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Abstract: Face alignment is widely used in high-level face analysis applications, such as human
activity recognition and human–computer interaction. However, most existing models involve a large
number of parameters and are computationally inefficient in practical applications. In this paper,
we aim to build a lightweight facial landmark detector by proposing a network-level architecture-
slimming method. Concretely, we introduce a selective feature fusion mechanism to quantify and
prune redundant transformation and aggregation operations in a high-resolution supernetwork.
Moreover, we develop a triple knowledge distillation scheme to further refine a slimmed network,
where two peer student networks could learn the implicit landmark distributions from each other
while absorbing the knowledge from a teacher network. Extensive experiments on challenging bench-
marks, including 300W, COFW, and WFLW, demonstrate that our approach achieves competitive
performance with a better trade-off between the number of parameters (0.98 M–1.32 M) and the
number of floating-point operations (0.59 G–0.6 G) when compared to recent state-of-the-art methods.

Keywords: face alignment; knowledge distillation; network pruning; lightweight model

1. Introduction

Face alignment, also known as facial landmark detection, aims at locating a set of
semantic points on a given face image. It usually serves as a critical step in many face
applications, such as face recognition [1], expression analysis [2], and driver-status track-
ing [3], which are significant components of human–computer interaction systems. As an
example, face alignment is used to generate a canonical face in the preprocessing of face
recognition [4,5]. In the past decade, there have been many methods and common datasets
reported in the literature [6–22] to promote the development of face alignment. Never-
theless, it remains a challenging task to develop an efficient and robust facial landmark
detector that performs well in various unconstrained scenarios.

In early works, the methods [6–9] based on cascaded regression made significant
progress on face alignment. They could learn a mapping function to iteratively refine
the estimated landmark positions from an initial face shape. Despite the success of the
methods for near-frontal face alignment, their performance was dramatically degraded on
challenging benchmarks. The main reason is that the methods use handcrafted features
and simply learned regression methods, which are weak to take full advantage of data for
the accurate shape mapping on unconstrained faces.

With the development of deep learning on computer vision, convolutional neural
network (CNN)-based methods have achieved impressive performance for unconstrained
face alignment. Most existing works focus on improving the accuracy of the landmark
localization by utilizing large backbone networks (e.g., VGG-16 [23], ResNet-50/152 [24],
and Hourglass [25]). Although the networks have powerful feature extraction ability, they
involve many parameters and a high computational cost and are difficult to apply in
resource-limited environments.
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Recently, some researchers have tended to balance the accuracy and efficiency of
a facial landmark detector. They either train a small model from scratch [26,27] or use
knowledge distillation (KD) for model compression [28–31]. The former aims to design a
lightweight network combined with an effective learning strategy, while the latter considers
how to apply the KD technique to transfer the dark knowledge from a large network to a
small one. However, the methods are not flexible enough to adapt to different computing
resources as they usually rely on a fixed and carefully designed network structure.

Inspired by the works [32,33] of neural architecture search and neural network prun-
ing for image classification, in which a compact target network was derived from a large
supernetwork, we attempted to search for a lightweight face alignment network from a
dynamically learned neural architecture. Concretely, we first trained a high-resolution
supernetwork based on the structure of HRNet [34]. In this network, a lightweight selective
feature fusion (LSFF) block was designed to quantify the importance of the built-in transfor-
mation and aggregation operations. Then, we optionally pruned the redundant operations
or even the entire blocks to obtain a slimmed network. To reduce the performance gap
between the slimmed network and the supernetwork, we developed a triple knowledge
distillation scheme, where two peer student networks with masked inputs could learn the
ensemble of landmark distributions while receiving the knowledge from a frozen teacher
network. In this paper, our main contributions are summarized as follows:

• We propose a flexible network-level architecture slimming method that can quantify
and reduce the redundancy of the network structure to obtain a lightweight facial
landmark detector adapted to different computing resources.

• We design a triple knowledge distillation scheme, in which a slimmed network could
be improved without additional complexity by jointly learning the implicit landmark
distribution from a teacher network and two peer student networks.

• Extensive experimental results on challenging benchmarks demonstrate that our
approach achieves a better trade-off between accuracy and efficiency than recent
state-of-the-art methods (see Figure 1).
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Figure 1. Comparison of the computational cost (i.e., FLOPs) and the performance (i.e., NME) on
300W between the proposed approach and existing state-of-the-art methods. The size of a circle
represents the number of parameters. Our approach (SD-HRNet) achieves a better trade-off between
accuracy and efficiency than its counterparts.

The rest of this paper is organized as follows: Section 2 provides a review of related
works about existing face alignment methods. In Section 3, we describe the detail of our
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proposed slimming and distillation methods. Section 4 shows the experimental results and
analysis on common datasets. Finally, we give a brief conclusion in Section 5.

2. Related Work

In this section, we provide a detailed review of the related methods on face alignment.

2.1. Conventional Face Alignment

In the early literature [6–9], the cascaded regression method was popular and widely
used to predict facial landmark positions by resolving a regression problem. The repre-
sentative methods included SDM [6], ESR [7], LBF [8], and CFSS [9]. The main differences
among the methods were the choices of extracted features and the landmark regression
methods. SDM used the scale-invariant feature transform (SIFT) as a feature descriptor
applied to a cascaded linear regression model. ESR was a two-stage boosted regression
method to predict the landmark coordinates by using the shape-indexed features. LBF
combined the random forest algorithm with local binary features to accelerate the landmark
localization process. To avoid a local optimum due to poor initialization, CFSS exploited
hybrid image features to estimate the landmark positions in a coarse-to-fine manner. These
methods were weak to detect landmarks on unconstrained face images due to the use of
handcrafted features and simply learned regression methods. In our work, we build a CNN
model to jointly learn the deep feature extraction and facial landmark heatmap regression.

2.2. Large CNN-Based Face Alignment

In recent years, there have been some advanced approaches reported in the litera-
ture [10–19], which have exploited large CNN models to drastically improve the landmark
localization accuracy. Wu and Yang [10] proposed a deep variation leveraging network
(DVLN), which contained two strongly coupled VGG-16 networks for landmark pre-
diction and candidate decision. Lin et al. [11,12] adopted a classic two-stage detection
architecture [35] based on the VGG-16 backbone for joint face detection and alignment.
Feng et al. [13] and Dong et al. [14] applied the ResNet-50 [24] and ResNet-152 [24] net-
works, respectively, as the feature extraction module in the landmark detection process. The
stacked hourglass network [25] is a popular CNN backbone used in recent state-of-the-art
works [15,16,18] to generate features with multiscale information. Xia et al. [19] combined
the HRNet backbone with a transformer structure to achieve a coarse-to-fine face alignment
framework. The methods had high accuracy on challenging benchmarks, but inevitably
required a large number of parameters and a high computational cost. Our approach only
utilizes the large CNN model (HRNet) as a teacher network and adopts a lightweight
model for face alignment.

2.3. Lightweight CNN-Based Face Alignment

Due to the limited application of large CNN models, some researchers have begun
to study the lightweight network design for face alignment. Bulat et al. [26] applied the
network quantization technique to construct a binary hourglass network. Guo et al. [27]
trained a lightweight network consisting of the MobileNetV2 [36] blocks by using an
auxiliary 3D pose estimator. To utilize the learning ability of large models, some recent
works [28–31] used the teacher-guided KD technique to make a small student network
learn the dark knowledge from a large teacher network. The student networks were usually
based on the existing lightweight networks (e.g., MobileNetV2, EfficientNet-B0 [37], and
HRNetV2-W9 [34]), while the teacher networks use the large CNN models (e.g., ResNet-
50, EfficientNet-B7 [37], and HRNetV2-W18 [34]) as the network backbone. It is worth
mentioning that the KD technique was also applied to improve a facial landmark detec-
tor [38–40] by mining the spatial–temporal relation from unlabeled video data. Inspired
by the student-guided KD [41] that made student networks learn from each other without
a teacher network, we introduce a student-guided learning strategy into the original KD
framework, which can generate more robust supervision knowledge for learning landmark
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distribution. Moreover, our student network is derived from a supernetwork and thus has
a more flexible structure than other handcrafted models.

3. Methods

As illustrated in Figure 2, our approach is a two-stage process consisting of a network-
level architecture slimming and triple knowledge distillation, which results in a lightweight
facial landmark detector.
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Figure 2. Illustration of the proposed slimming and distillation procedures for face alignment. A
lightweight model is first obtained by slimming the HRSuperNet. Then, the lightweight model is
refined in a triple knowledge distillation scheme consisting of two peer student networks and a
teacher network. We visualize the architecture of the lightweight model trained on the 300W dataset,
where the redundant TA operations and LSFF blocks are pruned.

3.1. Network-Level Architecture Slimming

Our high-resolution supernetwork (HRSuperNet) follows a similar structure to HRNet
in Figure 3 and begins from a stem that is composed of two 3× 3 convolutions with a stride
of 2. The spatial resolution is downsampled to H/4×W/4, where H and W denote the
height and width of an input image I ∈ R3×H×W . The main body consists of ten stages
maintaining the high-resolution representations throughout the network. Different from
HRNet, the supernetwork contains a single-resolution LSFF block with a downsampling
ratio of 1 in the first stage and repeats four-resolution blocks with downsampling ratios
of {1, 1/2, 1/4, 1/8} from the beginning of the second stage. Each block has four stacked
mobile inverted bottleneck convolutions (MBConvs [36]) with a 3× 3 kernel size and an
expansion ratio of 1. The design could make the supernetwork keep a larger architecture
space but fewer parameters and lower computational cost than HRNet. Except for the first
stage, the LSFF block is designed to transform and aggregate features from the previous
stage and generate new features as inputs to the next stage. The process is formulated
as follows:

Yi>1,k = E(
Ji−1

∑
j=1

αk
i,jT(X

k
i−1,j)), (1)

where Yi,k is the output of the kth block in the ith stage and Xk
i−1,j denotes the kth output

from the jth block in the (i− 1)th stage. Ji−1 is the number of blocks in the (i− 1)th stage.
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T represents a transformation operation that is either a 1× 1 convolution with a stride of
1 and a bilinear interpolation for upsampling, a sequence of 3× 3 convolutions with a stride
of 2 for downsampling, or an identity shortcut connection. E denotes a feature encoding
operation implemented by the stacked MBconvs. The factor α is used as the weight of each
transformation operation to participate in the follow-up aggregation process. The head
in the supernetwork consists of two 1× 1 convolutions with a stride of 1 and generates
the landmark heatmaps P ∈ RN×M×H/4×W/4 when receiving N samples with M facial
landmark points.
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Figure 3. Detailed structures of HRNet and HRSuperNet. The proposed lightweight selective feature
fusion (LSFF) block is composed of the transformation and aggregation (TA) operations with different
importance factors α and stacked mobile inverted bottleneck convolutions (MBConvs).

During the training, we make the supernetwork learn the landmark heatmap regres-
sion along with the subnetwork architecture search by imposing an L1 regularization on α
to enforce the sparsity of the operations with few contributions to the network. Formally,
the overall training loss is:

L =
N

∑
n=1

M

∑
m=1

MSE(Pn,m, Gn,m)

N ×M
+ λ

I

∑
i=2

Ji−1

∑
j=1

Ji

∑
k=1
|αk

i,j|, (2)

where MSE(Pn,m, Gn,m) denotes the standard mean square error between the predicted
heatmap Pn,m and the ground-truth heatmap Gn,m of the mth landmark in the nth sample.
The ground-truth heatmap is generated by applying a 2D Gaussian centered on the ground-
truth location of each landmark. λ is the weight to balance the MSE and the L1 penalty term.
I and Ji denote the number of stages and the number of blocks in the ith stage, respectively.
We first train the supernetwork by alternately optimizing the importance factors and the
network weights until they converge. Then, we prune the redundant transformation and
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aggregation operations in the LSFF blocks, where the corresponding factors are smaller
than a given pruning threshold. Note that the entire block is discarded if all the associated
operations are pruned.

3.2. Triple Knowledge Distillation

In our distillation scheme, we adopt the slimmed network as the peer student networks
S1 and S2 and use the pretrained HRNet as the teacher network T. To increase the model
diversity, we use the occluded images with a random-sized mask as the inputs of the
student networks.

Specially, we define a KD loss for a network to learn the landmark distribution from
another network as follows:

LKD(P2||P1) =
N

∑
n=1

M

∑
m=1

DKL(S(P2
n,m)||S(P1

n,m))

N ×M
, (3)

where DKL is the Kullback–Leibler (KL) divergence to measure the distance of the landmark
distributions from S(P1) to S(P2), and S is the softmax function working on the predicted
landmark heatmaps P1 and P2.

During the training, we use MSE and LKD as the main criterion to make the student
networks learn the explicit landmark distribution from the ground-truth heatmap, while
allowing them to learn the implicit landmark distribution from their ensemble predictions
and the output of the teacher network. The overall training loss of a student network Si is
formulated as:

PE = (PS1 + PS2)/2,

LSi =
N

∑
n=1

M

∑
m=1

MSE(PSi
n,m, Gn,m)

N ×M

+ λ1LKD(PE||PSi ) + λ2LKD(PT ||PSi ),

(4)

where PS1 , PS2 , and PT denote the predicted landmark heatmaps of S1, S2, and T, respec-
tively. The weights λ1 and λ2 are used to balance MSE and the KD losses.

4. Experiments
4.1. Datasets

We conducted experiments on three challenging datasets including 300W [20], COFW [21],
and WFLW [15].

300W: It consists of the HELEN [42], LFPW [43], AFW [44], XM2VTS [45], and
IBUG [20] datasets, where each face has 68 landmarks. The training set contains 3148 im-
ages and the test set has 689 images divided into the challenge subset (135 images) and the
common subset (554 images). Masked 300W [46] is a supplement to the 300W dataset for
testing. This dataset mainly includes masked faces with over 50% of occlusion.

COFW: It contains 1852 face images with different degrees of occlusion including
1345 training images and 507 test images. Each face image has 29 annotated landmarks.

WFLW: There are 7500 images for training and 2500 images for testing where the
test set includes six subsets: large pose (326 images), illumination (698 images), occlusion
(736 images), blur (773 images), make-up (206 images), and expression (314 images).

4.2. Evaluation Metrics

We followed previous works and used the normalized mean error (NME) to evaluate
the performance of the facial landmark detection:

NME =
N

∑
n=1

M

∑
m=1

‖pn,m − gn,m‖2
N ×M× d

(5)
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where pn,m and gn,m denote the coordinate vectors of the predicted landmark and the
ground-truth landmark, respectively. d is the interocular distance. We also report the
failure rate by setting a maximum NME of 10%. The number of parameters (#Params) and
the number of floating-point operations (FLOPs) were used to measure model size and
computational cost, respectively.

4.3. Implementation Detail

Following the work [15], all the faces were cropped based on the provided bounding
boxes and resized to 256× 256. We augmented the data by a 1.0± 0.25 scaling, ±30-degree
rotation, and random flipping with a probability of 50%. The pseudocode in Algorithm 1
shows the training pipeline of our approach in the slimming and distilling stages.

Algorithm 1: SD-HRNet Algorithm
Input: The training set DT , initialized importance factor α and network weight w,

training epochs N, pruning threshold p, pretrained teacher network T
Output: Two lightweight networks S1 and S2

1 for i = 1 to N do
2 for Mini-batch Dt in DT do
3 Calculate the loss L by Eqaution (2)
4 Update α by gradient descent:
5 α = α−∇αL
6 end
7 for Mini-batch Dt in DT do
8 Calculate the loss L by Equation (2)
9 Update w by gradient descent:

10 w = w−∇wL
11 end
12 end
13 Obtain lightweight networks S1 and S2 by p
14 Initialize importance factors in S1 and S2:
15 α1, α2 = α
16 Initialize network weights in S1 and S2:
17 w1, w2 = w
18 for i = 1 to N do
19 for Minibatch Dt in DT do
20 Calculate the losses LS1 and LS2 by Equation (4)
21 Update w1 and w2 by gradient descent:
22 w1 = w1 −∇w1 LS1
23 w2 = w2 −∇w2 LS2

24 end
25 end

Slimming stage: We alternatively optimized the importance factors and network
weights for 60 epochs. To optimize the importance factors, we used the Adam optimizer
with the learning rates of 1.8× 10−4 on 300W and WFLW, and 3.5× 10−4 on COFW. The
weight λ was set to 5× 10−5. To update the network weights, we used the Adam optimizer
with a momentum of 0.9 and weight decay of 4 × 10−5. The initial learning rate was
1× 10−4 on 300W and COFW, and 2× 10−4 on WFLW, which was dropped by a factor of
0.1 in 40 and 50 epochs. The pruning threshold was set to 0.0017 on 300W, 0.0042 on COFW,
and 0.002 on WFLW. The batch size was set to 16 on 300W and COFW, and 32 on WFLW.

Distilling stage: We jointly fine-tuned two slimmed networks for 60 epochs. The
settings of the optimizer, learning rate and batch size were the same as those in the slimming
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stage. The weights λ1 and λ2 were set to 4 and 1 on 300W, 3 and 0.1 on COFW, and 0.3 and
0.1 on WFLW.

4.4. Comparison with State-of-the-Art Methods

In this section, we compare our approach with the recent state-of-the-art methods on
300W, COFW, and WFLW. S-HRNet is the slimmed network from HRSuperNet. SD-HRNet1
and SD-HRNet2 denote two refined S-HRNets through the proposed distillation scheme.
We report the average results with the standard deviation of SD-HRNet1 and SD-HRNet2
from training them five times over different seeds.

4.4.1. Results on 300W

We report the #Params and FLOPs in Table 1 as well as the NME on the 300W subsets
in Table 2. Compared to the advanced models (e.g., LAB and SLPT) with large backbones,
our method (SD-HRNet) had far fewer parameters and FLOPs while achieving competitive
or even better performance. Compared to HRNet, SD-HRNet only increased the NME by
about 2% but reduced the #Params by 89.5% and the FLOPs by 86.3%. We showed that
SD-HRNet achieved fewer parameters (0.98 M parameters) and a lower computational cost
(0.59 G FLOPs) than existing lightweight models. Moreover, we proved the effectiveness of
the proposed slimming and distillation approaches as the #Params and FLOPs of HRSuper-
Net were reduced by 70.0% and 52.8%, respectively, and the NME of S-HRNet was reduced
by about 3%. Table 3 shows the performance of the methods on Masked 300W. We found
that SD-HRNet had an obvious improvement for occluded faces due to the introduction
of masked inputs. Although our method obtained a competitive NME compared to most
previous methods, it underperformed the recent state-of-the-art methods [47,48] focusing
on the occlusion problem.

Table 1. Comparison of different methods in backbone, #Params, and FLOPs.

Method Backbone #Params (M) FLOPs (G)

DVLN [10] VGG-16 [23] 132.0 14.4
Wing+PDB [13] ResNet-50 [24] 25 3.8
SAN [14] ResNet-152 [24] 57.4 10.7
LAB [15] Hourglass [25] 25.1 19.1
HRNet [34] HRNetV2-W18 [34] 9.3 4.3
AWing [16] Hourglass [25] 24.15 26.79
BL+AFS [17] - 14.29 3.10
LGSA [18] Hourglass [25] 18.64 15.69
SLPT [19] HRNetV2-W18 [34] 13.18 5.17
SRN [47] Hourglass [25] 19.89 -
GlomFace [48] - - 13.48

MobileFAN [28] MobileNetV2 [36] 2.02 0.72
EfficientFAN [29] EfficientNet-B0 [37] 4.19 0.79
EFLD [30] HRNetV2-W9 [34] 2.3 1.7
mnv2KD [31] MobileNetV2 [36] 2.4 0.6

HRSuperNet HRSuperNet 3.27 1.25
SD-HRNet (300W) S-HRNet 0.98 0.59
SD-HRNet (COFW) S-HRNet 1.05 0.60
SD-HRNet (WFLW) S-HRNet 1.32 0.60
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Table 2. Comparison of NME (%) on 300W: common subset, challenge subset, and full set.

Method Common Challenge Full

ODN [49] 3.56 6.67 4.17
SAN [14] 3.34 6.60 3.98
LAB [15] 2.98 5.19 3.49
HRNet [34] 2.87 5.15 3.32
AWing [16] 2.72 4.52 3.07
BL+AFS [17] 2.89 5.23 3.35
LGSA [18] 2.92 5.16 3.36
SAAT [46] 2.87 5.03 3.29
SRN [47] 3.08 5.86 3.62
GlomFace [48] 2.79 4.87 3.20
SLPT [19] 2.75 4.90 3.17

MobileFAN [28] 2.98 5.34 3.45
EfficientFAN [29] 2.98 5.21 3.42
EFLD [30] 2.88 5.03 3.32
mnv2KD [31] 3.56 6.13 4.06

HRSuperNet 3.00 5.28 3.45
S-HRNet 3.02 5.44 3.50
SD-HRNet1 2.93 ± 0.01 5.32 ± 0.05 3.40 ± 0.01
SD-HRNet2 2.94 ± 0.01 5.33 ± 0.02 3.41 ± 0.01

Table 3. Comparison of NME (%) on Masked 300W: common subset, challenge subset, and full set.

Method Common Challenge Full

CFSS [9] 11.73 19.98 13.35
DHGN [50] 8.98 12.19 9.61
SBR [38] 8.72 13.28 9.6
SHG [25] 8.17 13.52 9.22
MDM [51] 7.66 11.67 8.44
FHR [52] 7.02 11.28 7.85
LAB [15] 6.07 9.59 6.76
SAAT [46] 5.42 11.36 6.58
SRN [47] 5.78 9.28 6.46
GlomFace [48] 5.29 8.81 5.98

HRSuperNet 14.03 20.52 15.30
S-HRNet 19.18 29.37 21.17
SD-HRNet1 6.43 ± 0.25 11.05 ± 0.51 7.34 ± 0.28
SD-HRNet2 6.23 ± 0.23 10.72 ± 0.25 7.11 ± 0.20

4.4.2. Results on COFW

Table 4 shows the NME and the failure rate for a maximum NME of 10% on the
COFW test set. Our method performed better than some classic works (e.g., RAR and
DAC-CSR) for partially occluded face alignment and achieved a competitive accuracy
against recent state-of-the-art methods (e.g., LGSA and SLPT). Compared to HRNet, the
NME of SD-HRNet was slightly increased by about 5% while the #Params and FLOPs were
reduced by 88.7% and 86.0%, respectively. Moreover, SD-HRNet was still more lightweight
than recent small models and had similar landmark detection performance.
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Table 4. Comparison of NME (%) and failure rate (%) for a maximum NME of 10% on the COFW test set.

Method NME (%) Failure Rate (%)

HPM [53] 7.50 13.00
CCR [54] 7.03 10.9
DRDA [55] 6.46 6.00
RAR [56] 6.03 4.14
DAC-CSR [57] 6.03 4.73
Wing+PDB [13] 5.07 3.16
LAB [15] 3.92 0.39
HRNet [34] 3.45 0.19
LGSA [18] 3.13 0.002
SLPT [19] 3.32 0.00

MobileFAN [28] 3.66 0.59
EfficientFAN [29] 3.40 0.00
EFLD [30] 3.50 0.00
mnv2KD [31] 4.11 2.36

HRSuperNet 3.74 0.59
S-HRNet 3.69 0.20
SD-HRNet1 3.61 ± 0.02 0.12 ± 0.16
SD-HRNet2 3.63 ± 0.03 0.20 ± 0.17

4.4.3. Results on WFLW

In Table 5, we report the NME on the WFLW test set and six subsets. Our method
significantly outperformed conventional cascaded regression methods (e.g., SDM and
CFSS) and some classic large models (e.g., LAB and Wing+PDB). However, we found that
there was a slightly bigger performance gap between SD-HRNet and recent large models
than the results on 300W and COFW. The reason might be that learning the dense landmark
regression relies on a large network capacity. Compared to the advanced lightweight
models, SD-HRNet achieved the third-best NME in most cases with a better trade-off of
model size (1.32 M parameters) and computational cost (0.6 G FLOPs).

Table 5. Comparison of NME (%) on the WFLW test set and 6 subsets: pose, expression, illumination,
make-up, occlusion, and blur.

Method Test Pose Expression Illumination Make-Up Occlusion Blur

ESR [58] 11.13 25.88 11.47 10.49 11.05 13.75 12.20
SDM [6] 10.29 24.10 11.45 9.32 9.38 13.03 11.28
CFSS [9] 9.07 21.36 10.09 8.30 8.74 11.76 9.96
DVLN [10] 6.08 11.54 6.78 5.73 5.98 7.33 6.88
LAB [15] 5.27 10.24 5.51 5.23 5.15 6.79 6.32
Wing+PDB [13] 5.11 8.75 5.36 4.93 5.41 6.37 5.81
HRNet [34] 4.60 7.94 4.85 4.55 4.29 5.44 5.42
AWing [16] 4.36 7.38 4.58 4.32 4.27 5.19 4.96
LUVLi [59] 4.37 7.56 4.77 4.30 4.33 5.29 4.94
LGSA [18] 4.28 7.63 4.33 4.16 4.27 5.33 4.95

mnv2KD [31] 8.57 15.06 8.81 8.15 8.75 9.92 9.40
MobileFAN [28] 4.93 8.72 5.27 4.93 4.70 5.94 5.73
EFLD [30] 4.74 8.41 5.01 4.71 4.57 5.70 5.45
EfficientFAN [29] 4.54 8.20 4.87 4.39 4.54 5.42 5.04

HRSuperNet 4.83 8.45 5.10 4.80 4.85 5.79 5.53
S-HRNet 4.98 8.68 5.33 4.86 4.88 5.87 5.70
SD-HRNet1 4.93 ± 0.01 8.63 ± 0.03 5.31 ± 0.05 4.81 ± 0.03 4.76 ± 0.02 5.73 ± 0.02 5.56 ± 0.03
SD-HRNet2 4.96 ± 0.03 8.66 ± 0.10 5.35 ± 0.04 4.82 ± 0.05 4.81 ± 0.04 5.76 ± 0.04 5.61 ± 0.06
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In Figure 4, we show the number of frames per second (FPS) of our method using
different batch sizes on 300W. Due to the very small resource consumption, SD-HRNet
could process more than 500 samples per second. In Figure 5, we give some example results
on the common datasets and show the accurate landmark localization of our method on
various unconstrained faces. All the experiments were implemented with PyTorch on a
single TITAN Xp GPU.

0 1 4 16 64 256
Batch Size

0

100

200

300

400

500

FP
S

Figure 4. FPS of our method using different batch sizes on 300W.

Figure 5. Example results of our method for face alignment. Top row: results on 300W (68 points).
Second row: results on WFLW (98 points). Bottom row: results on COFW (29 points).

4.5. Ablation Study

In this section, we conduct an ablation study on 300W and analyze the effect of the
proposed components.

4.5.1. HRNet vs. HRSuperNet

To verify the rationality of our supernetwork, we trained HRNet and HRSuperNet
on 300W without pretraining and used them as the supernetwork to generate a series of
slimmed networks. The original residual units [34] or stacked MBConvs were used as
the feature encoding operation in the proposed LSFF block. As seen from Figure 6, most
networks derived from HRSuperNet had a lower NME than HRNet when their FLOPs
were similar, which suggested that a larger architecture space was more likely to generate
better subnetworks.
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Figure 6. Comparison of HRNet and HRSuperNet based on original residual units (a) or stacked
MBConvs (b), which were used as the supernetwork in the proposed slimming method. We obtained
a series of slimmed networks with different NME and FLOPs on the 300W full set by using different
pruning thresholds.

4.5.2. KD Components

In Table 6, we show the effect of different KD components in our distillation scheme
for the performance on 300W. We observed that each component incrementally led to the
improvement of the slimmed network. It suggested that the combination of the teacher-
guided KD and the student-guided KD was an effective way for the implicit knowledge
transfer. In addition, the introduction of masked inputs could increase the diversity of
student networks and make them learn robust landmark distribution from each other.

Table 6. NME (%) of our method using different KD components on the 300W full set.

Teacher Peer Student Masked Inputs NME (%)

× × × 3.50
X × × 3.46
X X × 3.44
X X X 3.39

4.6. Visualization of the Architectures

We visualize the slimmed architecture trained on 300W in Figure 2 and the other two
architectures on COFW and WFLW in Figure 7. The proposed selective feature fusion
mechanism could result in different network structures from a unified architecture space,
which were adapted to different datasets and landmark detection tasks. For example, the
architectures from 300W and COFW tended to preserve more high-resolution blocks from
the first and second branches than the architecture from WFLW. In addition, we found that
more than 94% of the blocks in HRSuperNet were utilized by the slimmed architectures.
It suggested that the designed architecture space was reasonable to cover most cases for
generating an efficient face alignment network.
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Figure 7. Visualization of the slimmed architectures trained on the COFW (a) and WFLW (b) datasets.

5. Conclusions

In this paper, we proposed a network-level slimming method and a hybrid knowledge
distillation scheme, which could work together to generate an efficient and accurate facial
landmark detector. Compared to existing handcrafted models, our model achieved compet-
itive performance with a better trade-off between model size (0.98 M–1.32 M parameters)
and computational cost (0.59 G–0.6 G FLOPs). In addition, our method was more flexible
in practical application through an adaptive architecture search technique, which could be
applied to real-time human–computer interaction systems under different resource-limited
environments. Nevertheless, there was still a performance gap between our method and
recent state-of-the-art large models, especially for the dense or strongly occluded landmark
detection task. In future work, we will explore how to design a more reasonable architecture
search space to improve the upper bound of performance and extend our method to other
computer vision tasks such as human pose estimation and semantic segmentation.
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Abbreviations
The following abbreviations are used in this manuscript:

CNN Convolutional neural network
HRSuperNet High-resolution super network
S-HRNet Slimmed network from HRSuperNet
SD-HRNet Refined S-HRNet using triple knowledge distillation
LSFF Lightweight selective feature fusion
TA Transformation and aggregation
MBConvs Mobile inverted bottleneck convolutions
KD Knowledge distillation
KL Kullback–Leibler
2D Two-dimensional
FLOPs Number of floating-point operations
NME Normalized mean error
#Params Number of parameters
FPS Frames per second
SIFT Scale-invariant feature transform
M Mega
G Giga

References
1. Taigman, Y.; Yang, M.; Ranzato, M.; Wolf, L. Deepface: Closing the gap to human-level performance in face verification. In Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014,
pp. 1701–1708.

2. Pantic, M.; Rothkrantz, L.J.M. Automatic analysis of facial expressions: The state of the art. IEEE Trans. Pattern Anal. Mach. Intell.
2000, 22, 1424–1445. [CrossRef]

3. Jabbar, R.; Shinoy, M.; Kharbeche, M.; Al-Khalifa, K.; Krichen, M.; Barkaoui, K. Driver drowsiness detection model using
convolutional neural networks techniques for android application. In Proceedings of the 2020 IEEE International Conference on
Informatics, IoT, and Enabling Technologies (ICIoT), Doha, Qatar, 2–5 February 2020; pp. 237–242.

4. Taskiran, M.; Kahraman, N.; Erdem, C.E. Face recognition: Past, present and future (a review). Digital Signal Process. 2020,
106, 102809. [CrossRef]

5. Adjabi, I.; Ouahabi, A.; Benzaoui, A.; Taleb-Ahmed, A. Past, present, and future of face recognition: A review. Electronics 2020,
9, 1188. [CrossRef]

6. Xiong, X.; la Torre, F. Supervised descent method and its applications to face alignment. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Portland, OR, USA, 23–28 June 2013; pp. 532–539.

7. Cao, X.; Wei, Y.; Wen, F.; Sun, J. Face alignment by explicit shape regression. Int. J. Comput. Vision 2014, 107, 177–190. [CrossRef]
8. Ren, S.; Cao, X.; Wei, Y.; Sun, J. Face alignment at 3000 fps via regressing local binary features. In Proceedings of the 27th IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 24–27 June 2014; pp. 1685–1692.
9. Zhu, S.; Li, C.; Loy, C.; Tang, X. Face alignment by coarse-to-fine shape searching. In Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 4998–5006.
10. Wu, W.; Yang, S. Leveraging intra and inter-dataset variations for robust face alignment. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2096–2105.
11. Lin, X.; Wan, J.; Xie, Y.; Zhang, S.; Lin, C.; Liang, Y.; Guo, G.; Li, S. Task-Oriented Feature-Fused Network With Multivariate

Dataset for Joint Face Analysis. IEEE Trans. Cybern. 2019, 50, 1292–1305. [CrossRef] [PubMed]
12. Lin, X.; Liang, Y.; Wan, J.; Lin, C.; Li, S.Z. Region-based Context Enhanced Network for Robust Multiple Face Alignment. IEEE

Trans. Multimed. 2019, 21, 3053–3067. [CrossRef]
13. Feng, Z.H.; Kittler, J.; Awais, M.; Huber, P.; Wu, X.J. Wing loss for robust facial landmark localisation with convolutional neural

networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake, UT,
USA, 18–23 June 2018; pp. 2235–2245.

14. Dong, X.; Yan, Y.; Ouyang, W.; Yang, Y. Style aggregated network for facial landmark detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake, UT, USA, 18–23 June 2018; pp. 379–388.

15. Wu, W.; Qian, C.; Yang, S.; Wang, Q.; Cai, Y.; Zhou, Q. Look at Boundary: A Boundary-Aware Face Alignment Algorithm. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake, UT, USA, 18–23 June 2018;
pp. 2129–2138.

16. Wang, X.; Bo, L.; Fuxin, L. Adaptive wing loss for robust face alignment via heatmap regression. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 6971–6981.

17. Wang, T.; Tong, X.; Cai, W. Attention-based face alignment: A solution to speed/accuracy trade-off. Neurocomputing 2020,
400, 86–96. [CrossRef]

http://doi.org/10.1109/34.895976
http://dx.doi.org/10.1016/j.dsp.2020.102809
http://dx.doi.org/10.3390/electronics9081188
http://dx.doi.org/10.1007/s11263-013-0667-3
http://dx.doi.org/10.1109/TCYB.2019.2917049
http://www.ncbi.nlm.nih.gov/pubmed/31180879
http://dx.doi.org/10.1109/TMM.2019.2916455
http://dx.doi.org/10.1016/j.neucom.2020.03.023


Sensors 2023, 23, 1532 15 of 16

18. Gao, P.; Lu, K.; Xue, J.; Shao, L.; Lyu, J. A coarse-to-fine facial landmark detection method based on self-attention mechanism.
IEEE Trans. Multimed. 2021, 23, 926–938. [CrossRef]

19. Xia, J.; Qu, W.; Huang, W.; Zhang, J.; Wang, X.; Xu, M. Sparse Local Patch Transformer for Robust Face Alignment and Landmarks
Inherent Relation Learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
New Orleans, LA, USA, 18–24 June 2022; pp. 4052–4061.

20. Sagonas, C.; Tzimiropoulos, G.; Zafeiriou, S.; Pantic, M. 300 faces in-the-wild challenge: The first facial landmark localization
challenge. In Proceedings of the IEEE International Conference on Computer Vision Workshops, Sydney, NSW, Australia,
2–8 December 2013; pp. 397–403.

21. Burgos-Artizzu, X.P.; Perona, P.; Dollár, P. Robust face landmark estimation under occlusion. In Proceedings of the IEEE
International Conference on Computer Vision, Sydney, NSW, Australia, 1–8 December 2013; pp. 1513–1520.

22. Ghiasi, G.; Fowlkes, C.C. Occlusion coherence: Detecting and localizing occluded faces. arXiv 2015, arXiv:1506.08347.
23. Chatfield, K.; Simonyan, K.; Vedaldi, A.; Zisserman, A. Return of the devil in the details: Delving deep into convolutional nets.

In Proceedings of the British Machine Vision Conference 2014, Lenton, Nottingham, UK, 1–5 September 2014.
24. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
25. Newell, A.; Yang, K.; Deng, J. Stacked hourglass networks for human pose estimation. In Proceedings of the European Conference

on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 483–499.
26. Bulat, A.; Tzimiropoulos, G. Binarized convolutional landmark localizers for human pose estimation and face alignment with

limited resources. In Proceedings of IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017;
pp. 3706–3714.

27. Guo, X.; Li, S.; Yu, J.; Zhang, J.; Ma, J.; Ma, L.; Liu, W.; Ling, H. PFLD: A practical facial landmark detector. arXiv 2019,
arXiv:1902.10859v2.

28. Zhao, Y.; Liu, Y.; Shen, C.; Gao, Y.; Xiong, S. Mobilefan: Transferring deep hidden representation for face alignment. Pattern
Recognit. 2020, 100, 107114. [CrossRef]

29. Gao, P.; Lu, K.; Xue, J.; Lyu, J.; Shao, L. A facial landmark detection method based on deep knowledge transfer. IEEE Trans.
Neural Netw. Learn. Syst. 2021. [CrossRef] [PubMed]

30. Sha, Y. Efficient Facial Landmark Detector by Knowledge Distillation. In Proceedings of 16th IEEE International Conference on
Automatic Face and Gesture Recognition (FG 2021), Jodhpur, India, 15–18 December 2021; pp. 1–8.

31. Fard, A.P.; Mahoor, M.H. Facial landmark points detection using knowledge distillation-based neural networks. Comput. Vis.
Image Underst. 2022, 215, 103316. [CrossRef]

32. Liu, H.; Simonyan, K.; Yang, Y. Darts: Differentiable architecture search. arXiv 2018, arXiv:1806.09055.
33. Yu, J.; Yang, L.; Xu, N.; Yang, J.; Huang, T. Slimmable Neural Networks. In Proceedings of the International Conference on

Learning Representations (ICLR), New Orleans, LA, USA, 6–9 May 2019.
34. Sun, K.; Zhao, Y.; Jiang, B.; Cheng, T.; Xiao, B.; Liu, D.; Mu, Y.; Wang, X.; Liu, W.; Wang, J. High-resolution representations for

labeling pixels and regions. arXiv 2019, arXiv:1904.04514.
35. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. In

Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015, pp. 91–99.
36. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 4510–4520.

37. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International
Conference on Machine Learning (PMLR), Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114.

38. Dong, X.; Yu, S.; Weng, X.; Wei, S.; Yang, Y.; Sheikh, Y. Supervision-by-registration: An unsupervised approach to improve the
precision of facial landmark detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Salt Lake City, UT, USA, 18–23 June 2018; p. 360–368.

39. Zhu, C.; Liu, H.; Yu, Z.; Sun, X. Towards omni-supervised face alignment for large scale unlabeled videos. In Proceedings of the
AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; pp. 13090–13097.

40. Zhu, C.; Li, X.; Li, J.; Dai, S.; Tong, W. Multi-sourced Knowledge Integration for Robust Self-Supervised Facial Landmark Tracking.
IEEE Trans. Multimed. 2022. [CrossRef]

41. Zhang, Y.; Xiang, T.; Hospedales, T.M.; Lu, H. Deep mutual learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4320–4328.

42. Le, V.; Brandt, J.; Lin, Z.; Bourdev, L.; Huang, T.S. Interactive facial feature localization. In Proceedings of the 12th European
Conference on Computer Vision, Florence, Italy, 7–13 October 2012; pp. 679–692.

43. Belhumeur, P.N.; Jacobs, D.W.; Kriegman, D.J.; Kumar, N. Localizing parts of faces using a consensus of exemplars. IEEE Trans.
Pattern Anal. Mach. Intell. 2013, 35, 2930–2940. [CrossRef] [PubMed]

44. Zhu, X.; Ramanan, D. Face detection, pose estimation, and landmark localization in the wild. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 2879–2886.

http://dx.doi.org/10.1109/TMM.2020.2991507
http://dx.doi.org/10.1016/j.patcog.2019.107114
http://dx.doi.org/10.1109/TNNLS.2021.3105247
http://www.ncbi.nlm.nih.gov/pubmed/34449395
http://dx.doi.org/10.1016/j.cviu.2021.103316
http://dx.doi.org/10.1109/TMM.2022.3212265
http://dx.doi.org/10.1109/TPAMI.2013.23
http://www.ncbi.nlm.nih.gov/pubmed/24136431


Sensors 2023, 23, 1532 16 of 16

45. Messer, K.; Matas, J.; Kittler, J.; Luettin, J.; Maitre, G.; et al. XM2VTSDB: The extended M2VTS database. In Proceedings of the
International Conference on Audio- and Video-Based Biometric Person Authentication (AVBPA), Washington, DC, USA, 22–23
March 1999; Volume 964, pp. 965–966.

46. Zhu, C.; Li, X.; Li, J.; Dai, S. Improving robustness of facial landmark detection by defending against adversarial attacks.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021;
pp. 11751–11760.

47. Zhu, C.; Li, X.; Li, J.; Dai, S.; Tong, W. Reasoning structural relation for occlusion-robust facial landmark localization. Pattern
Recognit. 2022, 122, 108325. [CrossRef]

48. Zhu, C.; Wan, X.; Xie, S.; Li, X.; Gu, Y. Occlusion-Robust Face Alignment Using a Viewpoint-Invariant Hierarchical Network
Architecture. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA,
18–24 June 2022, pp. 11112–11121.

49. Zhu, M.; Shi, D.; Zheng, M.; Sadiq, M. Robust facial landmark detection via occlusion-adaptive deep networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 3486–3496.

50. Zhu, H.; Liu, H.; Zhu, C.; Deng, Z.; Sun, X. Learning spatial-temporal deformable networks for unconstrained face alignment and
tracking in videos. Pattern Recognit. 2020, 107, 107354. [CrossRef]

51. Trigeorgis, G.; Snape, P.; Nicolaou, M.A.; Antonakos, E.; Zafeiriou, S. Mnemonic descent method: A recurrent process applied for
end-to-end face alignment. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las
Vegas, NV, USA, 27–30 June 2016; pp. 4177–4187.

52. Tai, Y.; Liang, Y.; Liu, X.; Duan, L.; Li, J.; Wang, C.; Huang, F.; Chen, Y. Towards highly accurate and stable face align-
ment for high-resolution videos. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA,
27 January–1 February 2019; pp. 8893–8900.

53. Ghiasi, G.; Fowlkes, C. Occlusion coherence: Localizing occluded faces with a hierarchical deformable part model. In Proceedings
of the Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 2385–2392.

54. Feng, Z.; Hu, G.; Kittler, J.; Christmas, W.; Wu, X. Cascaded collaborative regression for robust facial landmark detection trained
using a mixture of synthetic and real images with dynamic weighting. IEEE Trans. Image Process. 2015, 24, 3425–3440. [CrossRef]
[PubMed]

55. Zhang, J.; Kan, M.; Shan, S.; Chen, X. Occlusion-free face alignment: deep regression networks coupled with de-corrupt
autoencoders. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA,
27–30 June 2016; pp. 3428–3437.

56. Xiao, S.; Feng, J.; Xing, J.; Lai, H.; Yan, S.; Kassim, A. Robust facial landmark detection via recurrent attentive-refinement
networks. In Proceedings of the 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October
2016; pp. 57–72.

57. Feng, Z.; Kittler, J.; Christmas, W.; Huber, P.; Wu, X. Dynamic attention-controlled cascaded shape regression exploiting training
data augmentation and fuzzy-set sample weighting. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 3681–3690.

58. Cao, X.; Wei, Y.; Wen, F.; Sun, J. Face alignment by explicit shape regression. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 2887–2894.

59. Kumar, A.; Marks, T.K.; Mou, W.; Wang, Y.; Jones, M.; Cherian, A.; Koike-Akino, T.; Liu, X.; Feng, C. Luvli face alignment:
Estimating landmarks’ location, uncertainty, and visibility likelihood. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 8236–8246.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.patcog.2021.108325
http://dx.doi.org/10.1016/j.patcog.2020.107354
http://dx.doi.org/10.1109/TIP.2015.2446944
http://www.ncbi.nlm.nih.gov/pubmed/26087493

	Introduction
	Related Work
	Conventional Face Alignment
	Large CNN-Based Face Alignment
	Lightweight CNN-Based Face Alignment

	Methods
	Network-Level Architecture Slimming
	Triple Knowledge Distillation

	Experiments
	Datasets
	Evaluation Metrics
	Implementation Detail
	Comparison with State-of-the-Art Methods
	Results on 300W
	Results on COFW
	Results on WFLW

	Ablation Study
	HRNet vs. HRSuperNet
	KD Components

	Visualization of the Architectures

	Conclusions
	References

