
Citation: Alexandrescu, A. Parallel

Processing of Sensor Data in a

Distributed Rules Engine

Environment through Clustering and

Data Flow Reconfiguration. Sensors

2023, 23, 1543. https://doi.org/

10.3390/s23031543

Academic Editor: Naveen

Chilamkurti

Received: 30 December 2022

Revised: 27 January 2023

Accepted: 28 January 2023

Published: 31 January 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Parallel Processing of Sensor Data in a Distributed Rules Engine
Environment through Clustering and Data Flow Reconfiguration
Adrian Alexandrescu

Department of Computer Science and Engineering, Faculty of Automatic Control and Computer Engineering,
Gheorghe Asachi Technical University of Iaşi, Str. Prof. dr. doc. Dimitrie Mangeron, nr. 27, 700050 Ias, i, Romania;
adrian.alexandrescu@academic.tuiasi.ro or aalexandrescu@tuiasi.ro

Abstract: An emerging reality is the development of smart buildings and cities, which improve
residents’ comfort. These environments employ multiple sensor networks, whose data must be
acquired and processed in real time by multiple rule engines, which trigger events that enable specific
actuators. The problem is how to handle those data in a scalable manner by using multiple processing
instances to maximize the system throughput. This paper considers the types of sensors that are
used in these scenarios and proposes a model for abstracting the information flow as a weighted
dependency graph. Two parallel computing methods are then proposed for obtaining an efficient
data flow: a variation of the parallel k-means clustering algorithm and a custom genetic algorithm.
Simulation results show that the two proposed flow reconfiguration algorithms reduce the rule
processing times and provide an efficient solution for increasing the scalability of the considered
environment. Another aspect being discussed is using an open-source cloud solution to manage the
system and how to use the two algorithms to increase efficiency. These methods allow for a seamless
increase in the number of sensors in the environment by making smart use of the available resources.

Keywords: parallel processing; smart city; sensor; rules engine; k-means clustering; genetic algorithm;
sensor network; clustering; cloud computing

1. Introduction

As technological development spreads across the world, there is a tendency to autom-
atize and remove the human element from many aspects of everyday life, from automated
production lines to solutions based on artificial intelligence such as self-driving cars or
generating human language.

When it comes to improving the day-to-day lives of people and their respective
communities, the concept of smart-entities emerges, which make use of the Internet of
Things (IoT). Examples of entities are homes, buildings or cities. The term IoT started in 1999
and involved interconnected entities by means of radio frequency identification technology.
Nowadays, the IoT is characterized by concepts such as wireless sensor networks (WSNs),
identifiable devices and actuators, cloud computing or low energy [1]. A wireless sensor
network (WSN) represents a network of spatially dispersed sensors that monitor various
aspects of the environment in which it is deployed.

The Internet of Things concept is the cornerstone of smart entities. A simple form
of smart entity is a smart home, in which basic heating, ventilation and air conditioning
(HVAC) elements are automatically managed. HVAC implies the use of different technolo-
gies to control heating, ventilation and air conditioning in the home or other buildings. The
next step is the smart building [2,3], in which the building’s functions are automatically
controlled to improve the lives of the residents while being cost and energy efficient. An-
other step forward is smart cities [4,5], which take the concepts of comfort and efficiency
even further by focusing on sustainability, connecting citizens to various public services,
managing traffic and providing utilities. There are also spin-offs to these concepts such as

Sensors 2023, 23, 1543. https://doi.org/10.3390/s23031543 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23031543
https://doi.org/10.3390/s23031543
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-0663-4795
https://doi.org/10.3390/s23031543
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23031543?type=check_update&version=1


Sensors 2023, 23, 1543 2 of 21

smart villages for developing and introducing smart technologies to rural areas [6] and
smart regions [7], which focus on connecting smart cities while having in mind a regional
strategy for “promoting smartness”. Another aspect of smart entities is the use of artificial
intelligence to identify patterns and make decisions.

Regardless of the goal of smart entities, a very high amount of sensors is required.
Those sensors produce large volumes of information that need to be handled, in most cases,
nearly in real time.

There are several surveys regarding the different types of sensors employed in an
IoT environment [8–11]. The main sensor category types that can be deployed in an IoT
environment and smart cities include ambient, motion, vital, identification, positioning,
entity detection or presence, interaction, acoustic, hydraulic, force or load, vibration or
chemical sensors.

A key element of processing sensor data is the use of a rule engine. A rule engine
allows the definition of multiple rules that activate when a condition is met. The condition
is usually a comparison between values obtained from sensors and other fixed data. Thus,
the activation can be triggered depending on if a sensor reading changes. If there are
multiple sensors in the system, then there are also multiple rules that handle the data. All
this information must be processed as fast as possible.

The current paper focuses on handling large volumes of data from sensors by ef-
ficiently using a limited amount of computing resources. The considered environment
comprises multiple sensors, sensor networks, gateways, data storage solutions and com-
puting instances. The main goal is to determine a strategy for distributing the sensor data
processing among the available computing resources.

The approach proposed in the current paper focuses on processing raw sensor data in
a central point with distributed computing capabilities. Multiple gateways can continue to
exist in the system, but their role is just to filter noise and forward the data. Two methods
are proposed for determining the data flow strategy: one based on the k-means clustering
algorithm and a variation of a genetic algorithm.

The main contributions and novelty that the current paper proposes are summarized
as follows:

• A sensor data processing architecture in which raw sensor data from a large number
of different sensors is efficiently processed in a distributed computing environment;

• An abstraction of sensor data processing by using rule engines, which allows data
flow configuration by means of algorithms that analyze communication patterns;

• Two methods for streamlining data flow and improving data processing by creating
clusters. where these algorithms process the information by taking into account the
number of sensors for each rule and the data volume from each sensor. The two
methods are the following:

– An adaptation of the k-means clustering algorithm;
– A genetic algorithm with a complex fitness function based on two desired criteria;

• A solution for cloud deployment while ensuring scalability and adaptation to the
sensor rule particularities of the system.

The remainder of this paper is organized as follows. Section 2 discusses how the
proposed architecture and the two proposed methods compare to existing solutions for the
considered topic. Section 3 presents the considered context as well as the proposed goal,
the rules engine, the sensor rule abstraction, the performance metrics that were used, the
two proposed clustering methods and the solution to deploying the system for a cloud
solution. Section 4 describes the simulation set-up and the experimental results. Finally,
Section 5 showcases the importance to the proposed methods and how they perform when
considering various other aspects of the environment. Another discussion in this section is
related to scalability and managing a dynamic environment.



Sensors 2023, 23, 1543 3 of 21

2. Related Work

The related work presented in this section is concentrated on the main aspects of the
proposed research: rule engines, sensor networks, data flow reconfiguration and clustering.

Existing rule engines focus on the representation of the facts that are used in handling
sensor information. This is performed as a way to increase the efficiency of processing
a large amount of sensor data. In [12], the authors extracted atomic events from sensor
data and proposed a scheme that minimized the rule-matching overhead. Another related
piece of research is [13], where the authors proposed a rule engine which allowed flexible
rule strategies. In terms of smart rules engines, in [14,15], the authors presented a solution
based on fuzzy logic for processing information. The research presented in the current
paper uses the rule engine from [16], mainly due to its simplicity. The way the proposed
system is designed, it allows any of the aforementioned rule engines to be used as long as
the time it takes to process the sensor data is directly dependent on the volume of received
sensor data.

There is existing research regarding various aspects of the considered environment, but
none of it focuses on optimizing the data flow in the system in both a centralized manner
(by pooling data from all of the sensors) and a decentralized manner (by distributing the
processing to multiple instances). The advantage is that multiple gateways can be used to
communicate with specific sensor networks, and they each can provide local processing
while providing the results up the hierarchical chain, perhaps to a central cloud. This
method has the disadvantage of requiring computational capabilities for each gateway, and
some relevant data may also be overlooked if they are processed locally. Those data may
be relevant in the global scope.

In terms of environments with multiple connecting gateway systems and wireless
sensor networks, the current research topics cover a wide area. An example of handling
communication in hierarchical wireless sensor networks with multiple gateways is pre-
sented in [17]. However, in that research, there is a method proposed for solving the
authentication problem that is not focused on improving information flow but rather on
securing access to resources.

Another aspect which is discussed in the current paper is related to data flow reconfig-
uration. Although the main focus is obtaining a very good configuration from the start,
Section 5 of this paper tackles the dynamic reconfiguration scenario. In terms of network
configuration, the authors of [18] proposed a platform for fast sensor network prototyping.
Regarding dynamic network reconfiguration, there is existing research in this field [19] and
also comparisons between existing methods [20,21]. None of that research can be directly
applied to the considered environment of multiple rule engines that have to process the
sensor data efficiently.

Much research regarding the considered environment focuses on improving energy
efficiency. In [22], two methods were proposed for optimizing energy consumption in
a WSN for monitoring a smart city. Even though the k-means clustering algorithm was
employed, the features used for the algorithm and the overall scope differ from the research
proposed in the current paper. Another paper involving clustering, gateways and sensors
used in a different scope is [23]. The authors proposed that there is a solution for improving
energy consumption in a wireless body area network used for patient monitoring. The used
clustering method selects cluster heads based on the residual energy of the cluster nodes.
Other papers used hierarchical clustering [24,25] and other techniques [26] to determine
the optimal number of clusters for minimizing energy consumption. While those papers
used clustering to achieve their proposed goals, none of them focused on the particular
problem considered in the current paper.

The research in [27] used k-means clustering in order to enhance privacy for data
clustering of information from an IoT environment. The idea was centered on improving
privacy and not on increasing the efficiency, as is the case in this proposed research. Another
paper involving clustering in WSNs is [28], but there the authors considered multi-hop
routing trees and reduced the total energy consumption. In [29], the authors focused



Sensors 2023, 23, 1543 4 of 21

again on energy consumption and the distribution of cluster heads. These papers had more
features available for consideration through the k-means algorithm, which led to an increase
in the efficiency of using that algorithm in solving a specific problem. Other related research
includes parallel clustering on low-power devices in edge computing environments [30] or
methods for delivering sensor data and storing them in an IoT environment [31,32].

3. Proposed Architecture and Methods
3.1. Considered Context and Proposed Goal

Smart buildings and smart cities employ thousands and even tens of thousands of
sensors to monitor various parameters and to interact with the environment based on
specific rules. The data from those sensors need to be processed nearly in real time.

Three issues arise: how to obtain the data from the sensors, where to store them and
how to properly process said data. In terms of obtaining data from sensors, a good approach
is the one from [33], in which there are bridge and driver processes that gather data from
one or more sensors belonging to a specific communication protocol (e.g., Z-Wave, ZigBee
or other standardized APIs) and filter data noise. Storing the data can be accomplished in
two main ways: message-queuing services (e.g., MQTT broker, RabbitMQ or a cloud queue
solution) or databases (e.g., a data store or data lake, usually stored in a public or private
cloud). Regardless of the storage solution, the sensor information must be efficiently and
swiftly processed in order to take specific actions, or large amounts of data can be processed
to find certain patterns. Either way, there is the need for a gateway component to use the
acquired data and perform some computations and processing.

The aforementioned approaches work well for smart home and smart building systems,
but for smart cities and smart regions, the incoming data need some sort of distributed
computing in order to be properly processed. Figure 1 shows two approaches for handling
the data flow and processing.

Figure 1. Two architectures for processing sensor data. (a) The sensor acquisition, storage and
processing are performed locally, and the processed results are sent to the central data storage
component, which is accessed by the central data-processing component for further data analysis.
(b) The components that perform the data acquisition store the information in central distributed
data storage, which is accessed by distributed data-processing components.

The first architecture (Figure 1a) is the traditional approach, in which local gateways
process the information from sensors. That information is used to make decisions and, from



Sensors 2023, 23, 1543 5 of 21

time to time, to send relevant data to a central node or gateway for storage and further
processing. This a good approach, but it has two disadvantages. First, the central node does
not have access to all the local data, and it can be less efficient at finding patterns. Secondly,
each gateway is an extra computing component and overhead to the entire system. On the
other hand, it makes quick local decisions, but without the overall picture, those decisions
might not be the most efficient ones.

The second architecture (Figure 1b) starts from the premise that all the sensor data are
directly sent to the central distributed storage (e.g., a distributed message queue service or
massive distributed data store). Having a central distributed data-processing component
allows having an overview of the entire environment and triggering local decisions based on
the general context. Another advantage is having fewer overall data processing instances,
because one instance can process data from multiple and various sources. The research
presented in this paper focuses on the second architecture model, and the two proposed
solutions aim to improve the data processing performed by each instance.

3.2. Data Processing and Rule Engines

Processing sensor data consists of having data from specific different sensors as input,
computing those data by some means and triggering one or more actions if needed.

Basic processing can be achieved by employing rule engines [16]. Each piece of data
passes though the rule engine, which looks at all the encompassing rules, determines
which ones trigger (if any) and takes the associated action(s). The rules can be described
in JavaScript Object Notation (JSON) format as shown in Listing 1. JSON is a heavily
used text-based method of representing structured data in a both human- and machine-
readable format. In this example for a home room, a rule is set to trigger turning on the
air conditioning unit in dehumidify mode if the humidity in the room is over 55% and the
temperature is over 26 degrees Celsius. The condition for this rule is checked each time the
humidity or temperature in the room changes. Slight variations will not trigger the rule
because one of the roles of the sensor data acquisition component is to send the new data
only if the change in value is above a certain increment.

Listing 1. Example of a rule for HVAC in JSON string format based on the rule engine described
in [16].

{
"name": "humidity-control-on",
"description": "If the humidity in the room is over 55% and the temperature is over 26 degrees Celsius,

↪→ then start the AC and set it to dehumidify",
"priority": 3,
"condition": "${home-room-1/hvac/humidity}{value} > 55 and ${1/hvac/temperature}{value} > 26",
"actions": [
"${home-room-1/hvac/ac}{value}{on}",
"${home-room-1/hvac/ac}{mode}{dehumidify}"

]
}

The above example is a trivial one, but the rule engine can be used for complex rules
that depend on different types of sensors and even on other rules. Anything that has a
unique identifier in the system (e.g., home-room-1/hvac/humidity) can be referenced in
both the condition and the action properties of the rule. The rules are not exclusive to
HVAC or home monitoring and can be employed for monitoring traffic, for automatic street
lightning or even for triggering facial recognition algorithms when using CCTV. The latter
requires a component that processes the images, filters them and, from the rule engine
point of view, acts as a data-producing sensor. Nonetheless, this is beyond the scope of the
current paper.

To summarize, the considered architecture employs a rule engine for each computing
instance, and each rule engine manages a set of rules whose conditions need to be checked,
depending on the incoming sensor data.



Sensors 2023, 23, 1543 6 of 21

3.3. Sensor: Rule Abstraction

A high amount of computational power is required when having a large amount of
sensors which produce data and many rules that need to be checked, depending on the
received data. As previously established, the proposed solution is to distribute the load
among computing instances. Therefore, each instance will handle a distinct set of rules,
and each rule needs the data from specific sensors. It does not make sense to check the
rules from all the instances once a new piece of sensor data enters the system; rather, only
the rules that involve that sensor should be checked. Only the instances with the involved
rules will ever receive data from that sensor.

A rule can be seen as a generic check if certain conditions are met, and if that con-
ditional expression is true, then one or more actions are triggered. This concept can be
extended to include the possibility of triggering more complex processing if specific sensor
values satisfy certain conditions. Each sensor produces, by means of the data acquisition
component, a variable amount of data depending on the sensor type and the environment
conditions. The system can be monitored in order to determine the approximate amount of
produced data for each sensor in a time period (e.g., hour, day, month and year).

Regardless of the sensor type and the acquired data format, the information that gets
transmitted by means of WiFi, Bluetooth or other methods is basically an array of bytes. In
order to abstract the volume of the acquired and transmitted sensor data, the data quantities
are in generic data units (d.u.). These units represent the amount of information from one
sensor during a specific period of time.

An example of connections between sensors and rules is presented in Figure 2. There
are six sensors (S1–S6) and four rules (R1–R4), and each edge represents the volume of
information that gets sent from a sensor to a rule. The volume of information is a numerical
value expressed in generic data units (d.u.). In a real scenario, this value represents the
number of bytes sent from a sensor to a rule. Each rule needs data from specific sensors
(e.g., rule R1 requires 12 d.u. from S1 and 10 d.u. from S2). Therefore, rules need data from
multiple sensors, and sensors send data to multiple rules.

Figure 2. Example of the connections between six sensors (S) and four rules (R). Each sensor,
represented by the round vertices, produces the amount of data specified on the graph edge, and
those data have to be processed by the rules, represented by square vertices.

For simplicity’s sake, the scenario considered in the proposed paper implies that rules
cannot send data to other rules, but this can easily be made possible if certain rules are set
to also act as sensors (i.e., produce data). For each rule that produces data, a virtual sensor
would be created in the system to simulate this. If a cycle is created in the resulting graph
by considering this scenario, then the clusterization approaches proposed in this paper
are still valid as long as the volume of information being sent from one rule to another is



Sensors 2023, 23, 1543 7 of 21

quantifiable. By knowing how many data are being sent in this case prior to running the
algorithms, the proposed solutions work perfectly.

As mentioned earlier, the problem statement is that there is a limited amount of
computing instances available. Each computing instance must process a group of rules so
that the information that is being sent to that instance is minimal. Therefore, the goal is to
somehow group the rules into clusters so that the information is being sent efficiently to
the clusters. Each cluster of rules is then the responsibility of a single computing instance.

Figures 3 and 4 show two of the possible different clusters that can be formed. Both
figures show two clusters, but each cluster has a different composition and, consequently,
will have a different amount of data volume that needs to be processed. In the first case
(Figure 3), cluster C1 encompasses rules R1 and R3 and receives a total of 31 d.u. from
sensors S1, S2, S3 and S4, while cluster C2 encompasses rules R2 and R4 and receives a
total of 27 d.u. from sensors S1, S4, S5 and S6. In the second case (Figure 4), cluster C1
encompasses rules R1, R2 and R3 and receives a total of 38 d.u. from sensors S1, S2, S3, S4
and S5, while cluster C2 encompasses rules R4, S5 and R6 and receives a total of 22 d.u.
from sensors S4, S5 and S6.

Figure 3. Example of clustering rules for the graph from Figure 2. (a) There are two clusters: C1 with
rules R1 and R3 and cluster C2 with rules R2 and R4. (b) The formed clusters receive the data only
once from the connected sensors (S).

Figure 4. Example of clustering rules for the graph from Figure 2. (a) There are two clusters: C1 with
rules R1, R2 and R3 and cluster C2 with rule R4. (b) The formed clusters receive the data from the
connected sensors (S) only once.

When a sensor is removed from the system, the corresponding rules need to be updated
to account for this. Removing just a single sensor in the context of tens of thousands
of sensors will have an insignificant impact on the system’s performance. However, if



Sensors 2023, 23, 1543 8 of 21

multiple sensor networks are removed, then one of the two proposed methods has to run
to reconfigure the data flow. When a single sensor and the associated rules are added to
the system, those rules can be assigned to the cluster with the smallest load. When adding
multiple sensor networks to the system, the clustering process needs to trigger again. As
it stands, the clustering method might perform a complete reconfiguration, which might
trigger multiple rule migrations from one instance to another. Depending on the complexity
of the migration, this might not be desired. On the other hand, this massive migration
might provide a much better processing time in the long run. Therefore, when considering
the dynamism of the proposed system, the scalability is highly dependent on the moments
when the reconfiguration is triggered and on the impact of the rule migrations. The best
way to achieve high scalability is achieved in two steps. First, when sensors are added to
the system, they are assigned to the least loaded instance. Secondly, a job scheduler needs
to be set up so that the clustering algorithms periodically reconfigure the data flow. The
reconfiguration implies transferring rules in JSON format from one instance to another,
which can be performed in a timely manner. The sensors need to know to which instance
they should send the data. This problem can be easily solved by using a gateway or load
balancer. The sensors send the data to the gateway instance, which then redirects it to the
corresponding instance.

The way that the clusters are formed can have a significant impact on the performance
of the system. Therefore, performance metrics have to be set in order to quantify the quality
of the clustering.

3.4. Performance Metrics

The main performance indicator is the speed with which the computing instances
process the data. To keep the issue as simple and clear as possible, this research assumes
that the time it takes to process data units from each sensor is directly proportional to the
amount of data units that the instance receives. If, in reality, this is not the case, then the
data unit value from each sensor can be multiplied by a factor depending on each specific
sensor. Therefore, the problem becomes reduced to the equivalent of having normalized
the volume of information and the time it takes to process it to generic units (i.e., data
units), as is discussed further in this paper. The problem could be further reduced to a task
mapping problem, but the situation is different from the standard approach because of the
extra layer introduced by having rules. Another reason for this is because sensors should
not send data to instances regardless of what rules are processing the information.

In terms of performance metrics, the goal is to process information as fast as possible.
More data to be processed equals more time required to handle those data. When looking
at the considered problem as a static task scheduling issue, where a task is considered to be
the processing of a piece of data, the goal is to minimize the makespan (i.e., the time it takes
for all instances to finish processing the assigned tasks) [34]. Because the environment is a
dynamic one, the quality of the solution to the considered problem cannot be accurately
evaluated. Using the makespan is a good performance metric in a static task allocation that
uses no heuristics, but it has the disadvantage that certain instances are not used to their
full potential. The makespan value is given by the instance that finishes the allocated tasks
last, and there can be instances that finish much earlier.

Given the nature of the dynamic environment, static task allocation methods cannot
be used, and other heuristics must be employed. The makespan is still useful in this case,
but a better approach may be to consider balancing the load so both metrics must be taken
into account. On the one hand, the goal is to finish processing as fast as possible, and on
the other hand, the goal is to keep the load balanced among the instances.

Considering the example from Figure 3, the makespan was 31 d.u., and the load
imbalance (i.e., the difference between the instance that finished latest and the instance that
finished earliest) was 4 d.u. For the example in Figure 4, the makespan was 38 d.u., and the
load imbalance was 16 d.u. Low values of both the makespan and the load imbalance are
desired so the first clustering example is better from both points of view. Intuitively, the



Sensors 2023, 23, 1543 9 of 21

makespan is a good enough metric, but tests have shown that using the load balance as a
criterion for certain algorithms can provide good results as well.

3.5. Problem and Solution Representation

The problem that needs to be solved is how to cluster the rules together so that
each cluster requires the least amount of data to pass through the associated rules. The
two proposed algorithms that solve this problem receive as input a graph similar to the
one from Figure 2, represented by a two-dimensional array (A). The rows represent n
sensors (S), the columns represent m rules R, and Aij represents the volume of data in
data units (d.u.) which the sensor Si sends to rule Rj for processing. Therefore, the goal
is to find p clusters C, where Ck ⊂ Rj, j ∈ {1..m} and ∀k ∈ {1..p}, ∀l ∈ {1..p}, k 6= l,
@ Ck ⊂ Rj and Cl ⊂ Rj, ∀j ∈ {1..m}.

The solution consists of a list of rules that are associated to each cluster. A rule can
be assigned to only one cluster. A simple representation is using an array in which each
position is associated with a rule. The value at that position represents the cluster number
to which that rule belongs.

The available solution space for the considered problem is very large. The number
of possible solutions is pm, because each of the m rules can be associated to one of the p
clusters. For example, if there are 10,000 rules and 36 clusters, then it would take more
than a lifetime to generate all the solutions. Each time a solution is generated, it has to
be evaluated, and this implies many computations. All those computations also depend
on the number of sensors in the system. It is impossible to develop an algorithm that
offers the best solution in a timely manner. Genetic algorithms are a good method for
solving problems in which good enough solutions need to be obtained in a decent amount
of time while looking at a large solution space. A drawback of genetic algorithms is the
execution time. Methods that obtain faster results are traditional clustering algorithms.
Clustering algorithms usually require that the metric is some sort of distance that has to be
computed. The characteristics of the considered environment do not make that distance
straightforward to compute. Therefore, the method that was chosen in this paper was
k-means clustering because it is widely used in existing research, and its simpler form
allows an easier adaptation for solving the problem.

The criteria used for grouping the rules into clusters depend on the approach. For the
k-means algorithm, the parameters that can be considered are limited due to the nature
of the problem. Because the way that the rule engine processes the data is considered a
black box, all that remains is focusing on the data that are being transmitted. The two
parameters that are taken into consideration are the number of pieces of data that are being
sent by each sensor and the total volume of information that is being transmitted by a
sensor to each rule. When using the genetic algorithm approach, the focus is on the end
goals of minimizing the makespan and the load imbalance. This method generates multiple
solutions and tweaks the resulting chromosome. Therefore, the fitness function considers
the data volumes and determines the quality of a solution.

3.6. K-Means Clustering Approach

The k-means clustering algorithm is a good approach for grouping together items that
have similar features. The basic steps of the algorithm adapted to the considered problem
are as follows:

1. Choose the number of desired clusters (p).
2. Randomly choose p centroids (each one represents the center of the cluster).
3. For each rule, perform the following steps:

• Compute the distance to each centroid.
• Find the closest centroid.
• Assign the rule to the cluster corresponding to that centroid.

4. For each cluster, perform the following step:



Sensors 2023, 23, 1543 10 of 21

• Compute the new centroids as the mean of all the rule features assigned to that
cluster.

5. Go to step 3 until there are no changes compared to the previous iteration or a specific
number of iterations has passed.

Usually, this method uses the Euclidean distance for determining the closest centroid,
but there are similar approaches available [35]. Regardless of the method for computing
the distance, certain numerically quantifiable features need to be considered. Due to the
complexity of the considered problem, modeling the input data to be suitable for the
k-means method proves quite difficult. After considering a few variations, the best results
were obtained by considering for each rule two features: the number of sensors that send
data to that rule and the total volume of data that is being sent to that rule by all the sensors.
These two features are used as metrics when computing the distance between each rule
and each centroid.

This method of clustering does not help in providing a low makespan or even a
balanced load; instead, it helps group together rules with similar features. To obtain a
fairly well-balanced load, a second part was added to the proposed solution which split
the clusters based on their size. The cluster size is represented by the total data units that
are required by the encompassing rules. The novel proposed k-means-based algorithm is
as follows:

1. Choose a much lower number (e.g., q = 4) than the number of desired clusters (p).
2. Create q clusters with the previously described k-means algorithm.
3. Compute each cluster’s size.
4. Split evenly the larger clusters so that each resulting cluster is around the same size.
5. Recompute each cluster’s size.
6. Split the clusters again or combine clusters depending on the desired number of

clusters while recomputing each cluster’s size if the cluster composition changed.

The advantages of this approach are that it is fast, it can be easily parallelized [36] and
it provides a better alternative to assigning rules to clusters randomly. The downside of
this method is that it may prove to be difficult to obtain a specific number of clusters. This
approach is better suited if there is not a fixed number of clusters to be obtained.

3.7. Genetic Algorithm Approach

Genetic algorithms provide good solutions in a very large solution search space at
the expense of possibly not finding the best solution but rather a good enough one. There
are two key elements when it comes to the genetic algorithm (GA): the candidate solution
representation and the fitness evaluation function. The GA starts with a population made
out of individuals (chromosomes), and each chromosome represents a candidate solution.
The proposed solution representation is straightforward. Each gene represents a specific
cluster while its locus represents the rule, and the alleles are the possible clusters that can
encompass the rules. There are two fitness functions being considered: the makespan and
the load balance, as discussed in Section 3.4. The proposed genetic algorithm solution with
the chosen parameter values and functions is as follows:

1. Use the input data and initialize the GA parameters, such as in the following example:

• Population size: 200.
• Crossover probability: 0.7.
• Mutation probability: 0.5.
• Elitism percent: 0.05.
• Maximum iteration count: 1000.
• Maximum “no change” iteration count: 300.

2. Randomly generate the initial population.
3. Evaluate the population using the custom fitness evaluator.
4. While the stop condition is not met, perform the following steps:



Sensors 2023, 23, 1543 11 of 21

(a) Generate a new population of the same size by going through the following
steps multiple times:

• Select two chromosomes using roulette wheel selection.
• Possibly a apply one-point crossover to each selected chromosome.
• Possibly apply a random allele switch mutation to each selected chromo-

some.
• Add the two resulting chromosomes to the new population.

(b) Apply elitism, under which the best chromosomes from the previous popula-
tion are kept in the new population.

(c) Compute the fitness of each chromosome from the new population.

5. Output the solution represented by the chromosome with the best fitness.

All the chosen parameter values and all the chosen functions (i.e., selection, crossover
and mutation) are based on the existing literature regarding this topic [37,38] and on
previous experiments with genetic algorithms performed by the author [39–41]. There
is one exception regarding the mutation probability parameter, which is usually lower.
Tests have shown that for the considered problem, a higher mutation probability yields
better results.

The complexity of the proposed genetic algorithm is given by the fitness evaluation
function, which has to take into account the sensor data needed for each created cluster.
This is somewhat computationally intensive, and a caching mechanism is used so as to
not recompute the fitness of previously evaluated chromosomes. Overall, the proposed
method has the advantage of providing a better solution than the k-means-based method at
the expense of a higher execution time and increased difficulty of achieving parallelization
of the execution.

3.8. Deploying the System in a Cloud Solution

Another proposed concept is a generic framework for allowing the deployment of the
described system architecture in a cloud solution (i.e., the open-source OpenStack solution).
There is similar research in this area, namely the Stack4Things solution presented in [42],
but it follows the standard architecture of an OpenStack service, and it uses the cloud IaaS
services to provide the basic required functionality for an IoT solution.

An interesting approach is to deploy the proposed algorithms on cloud instances and
use that instance to coordinate sensor data and instances as presented in Figure 5. The
instances can be managed using the Nova instance controller. Depending on the output
of the algorithms, the controller can automatically provision new instances depending on
the formed clusters, which handle the rules. The sensor information can be saved with
block and object storage using the Cinder and Swift services, while advanced orchestration
and easy redeployment can be obtained using the Heat service. The cluster manager
instance, which employs the clustering algorithms, can configure the custom sensor data
load balancer to store more efficiently the sensor data based on the clusters (i.e., Nova
instances) that require those data.



Sensors 2023, 23, 1543 12 of 21

Figure 5. Proposed cloud solution architecture.

4. Results
4.1. Simulation Set-Up

In order to test the efficacy of the proposed solution, a simulation framework was
developed, and the two proposed methods were implemented and compared. The frame-
work makes use of three parameters: the number of sensors, number of rules and number
of desired clusters. Multiple tests were performed with various combinations of the three
parameters and with different seed values for the random value generator function. The
selected parameters and data presented in this paper represent a test case in which the
obtained results are in the middle range of performance metric values. For most of the
performed tests, the result variation for each metric was ±4% compared with the pre-
sented results.

The considered test simulated 12,000 sensors with 6000 rules, and the goal was to
generate 36 clusters with those rules. Each sensor produced a generated number of data
units, which was a random value with a Gaussian distribution. The formula for generating
the value was 500 + 300 ∗ g, where g is a pseudo-random Gaussian distributed number
with a mean of 0.0 and a standard deviation of 1.0. The range for the volume of data
produced by a sensor was between 1 and around 800 d.u. Each rule received data from
between 1 and 11 sensors, as shown in Figure 6.

Because this is not a straightforward approach for applying an algorithm, Figures 7 and 8
provide more context and offer a perspective on how the information is generated and
associated to sensors and rules. The distribution of data units among sensors and the
sensor-rule association were performed in order to simulate a real sensor environment as
closely as possible.

Figure 7 presents the computed data volume required by a rule, depending on the
number of sensors associated with that rule. For example, there was a rule that had
11 sensors associated with it, and it required a total of 5630 d.u. to process it. In Figure 8,
the number of rules that need to process different ranges of data volumes is shown (e.g.,
356 rules need to process a data volume in the range (1146, 1336] d.u.).



Sensors 2023, 23, 1543 13 of 21

Figure 6. Number of rules depending on the associated number of sensors.

Figure 7. The data volume required by a rule, depending on the number of sensors associated with
that rule.

Figure 8. The number of rules whose incoming data from the sensors are in a specific range.



Sensors 2023, 23, 1543 14 of 21

4.2. Experimental Results

Each of the proposed algorithms was executed on the same generated test case, and
the results were compared depending on the data volumes that needed to be processed
by each cluster of rules. In the evaluation process, we used the two performance metrics
described in Section 3.4. The goal was to have a low makespan and a low load imbalance.

The k-means-based algorithm was configured to initially generate only four clusters.
Because the features used by the k-means method were the number of sensors and the data
volume processed by each rule, each of the four clusters had grouped together rules with
similar features. The total data volume required to be processed by each initial cluster was
1,645,684 d.u., 2,887,941, d.u., 2,738,362 d.u. and 1,350,257 d.u. As can be observed, the two
middle clusters had to process around twice as many data compared with the other two.
The first operation performed on the clusters by the k-means-based algorithm was to split
the middle clusters, resulting in a total of six clusters with data volumes of 1,645,684 d.u.,
1,531,453 d.u., 1,520,189 d.u., 1,350,257 d.u., 1,470,455 d.u. and 1,460,521 d.u. Each of these
six clusters was split into six parts to reach the desired 36 clusters. The minimum data
volume that needed to be processed by a cluster was 240,164 d.u., and the maximum
(i.e., the makespan) was 289,776 d.u., resulting in a load imbalance of 49,612 d.u., which
represented 17% of the makespan. This might not seem like a good result, but considering
that traditional task scheduling could not be applied given the sensor-rule constraints, the
proposed method was very fast and provided an adequate solution.

For an initial comparison, there were 200 random solutions generated, and the best one
among them was selected by evaluating it with the fitness function of the genetic algorithm.
When using the makespan as a fitness criterion, the best solution had a minimum data
volume of 219,256 d.u. and a maximum of 290,519 d.u., resulting in a load imbalance of
71,263 d.u., which represented 24% of the makespan. When using the load balance as
a fitness criterion, the best solution had a minimum data volume of 235,601 d.u. and a
maximum of 300,391 d.u., resulting in a load imbalance of 64,790 d.u., which represented
21% of the makespan. The proposed k-means-based algorithm performed better compared
with the two solutions selected among 200 random solutions using the two performance
metrics. It also ran in a fraction of the time compared with the time it took to generate and
evaluate 200 candidate solutions.

The tested genetic algorithm used the parameters and functions described in Section 3.7.
The formula for computing the fitness depends on the number of sensors associated with
each rule, the range of d.u. generated by the sensors and the considered criterion (i.e., the
makespan or the load balance). Let min be the minimum data volume that needs to be
processed by a cluster and max be the maximum data volume that needs to be processed
by a cluster. For the presented test case, the chromosome fitness when trying to minimize
the makespan was computed as 108/(max + 1), while the chromosome fitness when trying
to balance the load was computed as 106/((max − min) + 1). This was carried out to
obtain more human-readable values for the fitness. The evolution of the results obtained
by the genetic algorithm using the makespan for the fitness is presented in Figure 9, and
the ones using the load balance are shown in Figure 10. For both graphs, higher values
mean a better solution because the fitness is inversely proportionate with the makespan
and the load imbalance. In order to better compare the results, the fitness of the k-means-
based algorithm and the average fitness obtained from the initial population of the genetic
algorithm were added to the charts. The average population fitness was determined by
generating the initial population for the genetic algorithm and then calculating the fitness
of each candidate solution. Finally, the average of the fitness values was calculated, and
that resulting value represented the average population fitness.

The obtained fitness values are shown in Table 1. When trying to improve the
makespan, the proposed k-means-based algorithm was 8% more efficient than the av-
erage population fitness, while the proposed genetic algorithm provided an efficiency
increase of 17%. Regarding improving the load balance, the differences were more signifi-



Sensors 2023, 23, 1543 15 of 21

cant. The k-means-based approach was almost twice as good compared with the average
population fitness, while the genetic algorithm was more than 17 times better.

Figure 9. The evolution of the best chromosome’s fitness for a genetic algorithm that uses the makespan
as the fitness function, with the average population fitness and k-means fitness for reference.

Figure 10. The evolution of the best chromosome’s fitness for a genetic algorithm that uses the load
balance as the fitness function, with the average population fitness and k-means fitness for reference.

Table 1. Fitness values depending on the aspect that was considered when computing the fitness (i.e.,
makespan or load balance).

Fitness Method Avg. Population
Fitness

K-Means-Based
Fitness

Genetic Algorithm
Fitness

makespan 31.94 34.51 37.52
load balance 10.51 20.16 1824.82

How the best fit candidate solution evolved with each iteration of the genetic algo-
rithm, in terms of the data volume that was assigned to each cluster, can be observed in
Figures 11 and 12. The largest data volume that needed to be processed by a cluster started
from 290,519 d.u. for the GA for the makespan and from 300,391 d.u. for the GA with the



Sensors 2023, 23, 1543 16 of 21

load balance. The final obtained results were 266,556 d.u. and 263,889 d.u., respectively.
The lower the data volume was, the better the result. An interesting aspect is the fact that
the GA with the load balance obtained a lower value for the largest data volume to be
processed by the cluster while also obtaining a load imbalance (in terms of the associated
data volumes) of only 547 d.u. compared with 25,832 d.u. for the GA with the makespan.

Figure 11. The evolution of the data volume that was assigned to each cluster, represented by the
best fit candidate solution at each iteration of the genetic algorithm when using the makespan as the
fitness function.

Figure 12. The evolution of the data volume that was assigned to each cluster, represented by the best
fit candidate solution at each iteration of the genetic algorithm the load balance as the fitness function.



Sensors 2023, 23, 1543 17 of 21

An overall view of the impact of the proposed methods can be observed in Figure 13,
which presents the data volumes that were assigned to be processed by each of the
36 clusters depending of the employed algorithm: a GA with the makespan for fitness
(best chromosome from the final iteration), a GA with the load balance for fitness (best
chromosome from the final iteration), the k-means adaptation algorithm, a GA with the
makespan for fitness (best chromosome from the initial iteration) and a GA with the load
balance for fitness (best chromosome from the initial iteration). The final result obtained by
the GA with load balance for fitness clearly provided the best results, and it was best in
most of the tested scenarios with different numbers of sensors, rules and clusters.

Figure 13. The data volumes that were assigned to be processed by each of the 36 clusters, depending
on the employed algorithm.

5. Discussion

The research regarding the two proposed methods presented in this paper expands on
the task scheduling problem by considering an extra layer regarding the input data. In the
traditional approach, the problem is summarized as having a number of tasks that need to
be processed as efficiently as possible in a heterogeneous environment. If only considering
the sensor data, a task can be seen as processing that data. The issue is that the sensor data
must be evaluated by rule engines, which check each new piece of data against a series of
rules. Therefore, traditional methods are not directly applicable. The two new methods
proposed in this paper (i.e., the k-means-based clustering and the customization of the
genetic algorithm) take into account this extra layer of complexity. They also provide the
means to distribute the computation so that the data are transferred for processing only
where needed, thus ensuring that less information goes through the network and the rules
are evaluated in a shorter time. The two methods can be used in a broader context, such
as having task result aggregators, which are equivalent to having rules that aggregate or
process information from different specific sensors.

The main scenario in which the proposed methods can be used is if there is a known
number of instances available to process sensor data. In this case, the clustering methods
use as input the number of instances, and they produce a good rule-to-cluster association
for handling the data. This is one of the reasons why the k-means algorithm is appropriate
for solving this method. The proposed k-means solution is adapted to first generate a fixed
small number of clusters and afterward split the clusters to obtain the desired number.
An interesting variation is to consider a variable number of clusters and to evaluate the
quality of the solution at each split. This way, using a slightly smaller number of clusters, a
solution with a better performance metric might be obtained. This approach is inspired



Sensors 2023, 23, 1543 18 of 21

by hierarchical k-means methods, which allow the determination of the optimal number
of clusters.

The proposed architecture stores all the sensor data in a global distributed storage
system, which allows the correlation of data from multiple sources. Instead of having
multiple local processing instances, cost efficiency is increased by using a global pool of
computing instances. On the other hand, using this approach has the disadvantage of
ensuring data privacy and security, but this is somewhat similar to the way that cloud
providers ensure these aspects. In addition, some entities may not want their sensor data
to be shared and used by artificial intelligence methods to find data or even behavioral
patterns. If the solution is used for a smart city or region, and it is governed by the same
entity, then the data privacy issue becomes mute.

In terms of where the data processing is performed, there are three main directions:
edge computing, fog computing and cloud computing. Edge computing means that the
processing is performed directly on the devices attached to the sensors. Fog computing
is processing in a network close to the edge but somewhere between the edge and the
cloud. Finally, cloud computing means handling the data in a cloud solution, which has
access to information from a large amount of sensors. Each of them has advantages and
disadvantages, and some solutions employ all three [43,44]. The current paper focuses
on a cloud solution in order to have a broader view of the underlying sensor networks.
Because all the data are considered, the best decision can be made but at the expense of an
increased computing time. Considering a scenario with a high number of sensor networks,
the costs to perform these computations are similar to the costs in the case of fog and
edge computing. Instead of having centralized processing, there is processing on each
fog computing node and on each edge computing node. In order to decrease costs and
processing times, the rule engine system can be designed to perform processing at all three
levels (edge, fog and cloud). The sensor data go to the edge level, where some local rules
are triggered. Then, the relevant data go to the fog level, where other rules are used. Finally,
the cloud rules perform the processing and trigger events. This method has the advantage
of making quick real-time decisions at the edge level while considering the big picture at
cloud level. The two proposed methods can be applied best at the fog and especially cloud
levels because they thrive when a limited amount computing instances are available to
process a large amount of sensor data.

Looking at the proposed cloud solution architecture from Figure 5, a mandatory
discussion regards how exactly the data flow is configured and reconfigured depending
on changes in the environment (e.g., new sensors are added or removed). The decision to
reconfigure the data flow must be made by the cluster manager instance. The proposed
algorithms can periodically run and re-evaluate the load of each cluster (i.e., processing
instance) and, if needed, trigger a rule migration from one cluster to another or the creation
of new clusters or instances or the destruction of existing ones. By using this approach, a
high degree of scalability was achieved. The execution of the k-means-based algorithm can
be easily parallelized and therefore ensure swift reaction to changes in the system, while
the custom genetic algorithm can be used when major changes occur in the environment.

The issues with the proposed system and the two proposed methods were discussed
throughout the paper. The efficacy was demonstrated through simulation, which tried to
mimic a real multi-sensor network environment. It is highly unlikely that the system will be
tested in a real-world environment due to the high amount of sensors needed. However, it
can be tested for the sensor data from a real smart home, and those data can be extrapolated
to simulate a smart neighborhood. Before this can be tested, the next research step is to
deploy the proposed cloud solution in an in-house OpenStack cloud. The system will be
generalized for handling any type of task with processing constraints. This generic solution
will be offered as a PaaS service for developers, and it will also include an SaaS extension
on the Horizon service for monitoring the proposed service.



Sensors 2023, 23, 1543 19 of 21

Funding: This research was supported by the project “Collaborative environment for developing
OpenStack-based cloud architectures with applications in RTI” SMIS 124998 from The European
Regional Development Fund through the Competitiveness Operational Program 2014–2020, priority
axis 1: Research, technological development and innovation (RTI)—the POC/398/1/1 program.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this paper and the code for the implemented
solutions are available by requesting them from the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

GA Genetic algorithm
IoT Internet of Things
WSN Wireless sensor network
AC Air conditioning
HVAC Heating, ventilation and air conditioning
JSON JavaScript Object Notation
CCTV Closed-circuit television
IaaS Infrastructure as a service
PaaS Platform as a service
SaaS Software as a service

References
1. Li, S.; Xu, L.D.; Zhao, S. The internet of things: A survey. Inf. Syst. Front. 2015, 17, 243–259. [CrossRef]
2. Jia, M.; Komeily, A.; Wang, Y.; Srinivasan, R.S. Adopting Internet of Things for the development of smart buildings: A review of

enabling technologies and applications. Autom. Constr. 2019, 101, 111–126. [CrossRef]
3. Dong, B.; Prakash, V.; Feng, F.; O’Neill, Z. A review of smart building sensing system for better indoor environment control.

Energy Build. 2019, 199, 29–46. [CrossRef]
4. Pau, G.; Arena, F. Smart City: The Different Uses of IoT Sensors. J. Sens. Actuator Netw. 2022, 11, 58. [CrossRef]
5. Silva, B.N.; Khan, M.; Han, K. Towards sustainable smart cities: A review of trends, architectures, components, and open

challenges in smart cities. Sustain. Cities Soc. 2018, 38, 697–713. [CrossRef]
6. Zavratnik, V.; Kos, A.; Stojmenova Duh, E. Smart villages: Comprehensive review of initiatives and practices. Sustainability 2018,

10, 2559. [CrossRef]
7. Salvia, M.; Cornacchia, C.; Di Renzo, G.; Braccio, G.; Annunziato, M.; Colangelo, A.; Orifici, L.; Lapenna, V. Promoting smartness

among local areas in a Southern Italian region: The Smart Basilicata Project. Indoor Built Environ. 2016, 25, 1024–1038. [CrossRef]
8. Sehrawat, D.; Gill, N.S. Smart sensors: Analysis of different types of IoT sensors. In Proceedings of the 2019 3rd International

Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 23–25 April 2019; pp. 523–528.
9. Morais, C.M.d.; Sadok, D.; Kelner, J. An IoT sensor and scenario survey for data researchers. J. Braz. Comput. Soc. 2019, 25, 1–17.

[CrossRef]
10. Wilson, J.S. Sensor Technology Handbook; Elsevier: Amsterdam, The Netherlands, 2004.
11. Alías, F.; Alsina-Pagès, R.M. Review of wireless acoustic sensor networks for environmental noise monitoring in smart cities.

J. Sens. 2019, 2019, 7634860. [CrossRef]
12. Sun, Y.; Wu, T.Y.; Zhao, G.; Guizani, M. Efficient rule engine for smart building systems. IEEE Trans. Comput. 2014, 64, 1658–1669.

[CrossRef]
13. El Kaed, C.; Khan, I.; Van Den Berg, A.; Hossayni, H.; Saint-Marcel, C. SRE: Semantic rules engine for the industrial Internet-of-

Things gateways. IEEE Trans. Ind. Inform. 2017, 14, 715–724. [CrossRef]
14. Kargin, A.; Petrenko, T. Internet of Things smart rules engine. In Proceedings of the 2018 International Scientific-Practical Confer-

ence Problems of Infocommunications. Science and Technology (PIC S&T), Kharkiv, Ukraine, 9–12 October 2018; pp. 639–644.
15. Kargin, A.; Petrenko, T. Knowledge Representation in Smart Rules Engine. In Proceedings of the 2019 3rd International

Conference on Advanced Information and Communications Technologies (AICT), Lviv, Ukraine, 2–6 July 2019; pp. 231–236.
16. Alexandrescu, A.; Botezatu, N.; Lupu, R. Monitoring and processing of physiological and domotics parameters in an Internet of

Things (IoT) assistive living environment. In Proceedings of the 2022 26th International Conference on System Theory, Control
and Computing (ICSTCC), Sinaia, Romania, 19–21 October 2022; pp. 362–367.

http://doi.org/10.1007/s10796-014-9492-7
http://dx.doi.org/10.1016/j.autcon.2019.01.023
http://dx.doi.org/10.1016/j.enbuild.2019.06.025
http://dx.doi.org/10.3390/jsan11040058
http://dx.doi.org/10.1016/j.scs.2018.01.053
http://dx.doi.org/10.3390/su10072559
http://dx.doi.org/10.1177/1420326X16659328
http://dx.doi.org/10.1186/s13173-019-0085-7
http://dx.doi.org/10.1155/2019/7634860
http://dx.doi.org/10.1109/TC.2014.2345385
http://dx.doi.org/10.1109/TII.2017.2769001


Sensors 2023, 23, 1543 20 of 21

17. Das, A.K.; Sutrala, A.K.; Kumari, S.; Odelu, V.; Wazid, M.; Li, X. An efficient multi-gateway-based three-factor user authentication
and key agreement scheme in hierarchical wireless sensor networks. Secur. Commun. Netw. 2016, 9, 2070–2092. [CrossRef]

18. Piadyk, Y.; Steers, B.; Mydlarz, C.; Salman, M.; Fuentes, M.; Khan, J.; Jiang, H.; Ozbay, K.; Bello, J.P.; Silva, C. REIP: A
Reconfigurable Environmental Intelligence Platform and Software Framework for Fast Sensor Network Prototyping. Sensors
2022, 22, 3809. [CrossRef] [PubMed]

19. Auroux, S.; Dräxler, M.; Morelli, A.; Mancuso, V. Dynamic network reconfiguration in wireless DenseNets with the CROWD
SDN architecture. In Proceedings of the 2015 European Conference on Networks and Communications (EuCNC), Paris, France,
29 June–2 July 2015; pp. 144–148.

20. Helkey, J.; Holder, L.; Shirazi, B. Comparison of simulators for assessing the ability to sustain wireless sensor networks using
dynamic network reconfiguration. Sustain. Comput. Inform. Syst. 2016, 9, 1–7. [CrossRef]

21. Derr, K.; Manic, M. Wireless sensor network configuration—Part II: Adaptive coverage for decentralized algorithms. IEEE Trans.
Ind. Inform. 2013, 9, 1728–1738. [CrossRef]

22. Sundhari, R.M.; Jaikumar, K. IoT assisted Hierarchical Computation Strategic Making (HCSM) and Dynamic Stochastic
Optimization Technique (DSOT) for energy optimization in wireless sensor networks for smart city monitoring. Comput. Commun.
2020, 150, 226–234. [CrossRef]

23. Akash, A.R.; Hossen, M.; Hassan, M.R.; Hossain, M.I. Gateway node-based clustering hierarchy for improving energy efficiency
of wireless body area networks. In Proceedings of the 2019 5th International Conference on Advances in Electrical Engineering
(ICAEE), Dhaka, Bangladesh, 26–28 September 2019; pp. 668–672.

24. Solaiman, B. Energy optimization in wireless sensor networks using a hybrid k-means pso clustering algorithm. Turk. J. Electr.
Eng. Comput. Sci. 2016, 24, 2679–2695. [CrossRef]

25. Kumar, G.; Mehra, H.; Seth, A.R.; Radhakrishnan, P.; Hemavathi, N.; Sudha, S. An hybrid clustering algorithm for optimal clusters
in wireless sensor networks. In Proceedings of the 2014 IEEE Students’ Conference on Electrical, Electronics and Computer
Science, Bhopal, India, 1–2 March 2014; pp. 1–6.

26. Bharany, S.; Sharma, S.; Frnda, J.; Shuaib, M.; Khalid, M.I.; Hussain, S.; Iqbal, J.; Ullah, S.S. Wildfire Monitoring Based on Energy
Efficient Clustering Approach for FANETS. Drones 2022, 6, 193. [CrossRef]

27. Xiong, J.; Ren, J.; Chen, L.; Yao, Z.; Lin, M.; Wu, D.; Niu, B. Enhancing privacy and availability for data clustering in intelligent
electrical service of IoT. IEEE Internet Things J. 2018, 6, 1530–1540. [CrossRef]

28. Zhang, D.G.; Zhang, T.; Zhang, J.; Dong, Y.; Zhang, X.D. A kind of effective data aggregating method based on compressive
sensing for wireless sensor network. EURASIP J. Wirel. Commun. Netw. 2018, 2018, 1–15. [CrossRef]

29. Wang, J.; Gao, Y.; Wang, K.; Sangaiah, A.K.; Lim, S.J. An affinity propagation-based self-adaptive clustering method for wireless
sensor networks. Sensors 2019, 19, 2579. [CrossRef]

30. Lapegna, M.; Balzano, W.; Meyer, N.; Romano, D. Clustering Algorithms on Low-Power and High-Performance Devices for Edge
Computing Environments. Sensors 2021, 21, 5395. [CrossRef] [PubMed]

31. Barron, A.; Sanchez-Gallegos, D.D.; Carrizales-Espinoza, D.; Gonzalez-Compean, J.L.; Morales-Sandoval, M. On the Efficient
Delivery and Storage of IoT Data in Edge-Fog-Cloud Environments. Sensors 2022, 22, 7016. [CrossRef] [PubMed]

32. Lopez-Arevalo, I.; Gonzalez-Compean, J.L.; Hinojosa-Tijerina, M.; Martinez-Rendon, C.; Montella, R.; Martinez-Rodriguez, J.L. A
WoT-Based Method for Creating Digital Sentinel Twins of IoT Devices. Sensors 2021, 21, 5531. [CrossRef] [PubMed]

33. Achirei, S.D.; Zvoristeanu, O.; Alexandrescu, A.; Botezatu, N.A.; Stan, A.; Rotariu, C.; Lupu, R.G.; Caraiman, S. Smartcare: On
the design of an iot based solution for assisted living. In Proceedings of the 2020 International Conference on e-Health and
Bioengineering (EHB), Iasi, Romania, 29–30 October 2020; pp. 1–4.

34. Ahmadian, M.M.; Khatami, M.; Salehipour, A.; Cheng, T. Four decades of research on the open-shop scheduling problem to
minimize the makespan. Eur. J. Oper. Res. 2021, 295, 399–426. [CrossRef]

35. Faisal, M.; Zamzami, E. Comparative analysis of inter-centroid K-Means performance using euclidean distance, canberra distance
and manhattan distance. Proc. J. Phys. Conf. Ser. 2020, 1566, 012112. [CrossRef]

36. Zhang, Y.; Xiong, Z.; Mao, J.; Ou, L. The study of parallel k-means algorithm. In Proceedings of the 2006 6th World Congress on
Intelligent Control and Automation, Dalian, China, 21–23 June 2006; Volume 2, pp. 5868–5871.

37. Vasconcelos, J.; Ramirez, J.A.; Takahashi, R.; Saldanha, R. Improvements in genetic algorithms. IEEE Trans. Magn. 2001,
37, 3414–3417. [CrossRef]

38. Kumar, M.; Husain, D.; Upreti, N.; Gupta, D. Genetic algorithm: Review and application. SSRN 2010.
ssrn.3529843. [CrossRef]

39. Alexandrescu, A.; Agavriloaei, I.; Craus, M. A task mapping simulation framework for comparing the performance of mapping
heuristics in various scenarios. In Proceedings of the 2012 16th International Conference on System Theory, Control and
Computing (ICSTCC), Sinaia, Romania, 12–14 October 2012; pp. 1–6.

40. Alexandrescu, A.; Agavriloaei, I.; Craus, M. A genetic algorithm for mapping tasks in heterogeneous computing systems. In
Proceedings of the 15th International Conference on System Theory, Control and Computing, Sinaia, Romania, 14–16 October
2011; pp. 1–6.

41. Alexandrescu, A. Mapping interdependent tasks in a computational environment using genetie algorithms. In Proceedings of
the 2015 14th RoEduNet International Conference-Networking in Education and Research (RoEduNet NER), Craiova, Romania,
24–26 September 2015; pp. 173–177.

http://dx.doi.org/10.1002/sec.1464
http://dx.doi.org/10.3390/s22103809
http://www.ncbi.nlm.nih.gov/pubmed/35632217
http://dx.doi.org/10.1016/j.suscom.2016.01.003
http://dx.doi.org/10.1109/TII.2013.2245907
http://dx.doi.org/10.1016/j.comcom.2019.11.032
http://dx.doi.org/10.3906/elk-1403-293
http://dx.doi.org/10.3390/drones6080193
http://dx.doi.org/10.1109/JIOT.2018.2842773
http://dx.doi.org/10.1186/s13638-018-1176-4
http://dx.doi.org/10.3390/s19112579
http://dx.doi.org/10.3390/s21165395
http://www.ncbi.nlm.nih.gov/pubmed/34450837
http://dx.doi.org/10.3390/s22187016
http://www.ncbi.nlm.nih.gov/pubmed/36146368
http://dx.doi.org/10.3390/s21165531
http://www.ncbi.nlm.nih.gov/pubmed/34450973
http://dx.doi.org/10.1016/j.ejor.2021.03.026
http://dx.doi.org/10.1088/1742-6596/1566/1/012112
http://dx.doi.org/10.1109/20.952626
http://dx.doi.org/10.2139/ssrn.3529843


Sensors 2023, 23, 1543 21 of 21

42. Longo, F.; Bruneo, D.; Distefano, S.; Merlino, G.; Puliafito, A. Stack4things: An openstack-based framework for iot. In Proceedings
of the 2015 3rd International Conference on Future Internet of Things and Cloud, Rome, Italy, 24–26 August 2015; pp. 204–211.

43. Sánchez-Gallegos, D.D.; Galaviz-Mosqueda, A.; Gonzalez-Compean, J.; Villarreal-Reyes, S.; Perez-Ramos, A.E.; Carrizales-
Espinoza, D.; Carretero, J. On the continuous processing of health data in edge-fog-cloud computing by using micro/nanoservice
composition. IEEE Access 2020, 8, 120255–120281. [CrossRef]

44. Cao, H.; Wachowicz, M. An Edge-Fog-Cloud Architecture of Streaming Analytics for Internet of Things Applications. Sensors
2019, 19, 3594. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2020.3006037
http://dx.doi.org/10.3390/s19163594

	Introduction
	Related Work
	Proposed Architecture and Methods
	Considered Context and Proposed Goal
	Data Processing and Rule Engines
	Sensor: Rule Abstraction
	Performance Metrics
	Problem and Solution Representation
	K-Means Clustering Approach
	Genetic Algorithm Approach
	Deploying the System in a Cloud Solution

	Results
	Simulation Set-Up
	Experimental Results

	Discussion
	References

