firstly modelled separately, the VSI software links them
through a fully coupled methodology. The illustrative approach of the VSI tool is shown
in Figure 4.
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3. Simulation

The automatic unbalanced loads detection methodology is tested and validated in this
research with numerical dynamic rail response that simulates specific and known scenarios
in terms of load scheme. For testing the proposed detection methodology, scenarios
in normal operation conditions (considered into a baseline) and unbalanced scenarios
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are considered. The unbalanced limits defined in the UIC code [6] are used to generate
unbalanced load schemes for the freight wagon and also as a limit to separate permissible
and impermissible unbalance loadings. In the case of two-axle wagons, for longitudinal
unbalances, the ratio of load per axle should be less than 2:1, and for transverse unbalances
the ratio of load between the wheels (left/right) of a given axle should be less than 1.25:1.

3.1. Virtual Wayside Monitoring Device

The virtual wayside monitoring system is considered to detect trains with unbalanced
loads above the limits. The system is composed of a set of 8 accelerometers and 8 strain
gauges mounted on the rail at mid-span between two sleepers, as illustrated in Figure 5.
The numbers 1 to 8 in the figure represent the positions of the measurement points, in the
right and left rails. In order to have a more realistic track response, an artificial noise of
5% is considered in the numerical measurements. To obtain a closer and more reliable
reproduction of the dynamic response and to the sampling frequency of real sensors, a
sampling frequency equal to 10 kHz is used.
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3.2. Baseline

In order to define a robust baseline with a broad range of scenarios for detecting
situations of instabilities, several simulations are conducted with different configurations
of loads, track irregularities, and vehicle speeds. Figure 6 summarizes the assumptions for
baseline scenarios, using six load schemes, four irregularity track profiles (1–4), and five
different speeds (40 to 120 km/h in intervals of 20 km/h). A total of 113 simulations are
performed with the Laagrss-type freight train composed of five wagons. The considered
loading scenarios are empty, half-load, and full load plus three other loading schemes
(UNB1, UNB2, and UNB3) with unbalanced loads under the limits prescribed by UIC
code of practice [51]. The load schemes UNB1 and UNB2 have unbalanced loads in the
longitudinal direction and UNB3 in the transverse direction. The full load scheme presented
in Figure 6 corresponds to an even load distribution on the wagon with two containers
with 15 t each, without exceeding the maximum mass per axle.

3.3. Unbalanced Scenarios

Four different unbalanced loads are defined for a Laagrss-type wagon model above
the limits specified by the UIC code of practice [6]. A total of 36 train passages composed of
five wagons are considered with the four unbalanced load schemes, which are summarized
in Figure 7. The first two correspond to a longitudinal offset of the cargo gravity centre
with an unbalance ratio of 2.5 (Long-1) and 3.1 (Long-2), and the other two correspond to
a transverse offset of the cargo gravity centre with an unbalance ratio of 1.45 (Transv-1)
and 1.70 (Transv-2). In total, 9 analyses are performed for each unbalanced load scheme
using the irregularity profile number 2. For each unbalanced load scheme, the unbalanced
loadings are simulated in different localizations, namely, in the first, third, and last wagons,
and the rest are set with the full load scheme, and for three different speeds, 60, 80, and
100 km/h.
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3.4. Track Dynamic Response

In Figure 8, time-series of the baseline scenarios in accelerators and strain gauges
sensors installed in the rail in position 1 are presented. All time-series are filtered based
on a low-pass Chebyshev type II digital filter with a cut-off frequency equal to 500 Hz.
These figures show the influence of different loading schemes, train speeds, and irregularity
profiles on the track response. Figure 8a,b show that the rail acceleration and strain for full
load and UNB2 scheme affect the track responses on the peak acceleration and strain values.
Figure 8c exposes the relevant influence of the train speed especially in acceleration records,
evidencing the need to consider various train speeds in the baseline. In the case of strain
responses, as shown in Figure 8d, the effect of train speed has no significance, as strains
are not sensitive to the dynamic component of the train actions. Finally, in Figure 8e,f,
two irregularity rail profiles are considered, and the results show that both profiles induce
similar rail acceleration and strain responses.
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Figure 8. Time-series with accelerations (a,c,e) and strains (b,d,f) measured in position 1 for baseline
scenarios: (a,b) comparison between full and UNB2 load schemes; (c,d) comparison between 60 and
120 km/h; (e,f) comparison between irregularities profile 2 and 3.

Moreover, some results are shown for unbalanced scenarios at measured position 1.
Figure 9a,b compare even full load distribution with longitudinal unbalanced scenario 2,
while Figure 9c,d show left and right rail responses considering a transverse unbalanced
load scheme. The results show a difference in terms of peak acceleration and strain
values during the first wagon passage, where the unbalanced load exists. In the case of
the transverse unbalanced load, the acceleration and strain peak values are higher for
the right rail than the left rail, a consequence of the load asymmetry. In general, the
strain responses are clearer than the acceleration responses, and visually, the unbalance is
more distinguishable.
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4. Methodology for Unbalanced Loads Detection
4.1. Overview

The Artificial Intelligence (AI)-based methodology for automatic detection and classifi-
cation of situations of unbalanced loads is presented in Figure 10 [35,40]. The methodology
relies on the accelerations and strains measurements acquired by numerical analysis of base-
line and unbalanced train passages in the virtual monitoring system and includes a four-step
procedure developed in MATLAB® [52] to be applied to the measured data, particularly:

(i) The feature extraction from the measured data is made by testing two different
indicator extraction techniques, namely, ARX models and PCA.

(ii) To remove the effects of operational and environmental variations, the method of
latent variables PCA is adopted.

(iii) The Mahalanobis distance is then used for the fusion of all features into one damage
index for each simulation but also to combine features from various sources. Thus, in
the first level is performed the fusion of all features, in the second level, the fusion of
all sensors, and in the third level, the fusion of the different measured quantities, in
this case, accelerations and strains.

(iv) For feature discrimination, automatic detection is achieved by combining ARX-based
features and outliers analysis, and for classification, an automatic clustering process
based on the k-means technique and PCA-based features is implemented.
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4.2. Feature Extraction—ARX vs. PCA

ARX models for feature extraction are applied since they can perform a significant
fusion while accurately generalizing the information contained in the data. This is a time-
series analysis method that considers the predictive behaviour of the system in a given
location considering its history at that same measurement point and the predictive response
at other measurement positions in the face of the same event—exogenous inputs. The ARX
model can be defined by the equation below:

xj =
na

∑
i=1

aixj−i +
nb

∑
k=1

bkyj−k + ε j (1)

where xj, yj, and εj are output, input, and error terms of the model at the signal value j,
respectively. On the other hand, na, nb and ai, bk represent the orders and the parameters
of the output and input data, respectively. Both order numbers are considered equal to
40, based on the Aaike Information Criteria [59]. Thus, for each event, the total number of
extracted features is 80. The sensor installed in position 5 is used as input and each of the
remaining sensors is defined as output.
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The PCA method is also used as a feature extractor, and a comparison with the ARX
model is performed to test which technique leads to a more efficient methodology. The
main idea is to get a dimensionality reduction that identifies important relationships in
the data, through a Covariance Matrix, and through a linear transformation into principal
components using Eigenvectors. Considering an input data matrix X (n × m), principal
components or scores can be calculated based on the following equation:

PC = X·T (2)

where PC is the (n × m) matrix of the principal components or scores, and T is the (m × m)
linear orthonormal transformation matrix with each column being an Eigenvector of X.

Prior to the application of the PCA method, a standardization of the input data matrix
X using Z-score, by subtracting the mean and dividing by the standard deviation for each
value of each column, should be carried out. It is important to perform standardization
before PCA because PCA is quite sensitive regarding the variances of the initial variables.
After the calculation of the principal component by using Equation (2), four statistical
parameters are extracted from the PCA scores, namely, the root mean square (RMS), the
standard deviation (SD), the skewness, and the kurtosis. Thus, with this method, the
number of extracted features is reduced to 4.

For each sensor, the extracted features constitute a matrix of n × m, where n is the
number of different train passages related to the baseline or unbalanced scenarios, and m
represents the number of extracted features. The dimension of matrices X in each method is:

- Matrix XARX with 149 × 80, ARX features;
- Matrix XPCA with 149 × 4, PCA features.

Figure 11 depicts four features relating to each technique mentioned above, consid-
ering the accelerometer 1. The extracted features attained with ARX are represented in
Figure 11a,b, while the extracted features by using PCA are represented in Figure 11c,d. The
results are divided into two groups: baseline scenarios (113) and unbalanced scenarios (36)
subdivided into longitudinal and transverse unbalanced loads with two magnitudes as
defined in Figure 7.

In Figure 11a,d, the features present a greater dispersion in baseline and unbalanced
scenarios, which is indicative of the influence of the effects of operational variations
considered in the simulated scenarios, and the difference of amplitude for baseline and
unbalanced passages is almost imperceptible. In turn, Figure 11b,c show, for feature 45
of ARX and feature 2 of PCA, that the amplitude variation of the unbalanced scenarios
is greater than the baseline scenarios. This proves that only specific features have the
potential to identify unbalanced loads. Particularly for PCA, feature 2, related to the
standard deviation, shows sensitivity to distinguish between longitudinal and transverse
unbalanced loads.

4.3. Feature Normalization—PCA

As previously mentioned, the second step of the AI methodology is feature normal-
ization, and the PCA method is used to eliminate the effects of the environmental and
operational variations (EOV’s) from the measured responses. With this procedure, the
features show greater sensitivity to damage. Assuming these EOV’s have a linear effect
on the identified parameters, the PCA method can efficiently remove the results of EOV’s.
Moreover, the most relevant information related to the operational and environmental
effects is retained in the first axes of the PCA. The number of p components to be discarded
is calculated by the common rule that considers the percentage of total variance explained
by each component to be equal to 80% [27]. In both PCA and ARX features, only the first
principal component is discarded. Figure 12 represents the two normalized features after
applying the PCA normalization to the ARX and PCA features.
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In the case of ARX features, as shown in Figure 12a,b, after removing EOVs, the
features remain sensitive to the unbalanced loads, and for feature 2, a significant variation
of amplitude occurs between baseline and scenarios with load instability. For PCA fea-
tures, as shown in Figure 12c,d, after normalization, only feature 2 shows a variation of
amplitude between baseline and unbalanced scenarios. Moreover, this feature is sensitive
to distinguish between longitudinal and transverse unbalanced loads.

4.4. Data Fusion—Mahalanobis Distance

After feature normalization, a data fusion is performed to increase the sensitivity of
the features to the abnormal cases, and as a result, a damage index (DI) is achieved for each
simulation. Data fusion aims to reduce the volume of the extracted data by persevering the
most relevant information, that is, preserving or even enhancing the ability to characterize
unbalanced scenarios.

Mahalanobis distance (MD) is used to reduce multivariate data into one single DI [60].
The MD calculates the distance between the unbalanced and baseline scenarios to define
similarities between them, where short distances represent large similarities. The MD is
generic enough to be used to detect any unbalanced scenario, while providing a weighting
that is entirely unsupervised, and therefore independent of human intervention, type of
train, etc. It consists of a weighted DI in which the weights are determined by the covariance



Sensors 2023, 23, 1544 14 of 23

structure. In addition, and more importantly, the weighting proportional to the covariance
structure provides an additional layer of feature normalization which allows outlining with
high sensitivity those that were not used for the definition of the covariance structure.
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The MD, named herein as DI, is calculated for each simulation by the following
expression:

DI =
√
(xi − x)·Sx−1·(xi − x)T (3)

where:
xi−Matrix with potential damage features;
x¯Matrix with the mean of estimated features in baseline scenario;
Sx¯Matrix with the covariance of baseline scenario simulations.
To merge all the features attained with the ARX and PCA techniques, the MD is

implemented for each of the sensors. In a first level, the fusion of all features is performed,
and in a second and a third levels, the fusion of all sensors is performed for the different
measured quantities, respectively. The first fusion process results in a 149 × 1 vector for
each one of the 8 sensors for each technique. Figure 13 shows the results of this 1st level of
data fusion based on each of the techniques (ARX and PCA) relative to accelerometer 1. It
is possible to observe that for ARX features, this process of fusing improves the detection
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sensitivity as a clear distinction between the baseline and unbalanced loads as depicted
in Figure 13a.
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To further increase the sensitivity or distinction between baseline and unbalanced sce-
narios, a second level of fusion—sensors fusion—is implemented. This process culminates
in a vector with 173 × 1 in which all the features from each type of sensor are merged. In a
subsequent step, the obtained vector from the second level is standardized using Z-score.
Then, in a third level of fusion, the features from the two types of sensors, accelerometers,
and strain gauges are merged. At the end of this fusion process, the output is one feature
vector that combines the information from all types of sensors.

This single feature vector increases the amplitude difference between the baseline and
unbalanced scenarios, increasing the possibility of effective detection of unbalanced loads,
as shown in Figure 14. By comparing Figures 13 and 14, the minimum amplitude values
increase from around 12 to 30, for ARX features, and from near zero to 10, for PCA features.
Moreover, the application of this third level of fusion to PCA features has enhanced the
difference between the longitudinal unbalances (Long-1 and Long-2) and the transverse
unbalances (Transv-1 and Transv-2).

After the fusion stage, it can be concluded that the most promising method for un-
balanced load detection is based on the ARX features because the amplitude difference
between baseline and unbalanced scenarios is significantly higher than the one obtained by
PCA features. For classification, given that only PCA features show sensitivity to distin-
guish longitudinal and transverse unbalanced scenarios, the considered method should be
based on PCA features. Based on these conclusions, in the next step of feature discrimina-
tion, the detection method is based on ARX features, and the classification method is based
on PCA features.
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4.5. Feature Discrimination
4.5.1. Outlier Analysis

Feature discrimination is the last phase of the AI-based methodology for the automatic
detection of unbalanced loads. In the proposed methodology, the outlier analysis is adopted
for unbalanced loads detection using ARX features. Based on the obtained results with
ARX features using the second and third level of data fusion (Figure 14a), a confidence
boundary (CB) is applied to distinguish between baseline and unbalanced scenarios. The
CB is calculated by using the Gaussian inverse cumulative distribution function (ICDF),
considering the mean value, ū, and standard deviation, σ, of the baseline feature vector,
and for a significance level α:

CB = invFx(1− α) (4)

where
F(x| µ, σ) =

1
σ
√

2π

∫ x

−α
e−

1
2 (

x−µ
σ )2dy, with xεR (5)

Consequently, when DI is equal to or higher than CB, a feature is considered to be
an outlier. The threshold significance level is defined as 1%, as it is normally observed in
several structural integrity monitoring studies to identify damage [34,61].

Figure 15 shows the effectiveness of the proposed methodology by comparing the CB
(represented as a green line) with the different DIs of each one of the 36 train passages with
unbalanced loads. Since the DIs for the first 113 passages are less than CB, the algorithm
can successfully distinguish an evenly train loading from an unbalanced one. As proved by
the different plots of Figure 15, unbalanced load detection is successfully achieved, with no
false-positive or false-negative cases, by using 8 accelerometers (Figure 15a), 8 strain gauges
(Figure 15b), or by using 8 accelerometers together with 8 strain gauges (Figure 15c).
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4.5.2. Cluster Analysis

For feature classification, a clustering process is proposed that aims to divide data sets
into different clusters, which must be as compact and separate as possible. In this study,
the k-means clustering technique is adopted, by using the city-block distance. The purpose
of clustering is to regroup the data into separated k clusters based on their feature vector
distances. The k-means algorithm is defined as follows: given a data vector (features) and
some arbitrary k clusters, the idea is to find k centroids that minimize the distance of each
vector to its nearest centroid. As previously mentioned, the k-means clustering method
requires the number of clusters to be defined in advance. To tackle this limitation, the
global silhouette index (SIL) [35] is used, making this an automatic process. Based on the
obtained results with PCA features using the second and third-level data fusion, Figure 16
shows the obtained clusters for each type of sensor.

The plots demonstrate that the k-means method can distinguish different combina-
tions of unbalanced cases when using the PCA feature set. By using the accelerometer
responses (a total of 8 sensors), in the case of Figure 16a, it is possible to separate the unbal-
anced scenarios into two large clusters, classifying the PCA features into longitudinal and
transverse unbalanced cases. When using the strain gauges responses (a total of 8 sensors),
as shown in Figure 16b, the robustness of the classification increases, without any false clas-
sification. By using the responses from 16 sensors (8 accelerometers plus 8 strain gauges),
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as depicted in Figure 16c, it is possible to efficiently separate the unbalanced scenarios into
three clusters, one comprising all longitudinal cases (long 1 and Long-2), another one with
the less severe transverse case (transv-1), and a last one with the more severe transverse
case (transv-2).
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4.5.3. Sensitivity for Different Sensor Layouts

The presented automatic procedure is applied for the accelerometers and strain gauges
responses of the 16 sensors positioned in the mid-span rail. To evaluate the optimized
number of sensors used to detect and classify unbalanced loads, a sensitivity analysis
is performed.

The results for three different numbers of sensors are plotted in Figure 17 for outlier
(ARX-based features) and cluster analysis (PCA-based features).

In Figure 17a, the results using a 16-sensor configuration, with 8 accelerometers
and 8 strain gauges, which is the configuration used in the results shown in previous
sections, are presented. Then, in Figure 17b,c, a reduced number of sensors are considered
respectively for an 8-sensor configuration (4 accelerometers and 4 strain gauges) and a 4-
sensor configuration (4 accelerometers and 4 strain gauges). In terms of outlier analysis, the
DI amplitude decreases with the reduction of the number of sensors. However, in all sensor
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configurations the methodology shows to be very efficient in detection. Regarding the
cluster analysis, the well-defined three clusters obtained with 16 sensors start to diffuse into
two distinct clusters in the case of 8 sensors, losing efficiency for the 4 sensors configuration.
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Table 3 summarizes the efficiency results of the proposed methodology in terms of
detection and classification for different sensor configurations, using accelerometers and
strain gauges. The results show a very good efficiency of the methodology in terms of
detection, with a negligible number of false positives and with no false negatives. It is
possible to conclude that although only two accelerometers or two strain gauges proved
to be enough to detect unbalanced loads, it is not sufficient to classify the unbalanced
scenarios as longitudinal or transverse.
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Table 3. False detection and classification relating to the number of sensors.

Sensors
(Accelerometers +

Strain Gauges)

Detection Classification

False Positives False Negatives Cluster Groups False
Classifications

16 (8 + 8) 0% (0/113) 0% (0/36) 3 (Long 1-2) (Transv1) (Transv2) 6% (2/36)
12 (6 + 6) 0% (0/113) 0% (0/36) 2 (Long 1-2) (Transv 1-2) 6% (2/36)
8 (4 + 4) 0% (0/113) 0% (0/36) 2 (Long 1-2) (Transv 1-2) 8% (3/36)
4 (2 + 2) 2% (2/113) 0% (0/36) 2 (Long 1-2) (Transv 1-2) 25% (9/36)
2 (2 + 0) 1% (1/113) 0% (0/36) 2 (Long 1-2) (Transv 1-2) 28% (10/36)
2 (0 + 2) 1% (1/113) 0% (0/36) 2 (Long 1-2) (Transv 1-2) 39% (14/36)

From an economic point of view, 8 sensors, consisting of 4 accelerometers and 4 strain
gauges, are able to detect and classify longitudinal and transverse unbalanced loads. How-
ever, it should be highlighted that only two sensors are sufficient to detect unbalanced loads
automatically. As transverse unbalanced loads tend to be more severe than longitudinal
unbalances, classification is very helpful for railway operators, to control safety against
derailment of the vehicles. The PCA-based classification process shows that it can efficiently
separate the longitudinal from transverse unbalanced cases, being the transverse case the
one with the higher amplitude.

5. Conclusions

This paper proposes an automatic methodology based on artificial intelligence that
can accurately identify unbalanced vertical axle load situations which can put at risk the
running safety of the operating freight trains.

Two different feature extraction methods are tested, one consisting of a highly sensitive
autoregressive model, the ARX model, and the other one based on the PCA method to
transform the time-series accelerations and strains into sensitive features for unbalanced
load detection.

The ARX method proved to be the most effective feature extraction method for detect-
ing unbalanced loads, as the distance between the unbalanced scenarios and the confidence
boundary is high enough to have no false unbalanced identification. The extracted features
based on the PCA method showed to be more sensitive to the transverse unbalanced
load cases and proved to be very robust for the classification between longitudinal and
transverse unbalanced scenarios.

The effectiveness of the proposed methodology is tested regarding the number and
type of sensors with very good accuracy. Both acceleration and strain data responses pro-
vided good performance in detection. Although the installation of only two accelerometers
or two strain gauges proved to be adequate to detect an unbalanced load, it is not enough to
classify the unbalance according to the type (transverse or longitudinal). From an economic
point of view, the optimal layout solution for detecting and classifying longitudinal and
transverse unbalanced loads consists of a wayside system with 4 accelerometers and 4
strain gauges installed symmetrically on both rails.

Future works include experimental tests to validate the proposed methodology based
on on-site measurements. Furthermore, the upgrade of the current methodology to localize
unbalanced loads in multiple wagons of a freight train will be considered.
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