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Abstract: In the era of big data, industrial process data are often generated rapidly in the form of
streams. Thus, how to process such sequential and high-speed stream data in real time and provide
critical quality variable predictions has become a critical issue for facilitating efficient process control
and monitoring in the process industry. Traditionally, soft sensor models are usually built through
offline batch learning, which remain unchanged during the online implementation phase. Once the
process state changes, soft sensors built from historical data cannot provide accurate predictions.
In practice, industrial process data streams often exhibit characteristics such as nonlinearity, time-
varying behavior, and label scarcity, which pose great challenges for building high-performance soft
sensor models. To address this issue, an online-dynamic-clustering-based soft sensor (ODCSS) is
proposed for industrial semi-supervised data streams. The method achieves automatic generation
and update of clusters and samples deletion through online dynamic clustering, thus enabling
online dynamic identification of process states. Meanwhile, selective ensemble learning and just-
in-time learning (JITL) are employed through an adaptive switching prediction strategy, which
enables dealing with gradual and abrupt changes in process characteristics and thus alleviates model
performance degradation caused by concept drift. In addition, semi-supervised learning is introduced
to exploit the information of unlabeled samples and obtain high-confidence pseudo-labeled samples
to expand the labeled training set. The proposed method can effectively deal with nonlinearity,
time-variability, and label scarcity issues in the process data stream environment and thus enable
reliable target variable predictions. The application results from two case studies show that the
proposed ODCSS soft sensor approach is superior to conventional soft sensors in a semi-supervised
data stream environment.

Keywords: soft sensor; semi-supervised data streams; online clustering; adaptive switching prediction;
sample augmentation; Gaussian process regression

1. Introduction

In the process industry, real-time estimations of key quality parameters are of great
importance for process monitoring, control, and optimization. However, due to technical
and economic limitations, these key parameters related to product quality and process
status cannot be measured online. Instead, soft sensor technology, as an important indirect
measurement tool, has been widely used in the process industry. The core of soft sensors
is constructing mathematical models between easy-to-measure secondary variables and
a primary variable. In recent years, rapid advances in machine learning, data science,
computer, and communication technologies have stimulated development of data-driven
soft sensor techniques [1,2]. Typical data-driven soft sensor modeling approaches include
principal component regression (PCR), partial least squares (PLS), neuro-fuzzy systems
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(NFS), Gaussian process regression (GPR), artificial neural networks (ANN), support vector
regression (SVR), recurrent neural network (RNN), and regression generative adversarial
networks model with gradient penalty (RGAN-GP) [3–7]. However, industrial processes of-
ten exhibit complex characteristics, such as nonlinearity, time-variability, and label scarcity,
which pose great challenges for building high-performance data-driven soft sensor models.

Process data are often characterized by strong nonlinearity due to the inherent com-
plexity of process production, variability in operating conditions, and demands for different
grades of products. A popular solution to this issue is to use a local learning modeling
framework. This approach is based on the idea of “divide and conquer” to describe a
complex nonlinear space with locally linear spaces and build locally valid models for
local regions of process. Common local soft sensor methods include clustering, ensemble
learning, and JITL. Among them, clustering algorithms, such as k-means [8] and Gaussian
mixture models, aim to divide process data into multiple clusters by some similarity cri-
terion for describing different local process regions. Ensemble learning methods, such as
bagging [9] and boosting [10], construct diverse weak learners and combine them to obtain
a strong ensemble. The JITL method [11] is implemented through an online manner, where
similar samples relevant to query samples are selected for online local models.

Another issue that needs to be addressed in soft sensor modeling is process time-
variability. The data characteristics of production processes often change with time due
to sensor drift, seasonal factors, and catalyst deactivation, which result in degradation
of soft sensor models’ performance. In the field of machine learning, this problem is
called concept drift. For such time-varying production environments, soft sensor models
built offline are not well adapted to changes in process states. Therefore, it is necessary
to introduce adaptive learning mechanisms to achieve self-maintenance of soft sensor
models [12]. Depending on the change’s speed, time-varying features can be classified into
two types: gradual and abrupt changes. Gradual changes proceed slowly, while abrupt
changes rapidly shift from one state to another, which makes it difficult for the model to
accommodate the changing environments and thus leads to a decrease in model prediction
performance. Popularly used adaptation mechanisms include moving window, recursive
update, time difference modeling, offset compensation, JITL, and ensemble learning [13,14].
Among them, the first four methods can deal with gradual changes effectively, while the
last two methods are good at dealing with abrupt changes.

Moreover, scarcity of labeled samples is also a great challenge to limiting accuracy of
soft sensors. Generally, soft sensor models are built through supervised learning; thus, their
prediction performance relies extremely on using several labeled data. However, in actual
industrial processes, it is very common to encounter the dilemma of “labeled data poor and
unlabeled data rich” due to the high cost of obtaining sufficient labeled data. To tackle such
a challenge, semi-supervised learning methods have been proposed, aiming to improve
model performance by making full use of information from unlabeled samples [15]. The
most representative semi-supervised methods are self-training, co-training, generative
models, low-density region segmentation, and graph-based methods [16–18].

Despite availability of many soft sensor methods proposed for dealing with the prob-
lems of process nonlinearity, time-varying behavior, multi-phase/multi-mode property,
and labeled sample sparsity, these approaches usually assume that abundant modeling
data are available for offline modeling. In practice, this assumption has many drawbacks
for practical soft sensor modeling in the process industry: (1) samples obtained offline
often ignore temporal correlation; (2) there may be several samples that are not helpful
for the current prediction; (3) over-focusing on historical samples while ignoring the latest
samples; (4) once the prediction model is implemented, it remains unchanged and thus
cannot adapt well to new state changes, which leads to model performance deterioration.
In the actual process industry, it is a natural aspect that process data are generated in the
form of data streams. Unlike traditional static data, data streams have characteristics of
infinite, sequential, high-speed arrival, concept drift, and label scarcity [19]. Therefore, it is
still a challenging issue to develop well-performing soft sensors for process data streams.
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Over the years, the research on data streams has mainly focused on classification and
clustering, while there are few studies on data stream regression. Among of them, the
research on data stream regression mainly focuses on solving concept drift problems in
nonstationary environments. The most commonly used algorithm is AMRules [20], which
is the first streaming rule-learning algorithm for regression problems that learns ordered
and rule-free sets from data streams. Another classical algorithm is fast incremental model
tree with drift detection (FIMI-DD) [21], a method for learning a regression model tree
that identifies changes in tree structure through explicit change detection and informed
drift adaptation strategies. Until now, many existing data stream regression algorithms
have been implemented based on the above two algorithms to improve performance while
achieving better prediction results. The main work is summarized as follows.

(1) Rule-based data stream regression algorithms. Shaker et al. [22] proposed a fuzzy
rule-learning algorithm called TSKstream for data stream adaptive regression. The
method introduces a new TSK fuzzy rule induction strategy by combining the merits
of the rule induction concept implemented in AMRules with the expressive power
of TSK fuzzy rules, which solves the problem of adaptive learning from evolving
data streams. Yu et al. [23] proposed an online multi-output regression algorithm
called MORStreaming, which learns instances based on topological networks and
correlations between outputs based on adaptive rules and can solve the problem of
multiple output regression in the data stream environment.

(2) Tree-model-based data stream regression algorithms. Gomes et al. [24] proposed an
adaptive random forest algorithm capable of handling data stream regression tasks
(ARF Reg). The algorithm uses the adaptive sliding window drift detection method
and experiments with the original Page Hinkley test inside each FIMI-DD to detect
and adapt to drift. Zhong et al. [25] proposed an online weight-learning random forest
regression (OWL-RFR). This method focuses on a sequential dataset problem that has
been ignored in most studies on online RFs and improves the predictive accuracy of
the regression model by exploiting data correlation. Subsequently, Zhong et al. [26]
proposed an adaptive long short-term memory online random forest regression, which
designs an adaptive memory activation mechanism to handle static data streams
or non-static data streams with different types of conceptual drift. Further, some
researchers have attempted to introduce online clustering for dealing with data stream
regression modeling. Ferdaus et al. [27] proposed a new type of fuzzy rules based
on the concept of hyperplane clustering for data stream regression problems called
PALM; it can automatically generate, merge, and adjust hyperplane-based fuzzy rules
in a single pass, which can effectively handle the concept drift of each path in the data
stream, with advantages of low memory burden and low computational complexity.
Song et al. [28] proposed a data stream regression method based on fuzzy clustering
called FUZZ-CARE. The algorithm can accomplish dynamic identification, training,
and storage of three patterns, and the affiliation matrix obtained by fuzzy C-means
clustering indicates affiliation of subsequent samples of the corresponding pattern.
This method can address the concept drift problem in non-stationary environments
and effectively avoid the problem of under-training due to lack of new data.

It is evident from the above studies that state identification of a process data stream
is the key to obtaining high prediction accuracy from data stream regression models. For
this reason, data stream clustering has been widely used to achieve local process state
identification. Unlike traditional offline, single, fixed number clustering methods, data
stream clustering has the advantage of online incremental learning and updating, which
can provide concise representations of discovered clusters and enable processing of new
samples in an incremental manner for clear and fast detection of outlier points. Generally,
data stream clustering can be classified into hierarchical methods, partition-based methods,
grid-based methods, density-based methods, and model-based methods [29]. Hierarchical
data stream clustering algorithms use tree structure, have high complexity, and are sensitive
to outliers. The representative ones are ROCK [30], evolution-based technique for stream
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clustering (E-stream) [31], and its extension, HUE-stream [32]. Partition-based clustering
algorithms partition data into a predefined number of hyperspherical clusters, such as
CluStream [33], Streamkm++ [34], and adaptive streaming k-means [35]. Grid-based
clustering algorithms require determining the number of grids in advance, and they can
find arbitrarily shaped clusters and are more suitable for low-dimensional data, such as
WaveCluster [36], a grid-based clustering algorithm for high-dimensional data streams
(GCHDS) [37], and DGClust [38]. Density-based algorithms form micro-clusters by radius
and density, can find arbitrarily shaped clusters, and automatically determine number
of clusters, which is suitable for high-dimensional data, and are capable of handling
noise, such as DBSCAN [39], DenStream [40], online clustering algorithm for evolving
data streams (CEDAS) [41], MuDi-Stream [42], and an improved data stream clustering
algorithm [43]. Performance of model-based clustering algorithms is mainly influenced by
the chosen model, such as CluDistream [44] and SWEM algorithm [45].

Among the above-mentioned clustering methods, density-based clustering algorithms
are frequently used due to their advantages, such as not requiring the number of clusters to
be determined in advance, abilities of identifying outlier points, handling noise, and finding
clusters of arbitrary shapes, and their applicability to high-dimensional data. Although
traditional density-based clustering algorithms for data streams can discover clusters of
arbitrary shapes, the generated clusters cannot evolve and overcome unstable data streams
well. To address this issue, Hyde et al. proposed an improved algorithm of CODAS [46],
called CEDAS [41], which is the first fully online clustering algorithm for evolving data
streams. It consists of two main phases. The first phase establishes clusters, which enable
updating, generation, and disappearance of clusters, while the second phase consists of
forming macro-clusters from micro-clusters, which can handle changing data streams
as well as noise characteristics and provide high-quality clustering results. However,
this algorithm requires radius and threshold to be defined in advance, which has a large
influence on the clustering results. Thus, a method of buffer-based online clustering
(BOCEDS) was proposed to automatically determine clustering parameters [47]. In addition,
CEDGM has been proposed by using a grid-based approach as an outlier buffer to handle
multi-density data and noise [48]. Considering the effectiveness of online clustering to
overcome data stream noise and achieve high-quality clustering results, this paper aims
to build on it to achieve online dynamic clustering for industrial semi-supervised data
streams and thus build a high-performance data stream soft sensor model.

Despite the availability of numerous methods proposed for data stream classification
and clustering problems, so far, few attempts to study soft sensor applications from the
perspective of process data streams have occurred. Since it is very common that numerous
unlabeled data and a small number of labeled data are generated with the process data
streams in the process industry, this paper focuses on soft sensor modeling for industrial
semi-supervised data streams and aims to address the following issues: (1) as with tradi-
tional soft sensor methods, data stream soft sensor models also need to effectively deal
with process nonlinearity; (2) it is desirable to empower soft sensor models with online
learning capabilities for capturing the latest process states to prevent model performance
deterioration; (3) it is appealing to mine both historical and new data information to avoid
catastrophic forgetting of historical information by the newly acquired model; (4) perfor-
mance of soft sensor models needs to be enhanced by semi-supervised learning using both
labeled and unlabeled data.

To solve the above-mentioned problems, an online-dynamic-clustering-based soft
sensor method (ODCSS) is proposed for semi-supervised data streams. ODCSS is capable
of handling nonlinearity, time-variability, and label scarcity issues in industrial data streams.
Two case studies have been reported to verify the effectiveness and superiority of the
proposed ODCSS algorithm. The main contributions of this paper can be summarized as
follows.

(1) An online dynamic clustering method is proposed to enable online identification of
process states concealed in data streams. Unlike offline clustering, this method can
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automatically generate and update clusters in an online manner; a spatio-temporal
double-weighting strategy is used to eliminate obsolete samples in clusters, which
can effectively capture the time-varying characteristics of process data streams.

(2) An adaptive switching prediction strategy is proposed by combining selective ensem-
ble learning and JITL. If the query sample is judged to be an outlier, JITL is used for
prediction. Otherwise, selective ensemble learning is used. The method facilitates ef-
fective handling of both gradual and abrupt changes in process characteristics, which
enables preventing high soft sensor performance from deteriorating in time-varying
environments.

(3) Online semi-supervised learning is introduced to mine both labeled and unlabeled
sample information, thus expanding the labeled training set. This strategy can effec-
tively alleviate the problem of insufficient labeled modeling samples and can obtain
better prediction performance than supervised learning.

The rest of the paper is organized as follows. Section 2 provides details of the proposed
ODCSS approach. Section 3 demonstrates the effectiveness of the proposed method through
two case studies. Finally, Section 4 concludes the paper. A brief introduction of GPR, self-
training, and JITL can be found in Appendix A, Appendix B, Appendix C, respectively.

2. Proposed ODCSS Soft Sensor Method for Industrial Semi-Supervised Data Streams

Soft sensor modeling for data stream remains challenging for the following reasons.
First, process data are often characterized by strong nonlinearity and time-variability,
which makes the linear and nonadaptive models function badly. Second, many current
data stream regression approaches rely on a single-model structure, thus limiting their
prediction accuracy and reliability. Third, in industrial processes, it is often the case that
labeled data are scarce but unlabeled data are abundant. In such situations, conventional
supervised data stream regression models are ill-suited for semi-supervised data streams.
Therefore, we propose a new soft sensor method, ODCSS, for industrial semi-supervised
data streams. The main steps of ODCSS include: (1) online dynamic clustering; (2) adaptive
switching prediction; and (3) sample augmentation and maintenance. The details are
described in the following subsections.

2.1. Problem Definition

Semi-supervised data streams. Assuming that the data streams are the continuous
sequence containing n ( n→∞) instances, i.e., D = {s0, sT , s2T , . . . , st−T , st}, where st is the
sample arriving at time t and st = {xt,yt}, where xt denotes input features, yt is the label
of the sample. In the context of soft sensor applications, yt corresponds to the hard-to-
measure variables in industrial processes, such as product concentration, catalyst activity,
etc. In the data streams, the ideal situation is that all data are labeled, which allows us
to perform supervised learning. However, it is often expensive and laborious to obtain
labels, thus creating a mixture of a small number of labeled samples and a large number
of unlabeled samples, which are called semi-supervised data. Therefore, we assume that
the data streams consist of successive arrivals of high-frequency unlabeled samples and
low-frequency labeled samples, as denoted by Dt = {sl

0, su
T , . . . , su

mT−T , sl
mT , su

mT+T , . . . ,
su

t−T , sl
t}, where su

∗ and sl
∗ represent unlabeled and labeled samples, respectively.

Regression task for soft sensor modeling. Suppose semi-supervised data streams Dt
has been obtained up to time t. Given an online obtained xt, unknown label yu

t is required
to be estimated. Thus, mathematical model ft should be constructed based on coming
semi-supervised data streams Dt; that is,

ŷu
t = ft(xt) (1)

As can be seen from Equation (1), soft sensor modeling for a data stream has the
following characteristics.
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(1) Modeling data Dt changes and accumulates over time. After a period of time, numer-
ous historical data and a small set of recent process data will be obtained. Thus, it
is crucial to coordinate the roles of historical data and the latest data for soft sensor
modeling. If only the latest information is addressed while ignoring historical valu-
able information, the generalization performance of the model cannot be guaranteed.
Contrarily, focusing only on historical information will make the soft sensor model
unable to capture the latest process state.

(2) In most cases, the true value of ŷu
t is unknown, and only a few observed values are

obtained through low-frequency and large-delay analysis. Traditional supervised
learning can only effectively use labeled samples, ignoring the information from
unlabeled samples. In practice, unlabeled samples also contain rich information
about the process states. Thus, it is also an important way to improve soft sensor
models by fully exploiting labeled and unlabeled samples through a semi-supervised
learning framework.

(3) Stream data Dt usually implies a complex nonlinear relationship between inputs and
outputs. Therefore, the idea of local learning is often considered to obtain better
prediction performance than a single global model. In addition, as the process runs
and Dt changes, ft is not constant and often exhibits significant time-varying charac-
teristics. Therefore, to prevent degradation of the prediction performance of ft, it is
necessary to introduce a suitable adaptive learning mechanism to achieve an online
update of ft.

2.2. Online Dynamic Clustering

Industrial process stream data Dt often contains rich process state information; how-
ever, traditional global modeling is difficult to obtain high prediction accuracy because local
process states cannot be well characterized. For this reason, clustering algorithms are often
used to implement process state identification. However, traditional clustering algorithms
are usually implemented offline and the resulting clusters remain unchanged once the
clustering is completed. Such approaches are not suitable for handling data streams that
evolve in real time. Thus, in data stream environments, local process state identifications
need to be performed dynamically in an online manner. To this end, an online dynamic
clustering (ODC) method based on density estimation is proposed to achieve online state
identification of process data streams.

Traditionally, offline clustering algorithms for batch data can usually obtain multiple
clusters at the same time. In contrast to this, ODC processes the data online one by one and
assigns them to the appropriate clusters. Without loss of generality, Euclidean distance is
chosen to measure the similarity between samples in this paper. The calculation formula is
as follows:

d
(
xi, xj

)
= ‖xi − xj‖ (2)

where xi and xj represent two arbitrary samples.

2.2.1. Initialization

The ODC process requires setting two important initial parameters: cluster radius R
and minimum density threshold M. Given a dataset, the most appropriate cluster radius
needs to be selected based on the data features, i.e., the maximum allowable distance from
the cluster center to the cluster edge. When the distance between data points is less than
the radius and the number of data reaches the minimum density threshold, cluster C can
be formed. The average of all sample features in the cluster is calculated as cluster center
c. Clustering is an unsupervised process and is completed using features only, where
clustering center c is simply calculated as

c =

(
n

∑
i=1

xi

)
/n (3)
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where n is the sample size in the cluster and xi is the i-th sample.
The first cluster is constructed to store information related to the clusters, including

clustering center c and the data samples stored in the cluster. Following this, online
dynamic clustering is performed for sequentially arrived query sample xt.

2.2.2. Updating the Cluster

Assume that multiple clusters have been obtained, i.e., {Cm
t }

M
m=1, and a new query

sample xt arrives; then, Euclidean distances d between xt and the existing cluster centers
are calculated as

dt = {dm
t }

M
m=1 (4)

If dm
t ≤ R, xt is included to cluster Cm

t . Considering the boundary fuzzy property
between different process states, a softening score strategy is used to group the sample
points into all eligible clusters. In addition, if dm

t ≤ 2R/3, cluster center c will be updated
to accommodate concept drift:{

xt ∈ Cm
t , dm

t ≤ R
c’ = (c ∗ (n− 1) + xt)/n, dm

t ≤ 2R/3
(5)

where Cm
t is the m-th cluster, dm

t is the Euclidean distance between the new sample and the
m-th cluster, n is the number of samples in the m-th cluster, and c and c’ denote the cluster
centers before and after updating.

It should be noted that the shape of the cluster is not fixed but further evolves with
migration of cluster center c.

2.2.3. Generating the New Cluster

Since the process state is always changing, the clusters need to adapt to new state
changes as samples accumulate. Thus, it is desirable to generate new clusters to accom-
modate concept drift as the process data grow. If Euclidean distance d between xt and
cluster center c is larger than the radius, this sample is regarded as an outlier. In such a case,
distances do

t between the existing outliers are calculated, and a new cluster is generated
if the number of outliers with distances less than the radius reaches minimum density
threshold M. The center of the new cluster is calculated using Equation (3). The remaining
outliers that do not form clusters are retained and exist separately in space.

2.2.4. Removing Outdated Data in the Cluster

Ideally, data streams are an infinitely increasing process. However, the update burden
of clusters as well as the computational efficiency of soft sensor models will grow as the
process data accumulates. Hence, it is appealing to remove the outdated samples from the
clusters.

Since Euclidean distance only considers spatial similarity and tends to ignore the
temporal relevance of samples, a spatio-temporal double weighting strategy is proposed to
consider both spatial and temporal similarity between historical and recent samples. For
this purpose, the spatio-temporal weights are calculated to eliminate the least influential
samples in the cluster on the query sample xt:

wi =
(

α ∗
(

di/ ∑n
i=1 di

)
+ (1− α) ∗

(
ti/ ∑n

i=1 ti

))−1
, i = 1, 2, . . . , n (6)

where di is the distance from the i-th sample in the cluster to the cluster center and ti is
the time interval between the i-th sample in the cluster and query sample xt, and α is a
parameter controlling the influence of spatio-temporal information. The smaller the weights
are, the smaller the corresponding history samples have an influence on query sample
xt. The spatio-temporal weights are sorted in ascending order, and a fixed proportion of
historical samples are removed.

The pseudo code for the ODC method is given in Algorithm 1.
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Algorithm 1: Online dynamic clustering (ODC)

INPUT: Dt: Data streams
R: Cluster radius
M: Minimum density threshold
α: Controlling parameter
P: The percentage of removed samples

PROCESS:
1: Create a cluster structure containing: %% Initialization
2: C(c) = x1; %% Cluster center
3: C(Data) = x1; %% Save data
4: C(O) = []; %% Save outlier, initially empty
5: Calculate distances dt between xt and all cluster centers c using Equation (3).
6: if dt ≤ R %% Updating the cluster
7: xt is stored in all clusters where dt ≤ R;
8: if dt ≤2R/3
9: Update cluster center c using Equation (5);
10: end if
11: else if dt > R %% Generating a new cluster
12: xt is stored in the outliers;
13: Calculate distances do

t between samples stored in outliers;
14: if do

t ≤ R & size(outliers) ≥ M
15: Generate a new cluster;
16: xt is stored in the new cluster;
17: Calculate new cluster center c using Equation (3);
18: end if
19: end if
%% Removing the outdated data in the cluster
20: Calculate the spatio-temporal weights for each sample in the cluster using Equation (6);
21: Sort w in ascending order;
22: According to the sorting, delete the samples with the smallest weights in the cluster and fix
the proportion of the deleted samples to P;
OUTPUT: Cluster results C

2.3. Adaptive Switching Prediction

By applying online dynamic clustering, query sample xt can be assigned to either
existing clusters or outliers. In comparison with samples within clusters, outliers reveal
significantly different statistical characteristics of process variables. Thus, an adaptive
switching prediction method is proposed by combining adaptive selective ensemble learn-
ing with JITL to achieve real-time predictions for within-cluster samples and outliers,
respectively. In addition, GPR is used as the base modeling technique, which is a nonpara-
metric regression model that can learn arbitrary forms of functions with advantages such
as smoothness, parameter adaption, and strong capability of fitting nonlinear data.

2.3.1. Adaptive Selective Ensemble Learning for Online Prediction

Suppose that Mt clusters have been obtained at moment t, for which Mt GPR base
models { f m

t }
M
m=1 are built. When query sample xt arrives, prediction is achieved using an

adaptive selective ensemble learning strategy if xt is classified into clusters. Three main
key steps are described as follows:

Step 1: evaluate distances d between xt and its corresponding cluster center c, and

select mt(mt ≤ Mt) GPR models
{

f sel,m
t

}mt

m=1
with small distances d.

Step 2: provide mt prediction values {ŷt,1, ŷt,2, . . . , ŷt,mt } based on the obtained models,
and use simple averaging rule to obtain final prediction output ŷt:

ŷt = (
mt

∑
i=1

ŷt,i)/mt (7)
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Step 3: if a new labeled sample or high-confidence pseudo-labeled sample is added to
the clusters, the corresponding GPR models will be rebuilt.

It is worth noting that new labeled samples are often obtained by offline analysis,
while pseudo-labeled samples are obtained by self-training, which is detailed in Section 2.4.

Figure 1 shows the schematic diagram of the adaptive selective ensemble learning
framework.
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2.3.2. Just-In-Time Learning for Online Prediction

If query sample xt is judged to be an outlier, JITL is used for prediction. Since the
outliers are samples deviating from the clusters, if the outliers are predicted by using the
models built from clusters, the predictions may deviate greatly from the actual values.
Therefore, by using all labeled samples as the database, a small-size dataset Dsimi =
{Xsimi, ysimi} similar to query sample xt is constructed to build a JITGPR model for online
prediction of ŷt.

Thus far, various similarity measures have been proposed for JITL methods [49],
including Euclidean distance similarity, cosine similarity, covariance weighted similarity,
Manhattan distance similarity, Pearson coefficient similarity, etc.

Algorithm 2 presents the pseudo code of the adaptive switching prediction process.
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Algorithm 2: Adaptive switching prediction

INPUT: Dt: Data streams
C: Online clustering results
m: The maximal size of the selective clusters

PROCESS:
1: if xt is within clusters %% Adaptive selective ensemble learning for online prediction

2: Select the GPR models
{

f sel,m
t

}mt

m=1
corresponding to the closest mt clusters;

3: Predict xt using the selected models
{

f sel,m
t

}mt

m=1
to obtain {ŷt,1, ŷt,2, . . . , ŷt,mt };

4: Calculate the average of ŷt,i using Equation (7) to obtain final prediction output ŷt;
5: for i = 1, 2, . . . , m do
6: if there is an update to the samples in the i-th cluster
7: Rebuild a new GPR model using the updated samples;
8: else if the samples in the i-th cluster are not updated
9: Keep the old GPR model;
10: end if
11: end for
12: else if xt is judged to be an outlier %% Just-in-time learning for online prediction
13: Select the most similar samples to the xt as training set Dsimi from the historical labeled
samples;
14: Build a JITGPR model with Dsimi;
15: Predict xt using the JITGPR model;
16: Obtain finally predicted result ŷt;
17: end if
OUTPUT: Prediction result ŷt

2.4. Sample Augmentation and Maintenance

Although the production process produces a large number of data records in the form
of streams, the proportion of labeled samples is small. In practice, for arbitrary query
sample xt, its label can be estimated by using the adaptive switching prediction method.
Such predictions are called pseudo labels, which can be used to update the model if they
are highly accurate. However, the actual labels for most unlabeled samples are unknown
due to absence of offline analysis. For this reason, we borrow the idea of self-training, a
widely used semi-supervised learning paradigm, to obtain high-confidence pseudo-labeled
samples and then update the models.

One main difficulty of self-training is defining confidence evaluation criteria for
selecting high-quality pseudo-labeled samples. Thus, we attempt to evaluate improvement
of prediction performance before and after introducing pseudo-labeled samples. The
specific steps are described as follows:

Step 1: select a certain proportion of the labeled samples similar to query sample xt as
the online validation set and use the remaining labeled samples as the online training set.

Step 2: build two GPR models based on the training set before and after adding the
pseudo-labeled data {xt, ŷu

t }, respectively.
Step 3: evaluate the prediction RMSE values of the two models on the validation set,

and then the improvement rate (IR) can be calculated as:

IR =
RMSE− RMSE′

RMSE
(8)

where RMSE and RMSE′ are the root mean square errors of the GPR model on the validation
set before and after the pseudo-labeled sample is added to the training set.

Step 4: if the IR value of the pseudo-label ŷu
t is greater than confidence threshold IRth,

{xt, ŷu
t } is added to the corresponding cluster to update the training set. Otherwise, this

sample is removed from the clusters.
Although the latest pseudo-labeled samples added to the clusters can improve the

prediction performance for the query sample, accumulating too many pseudo-labeled
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samples can cause error accumulation, so timely deletion of the outdated historical samples
is very essential for reducing prediction deviations. To make full use of the information
from the recent unlabeled samples, the sample deletion procedure is started only when
the latest true label is detected, and the pseudo-labeled data that have the least impact
on query sample xt are deleted. The above process is accomplished by online dynamic
clustering, which can reduce the update burden of clustering on the one hand and improve
the prediction efficiency of soft sensor models on the other hand.

2.5. Implementation Procedure of ODCSS

The overall framework of the ODCSS soft sensor method is illustrated in Figure 2.
With the process data arriving in the form of stream, ODCSS is implemented mainly
through three steps: online dynamic clustering, adaptive switching prediction, and sample
augmentation and maintenance.
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Given the input: (1) data streams Dt={sl
0, su

T , . . . , su
mT−T , sl

mT , su
mT+T , . . . , su

t−T , sl
t}; and

(2) modeling parameters: clustering radius R, minimum density threshold M, controlling
parameter α, the proportion of deleted data P, confidence threshold IRth, and the maximal
ensemble size m. Assume that Mt clusters {Cm

t }
M
m=1 and their corresponding models

{ f m
t }

M
m=1 have been constructed at moment t, along with a small number of outliers. The

following steps are repeated for any newly arrived query sample:
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Step 1: when query sample xt arrives at time t, online dynamic clustering is performed
to include xt to clusters or recognize xt as an outlier.

Step 2: if xt belongs to clusters, first select the GPR models corresponding to the
nearest mt(mt ≤ Mt) clusters, and then obtain a set of predicted values {ŷt,1, ŷt,2, . . . , ŷt,mt }
based on the selected GPR models; finally, calculate the average value of predicted values
to obtain final prediction output ŷt. If xt belongs to outliers, use a JITGPR model to obtain
final prediction output ŷt.

Step 3: the confidence of {xt,ŷu
t } in the cluster is evaluated based on the proposed

strategy in Section 2.4. If IR exceeds IRth, the obtained pseudo-labeled sample is added to
the clusters to update the models. Otherwise, this sample is discarded.

Step 4: when actual label yt of xt is available, the sample {xt,yt} is used to update the
training set and base models, while the corresponding pseudo-labeled sample is removed.
Meanwhile, the outdated samples are removed by using the proposed ODC method.

3. Case Studies
3.1. Methods for Comparison

In this section, the proposed ODCSS soft sensor method is evaluated through ap-
plications to the Tennessee Eastman (TE) chemical process and an industrial fed-batch
chlortetracycline (CTC) fermentation process. The compared methods are as follows:

(i) MWGPR: moving window Gaussian process regression model.
(ii) JITGPR [49]: just-in-time learning Gaussian process regression.
(iii) OSELM [50]: a sequential learning algorithm called online sequential extreme learning

machine, which can learn not only the training data one by one but also block by
block (with fixed or varying length).

(iv) OSVR [51]: online support vector machines for regression, which achieves incremental
updating through moving window strategy.

(v) PALM [27]: parsimonious learning machine, a data stream regression method, which
utilizes new fuzzy rules based on the concept of hyperplane clustering. It can auto-
matically generate, merge, and adjust the fuzzy rules based on the hyperplane. The
authors propose two types of PALM models, type-1 and type-2, each of which can
be divided into local and global updating strategies. To get closer to the idea of local
modeling in this paper, we select type-2 PALM with better performance and local
update strategy as the comparison method.

(vi) OSEGPR: online selective ensemble Gaussian process regression. The basic idea of
this approach is that, assuming m GPR models have been established by time t, when
a new query sample comes, a global GPR model is established using all already
obtained historical samples, then the prediction performance of all retained models
on an online validation set. Next, part models with high performance are selected to
provide the ensemble prediction results. The above process is repeated as new query
samples arrive.

(vii) SS-OSEGPR: semi-supervised online selective ensemble Gaussian process regression,
which introduces unlabeled samples to OSEGPR. Using the confidence evaluation
strategy in Section 2.4 of this paper, we select pseudo-labels with high confidence to
expand the training set and update the model.

(viii) ODCSSS: a degenerated version of the proposed online-dynamic-clustering-based
soft sensor modeling for industrial supervised data streams. That is, the online soft
sensor modeling process is completed using only the labeled data streams.

(ix) ODCSS: the proposed online-dynamic-clustering-based soft sensor modeling for
industrial semi-supervised data streams.

3.2. Experimental Setup and Evaluation Metrics

In order to obtain high-performance prediction results for each soft sensor model, the
key model parameters need to be chosen carefully. Especially, the number of modeling
samples for the compared methods are set to the same as the number of initial training
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samples for ODCSS, including the width of moving window for MWGPR, the size of local
modeling samples for JITGPR, the size of initial training samples for OSELM, and the size
of online validation data for OSEGPR and SS-OSEGPR. In addition, with reference to [50],
the prediction block in OSELM is set to 1, and the number of hidden neurons should be
smaller than the initial number of training samples. The parameter setting of PALM method
refers to [27]. The two parameters of R and M related to clustering in the ODCSS method
are determined according to [41], which are adjusted according to different application
scenarios. The remaining model parameters are determined within a reasonable range
through the trial-and-error method. Moreover, for JITGPR, OSEGPR, and SS-OSEGPR, the
best similarity measure is selected from Euclidean distance similarity, cosine similarity,
covariance weighted similarity, Manhattan distance similarity, and Pearson correlation
coefficient similarity, whose definitions can be found in [49]. Further, the Matern covariance
function with noise term is used for all GPR based models.

To evaluate the prediction performance of soft sensor models, the following evaluation
metrics are considered, including root mean square error (RMSE), mean absolute error
(MAE), mean absolute percentage error (MAPE), and coefficient of determination (R2) [52].
Among them, RMSE and MAE are used to measure the closeness between the predicted
and true outputs. MAPE is a measure of the variation of dependent series from its model-
predicted level. The smaller the MAPE, the better the model performance, and, for perfect
fit, the value of MAPE is zero [53]. R2 is the square of Pearson’s correlation coefficient. It
represents a squared correlation between the actual output and the predicted output and
measures how much of the total variance in the output variable data can be explained by
the model. The closer R2 is to 1, the better the performance of the models. Usually, if the
value of R2 is greater than 0.5, the model predictions can be judged as satisfactory [54]. The
above evaluation metrics are defined as follows:

RMSE =

√
1

ntest

ntest

∑
i=1

(ŷtest,i − ytest,i)
2 (9)

MAE =
1

ntest

ntest

∑
i=1
|ŷtest,i − ytest,i| (10)

MAPE =
1

ntest

ntest

∑
i=1

∣∣∣∣ ŷtest,i − ytest,i

ytest,i

∣∣∣∣× 100% (11)

R2 = 1− ∑ntest
i=1 (ŷtest,i − ytest,i)

2

∑ntest
i=1 (ytest,i − ytest)

2 (12)

where ntest represents the number of test samples, ytest,i and ŷtest,i are the actual and
predicted values of the ith test sample, respectively, and ytest is the mean value of the
test outputs.

The computer configurations for experiments are as follows. OS: Windows10 (64 bit);
CPU: Inter (R) Core (TM) @ i7-10700 (2.90 GHz × 2); RAM: 16.00 GB; and MATLAB
version: 2018b.

3.3. Tennessee Eastman (TE) Process
3.3.1. Process Description

TE chemical process has been widely used to test control, monitoring, and fault diagno-
sis models [55]. The TE process flow diagram is shown in Figure 3, which mainly consists of
several operating units, such as a continuous stirred reactor, splitting condenser, gas–liquid
separation tower, vapor extraction tower, reboiler, and centrifugal compressor. Three gas
reactors directly enter the reactor through A, D, E, and C and a certain amount of feed A
enters through the condenser. The numbers 1–13 are the stream orders, representing A
feed, B feed, C feed, D feed, Stripper, reactor feed, reactor product, circulation, purification,
separation liquid, product, condenser water and condenser water, respectively.
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TE process involves a total of 12 manipulated variables and 41 process variables, and
22 of the process variables are easy to measure and the remaining 19 are difficult to measure.
It should be noted that the sampling interval for 22 process variables is 3 min, whereas, for
19 difficult variables, it is 6 min. To validate the performance of the proposed soft sensor
model, the input variables selected for this case study are listed in Table 1, which includes
23 easily measured process variables and 9 manipulated variables, taking the E component
in stream 11 as the primary variable under the conditions with G/H mass ratio being
40/60 and the production rate being 19.45 m3/h. The obtained data are further divided
chronologically into two subsets: the initial training set with 50 labeled samples and 1601
samples arriving online to simulate process data streams, including 1200 unlabeled samples
and 451 labeled samples. Note that both the labeled and unlabeled samples from the data
streams are used for online modeling and prediction, whereas only the labeled samples are
used to assess prediction performance of soft sensor models.

3.3.2. Parameter Settings

The optimal parameters for different algorithms are set as follows:

(i) MWGPR: the width of the moving window is set to 50.
(ii) JITGPR: the number of local modeling samples is set to 50, and the best similarity is

covariance weighted similarity.
(iii) OSELM: prediction block is set to 1 to provide one prediction value at a time, the

number of hidden neurons is set to 45, and the number of initial training samples
used in the initial phase is set to 50.

(iv) OSVR: penalty parameter C is set to 10, tuning parameter for kernel function g is set
to 0.01, and precision threshold p is set to 0.001.

(v) PALM: the rule merging mechanism involves parameters b1, b2, c1, and c2. b1 and b2
are used to calculate the angle and distance between two interval-valued hyperplanes,
which are set to 0.02 and 0.01, respectively. c1 and c2 are thresholds for the rule merging
conditions defined in advance, which are set to 0.01. The remaining parameters are
set as in the original paper.

(vi) OSEGPR: the number of online validation samples is set to 50, the ensemble size is set
to 5, and Manhattan distance similarity is chosen.
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(vii) SS-OSEGPR: the number of online validation samples is set to 50, the ensemble size
is set to 4, the confidence threshold for selecting pseudo-labels is set to 0.03, and
Euclidean distance similarity is chosen.

(viii) ODCSSS: clustering radius R is set to 8, minimum density threshold M is set to 10,
and maximal ensemble size m is set to 2.

(ix) ODCSS: clustering radius R is set to 9, minimum density threshold M is set to 10, con-
trolling parameter α is set to 0.4, proportion of deleted data P is set to 0.5, confidence
threshold IRth is set to 0.1, and maximal ensemble size m is set to 2.

Table 1. Input variables for soft sensor development in TE chemical process.

No. Variable Description No. Variable Description

1 Time 17 Stripper pressure
2 A feed (stream 1) 18 Stripper underflow
3 D feed (stream 2) 19 Stripper temperature
4 E feed (stream 3) 20 Stripper steam flow
5 A and C feed rate 21 Compressor work
6 Recycle flow rate 22 Reactor coolant temperature
7 Reactor feed rate 23 Separator coolant temperature
8 Reactor pressure 24 D feed flow (stream 2)
9 Reactor level 25 E feed flow (stream 3)
10 Reactor temperature 26 A feed flow (stream 1)
11 Purge rate 27 A and C feed flow (stream 4)
12 Product separator temperature 28 Purge valve (stream 9)
13 Product separator level 29 Separator pot liquid flow (stream 10)
14 Product separator pressure 30 Stripper liquid product flow (stream 11)
15 Product separator underflow 31 Reactor cooling water flow
16 Stripper level 32 Condenser cooling water flow

3.3.3. Prediction Results and Discussion

Table 2 compares the best prediction performance of different soft sensor methods.
OSELM has the highest RMSE, MAE, MAPE, and the lowest R2, implying the worst
performance. This is mainly because the method has poor local learning ability and
cannot effectively characterize the local characteristics of the process. In contrast, JITGPR,
MWGPR, and OSVR adopt the idea of local modeling and have stronger capability of
handing local process features, so their prediction accuracy is significantly improved.
Although PALM also has the ability of online dynamic clustering, the method cannot
well handle abrupt-change concept drift and thus provides poor performance. Unlike
the single-model methods, OSEGPR predicts by combining various global models with
different performance, but its performance is only comparable to that of MWGPR and
OSVR, which is mainly due to insufficient local process characterization. Compared with
OSEGPR, SS-OSEGPR introduces semi-supervised learning and selects high-confidence
pseudo-labels to expand the labeled training set, thus improving model performance to
some extent, but its prediction errors are still high. Among all the compared methods, the
proposed ODCSS method provides the lowest RMSE, MAE, MAPE, and the highest R2. In
comparison, ODCSS obtains better results than ODCSSS, mainly due to introduction of semi-
supervised learning. Overall, when using RMSE as the baseline, the prediction accuracy
of the proposed ODCSS method compared to MWGPR, JITGPR, OSELM, OSVR, PALM,
OSEGPR, and SS-OSEGPR is enhanced by 20%, 25.7%, 48.7%, 18.7%, 29.8%, 17.8%, and
15.2%, respectively. After adding pseudo-labeled samples, ODCSS shows a performance
improvement of 3.6% compared to ODCSSS. The excellent performance of ODCSS is mainly
attributed to four aspects. First, online dynamic clustering helps to effectively achieve
local representation of complex process features. Second, adaptive switching prediction
can effectively deal with gradual- and abrupt-change concept drift and can effectively
overcome the problem of model degradation. Third, the adaptive selective ensemble
strategy can maximize use of information of historical samples and the latest samples,
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while JITL is good at addressing predictions corresponding to outliers. Fourth, introduction
of semi-supervised learning can make full use of information of unlabeled samples and
thus improve the performance of the model.

Table 2. Comparison of different soft sensor methods for prediction of TE composition in stream 11.

Method RMSE MAE MAPE (%) R2

MWGPR 0.0174 0.0130 2.1017 0.9660
JITGPR 0.0187 0.0138 2.2709 0.9608
OSELM 0.0271 0.0212 3.3412 0.9174
OSVR 0.0171 0.0137 2.2020 0.9673
PALM 0.0198 0.0158 2.4966 0.9560

OSEGPR 0.0169 0.0131 2.1106 0.9678
SS-OSEGRP 0.0164 0.0128 2.0488 0.9699

ODCSSS 0.0139 0.0109 1.7397 0.9782
ODCSS 0.0134 0.0107 1.7168 0.9799

Figure 4 shows the prediction trends of different soft sensor methods for E component.
As can be seen in Figure 4c, OSELM has the largest prediction deviations from the actual
values throughout the prediction zone, especially in the later period. In contrast, MWGPR
(Figure 4a), JITGPR (Figure 4b), OSVR (Figure 4d), PALM (Figure 4e), OSEGPR (Figure 4f),
and SS-OSEGPE (Figure 4g) have smaller deviations, but significant drifts still exist. The
proposed ODCSSS (Figure 4h) and ODCSS (Figure 4i) obtain smoother predictions, further
reducing the deviations. Moreover, ODCSS obtains better agreement between the predicted
and actual values compared to ODCSSS. These results can also confirm the superiority of
the proposed method.

In the ODCSS method, online dynamic clustering is the key to realizing online local
learning, which is crucial to ensure model performance. To graphically illustrate the
clustering process, the 32 input variables of the TE data are dimensionally reduced using
PCA to represent the dynamic clustering process of TE by three-dimensional variables,
as shown in Figure 5. The red triangles in the figure indicate the outliers, and the blue
and pink circles represent the two clusters formed. Figure 5a shows the first cluster and
3 outliers formed when the 15th sample arrives. When the 29th sample point arrives, some
outliers are accumulated, as shown in the red triangle in Figure 5b. The 30th sample point
arrives and the outliers within the radius accumulate to the set threshold, and a new cluster
is formed from the outliers, as shown by the pink point in Figure 5c. As time increases, new
samples are accumulated in the already built clusters, while some of the less influential
historical unlabeled samples are removed, as shown in Figure 5d–f. Among them, Figure 5f
shows the final clustering graph formed after the last sample arrives. As can be seen from
the figure, the final number of samples in the cluster is not very large because almost
all the labeled samples are retained, while several pseudo-labeled samples are gradually
eliminated in the clustering process through spatio-temporal weighting.
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Figure 4. Prediction trends of E component in stream 11 by different soft sensor methods.
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To ensure the efficiency of the online dynamic clustering algorithm, the clustering
radius and threshold should be determined carefully. For this purpose, as shown in Table 3,
we evaluated the prediction performance of ODCSS with the combination of clustering
radius R ∈ [8, 9, 10, 11, 12, 13] and minimum density threshold M ∈ [10, 12, 14] after fixing
the other four parameters, i.e., controlling parameter α to 0.05, the ratio of the amount of
deleted data P to 0.4., the confidence threshold IRth to 0.1, and the maximum ensemble
size m to 2. The overall performance of the proposed method is better than the comparison
methods; that is, within a reasonable range of parameters, this method can overcome the
influence of parameter changes on the prediction performance and has better stability.
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Table 3. Performance comparison of the proposed method under different parameters for prediction
of E composition in stream 11.

No. R M RMSE R2

1 8 10 0.0135 0.9797
2 9 10 0.0134 0.9799
3 10 10 0.0135 0.9796
4 11 10 0.0134 0.9798
5 12 10 0.0138 0.9787
6 13 10 0.0134 0.9797
7 8 12 0.0135 0.9795
8 9 12 0.0134 0.9798
9 10 12 0.0135 0.9797
10 11 12 0.0137 0.9790
11 12 12 0.0136 0.9792
12 13 12 0.0137 0.9791
13 8 14 0.0136 0.9792
14 9 14 0.0134 0.9798
15 10 14 0.0135 0.9795
16 11 14 0.0134 0.9798
17 12 14 0.0136 0.9793
18 13 14 0.0135 0.9795

As a data-streams-oriented soft sensor, ODCSS performs model building and mainte-
nance and target variable prediction in an online manner. As new samples are accumulated,
its prediction performance gradually changes. Figure 6 presents the evolving trends of
the cumulative predicted RMSE using different soft sensor methods, that is, the predicted
RMSE of the test samples from the first to the current prediction. Not surprisingly, in
the early stage of prediction, large prediction errors are observed for all methods due to
insufficient labeled samples. In particular, OSELM has poor performance throughout the
prediction process. With accumulation of labeled samples, the prediction performance of
the remaining methods is improved. It is worth noting that JITGPR and MWGPR obtain
good prediction performance in the range of about 50–260 of the test samples but show
large error growth of 260–400. The prediction performance of PALM starts degenerating
at about the 50th test sample. In contrast, both ODCSSS and ODCSS have the smallest
prediction errors throughout the prediction process. Comparing ODCSSS with ODCSS,
we can observe that ODCSSS shows an increase in prediction errors during the stage of
370–400 samples, while ODCSS maintains a low prediction error all the time. These results
fully illustrate the prediction accuracy and reliability of ODCSS.
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To further assess whether there are significant differences between ODCSS and other
methods, the Statistical Tests for Algorithms Comparison (STAC) platform [56] is applied.
For this purpose, the test set is equally divided into 15 groups in chronological order
to obtain the prediction RMSE values on each group. Based on these RMSE values, a
non-parametric Freidman test with a Finner post hoc method is performed. Especially,
with ODCSS as the control method and the significance level as 0.05, Friedman test is
conducted on the group RMSE values of different methods and the statistical test results
are provided in Table 4. According to the principle of Freidman test, null hypothesis H0 in
this experiment is that there is no difference between the compared methods. The p-value
indicates the probability of supporting hypothesis H0. When the p-value is less than 0.05,
the statistical results show that null hypothesis H0 is rejected, which means that there
is a difference between the compared methods. As shown in Table 4, MWGPR, JITGPR,
OSELM, OSVR, PALM, OSEGPR, and SS-OSEGPR reject H0 hypothesis, which indicates
that the prediction performance of ODCSS is remarkably different from these methods
in TE process. In addition, we can also observe that ODCSSS accepts H0 hypothesis.
This is mainly because it is a degraded version of the proposed ODCSS method without
adding pseudo-labeled data, and introduction of semi-supervised learning has not gained
significant performance improvement.

Table 4. Statistical test results for the RMSE differences between ODCSS and different compared soft
sensor methods in TE process.

Method
Statistical Test

Statistic p-Value Result

MWGPR 2.77390 0.00995 Reject H0
JITGPR 2.11058 0.03907 Reject H0
OSELM 5.84932 0 Reject H0
OSVR 3.61814 0.00067 Reject H0
PALM 4.46237 0.00002 Reject H0

OSEGPR 2.71360 0.00997 Reject H0
SS-OSEGRP 2.23118 0.03288 Reject H0

ODCSSS 0.12060 0.90400 Accept H0
ODCSS (the control method) - - -

Additionally, to further explore the performance of the compared methods at different
stages of testing, Table 5 lists the RMSE performance of the compared methods on a subset
of testing set and ranks the performance of the proposed ODCSS method. It can be seen
that ODCSS has poor prediction performance in the early stage (testing subsets 1–6), and
gradually (testing subsets 11–15) achieves the best prediction results. The main reason
is that, in the early stage of prediction, the proposed method contains few data in the
clusters formed by local process state identification, and some samples are independent in
space in the form of outliers, so the local model established does not have enough learning
ability, thus resulting in poor prediction performance. With accumulation of data volume,
the proposed ODCSS method gradually learns different local process states, so the best
prediction performance is achieved in the late stage of prediction. These results imply that
the proposed method has strong learning capability in data stream environments.

3.4. Industrial Fed-Batch Chlortetracycline (CTC) Fermentation Process
3.4.1. Process Description

With development of science and technology in pharmaceutical, food, biological, and
chemical industries, as well as agriculture, microbial fermentation has made a great impact
on human daily life. As one feed antibiotic additive, chlortetracycline has become the
most used bacterial growth promoter in the farming industry due to its advantages of
bacterial inhibition, growth promotion, high feed utilization, and low drug residues. At the
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same time, with expansion of production demand and scale, enterprises have implemented
higher requirements for automation and the intelligence level of the fermentation process.

Table 5. The prediction RMSE values of different soft sensor methods on the test subsets in TE
process.

No.
Method

ODCSS
RankMWGPR JITGPR OSELM OSVR PALM OSEGPR SS-

OSEGRP ODCSSs ODCSS

1 0.0219 0.0219 0.0269 0.0244 0.0233 0.0237 0.0232 0.0206 0.0205 1
2 0.0195 0.0180 0.0269 0.0229 0.0135 0.0325 0.0297 0.0179 0.0183 4
3 0.0140 0.0148 0.0231 0.0159 0.0344 0.0132 0.0135 0.0132 0.0135 3
4 0.0142 0.0117 0.0243 0.0142 0.0171 0.0130 0.0119 0.0124 0.0122 3
5 0.0098 0.0118 0.0257 0.0131 0.0198 0.0162 0.0160 0.0116 0.0115 2
6 0.0130 0.0171 0.0237 0.0174 0.0287 0.0204 0.0191 0.0148 0.0150 3
7 0.0133 0.0120 0.0265 0.0151 0.0162 0.0124 0.0124 0.0120 0.0120 2
8 0.0119 0.0111 0.0203 0.0115 0.0121 0.0095 0.0095 0.0089 0.0089 2
9 0.0148 0.0148 0.0164 0.0161 0.0168 0.0153 0.0149 0.0133 0.0133 1

10 0.0123 0.0098 0.0190 0.0111 0.0179 0.0135 0.0134 0.0101 0.0101 2
11 0.0168 0.0165 0.0171 0.0118 0.0127 0.0116 0.0120 0.0107 0.0107 1
12 0.0304 0.0431 0.0242 0.0135 0.0148 0.0111 0.0109 0.0092 0.0092 1
13 0.0206 0.0213 0.0337 0.0209 0.0170 0.0155 0.0154 0.0150 0.0150 1
14 0.0195 0.0196 0.0335 0.0179 0.0218 0.0160 0.0166 0.0128 0.0128 1
15 0.0177 0.0130 0.0432 0.0207 0.0181 0.0162 0.0156 0.0183 0.0127 1

Mean 0.0166 0.0171 0.0256 0.0164 0.0189 0.0160 0.0156 0.0134 0.0131 1

Figure 7 shows the flow chart of the CTC production process. CTC fermentation
is an intermittent production process, and each batch of fermentation takes 80–120 h,
which mainly occurs through batch and fed-batch operation stages. Many parameters for
this process have been measured online using hardware sensors; however, the biomass
concentration, substrate concentration, amino nitrogen concentration, and viscosity are
usually not available online and can only be analyzed through offline sampling.

In this paper, the CTC fermentation process data from Charoen Pokphand Group are
used for model evaluation, where substrate concentration is used as the difficult-to-measure
variable and variables listed in Table 6 are used for auxiliary variables. With an online
sampling interval of 5 min and offline analysis interval of 4 h, a total of 15 batches of data
from the same fermenter were collected for experiments. The first two batches of labeled
samples, including a total of 43 samples, are taken as the initial training set, while the re-
maining 13 batches of data are used for online prediction, including 1015 unlabeled samples
and 324 labeled samples. The labeled and unlabeled samples are used for online modeling
and prediction, and the labeled samples are used for model performance evaluation.

Table 6. Input variables of soft sensor models for industrial fed-batch CTC fermentation process.

No. Variable Description

1 Cultivation time (min)
2 Temperature (◦C)
3 PH (−)
4 Dissolved oxygen concentration (%)
5 Air stream rate (m3/h)
6 Volume of air consumption (m3)
7 Substrate feed rate (L/h)
8 Volume of substrate consumption (L)
9 Volume of ammonia consumption (L)
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3.4.2. Parameter Settings

Similar to the case study of the TE chemical process, the optimal parameters for CTC
process are determined as follows:

(i) MWGPR: the width of the moving window is set to 43.
(ii) JITGPR: the number of local modeling samples is set to 43, and the best similarity is

cosine similarity;
(iii) OSELM: prediction block is set to 1 to predict one value at a time, the number of

hidden neurons is set to 38, and the number of initial training samples used in the
initial phase is set to 43.

(iv) OSVR: penalty parameter C is set to 24, tuning parameter for kernel function g is set
to 0.02, and precision threshold p is set to 0.007.

(v) PALM: the optimal parameters are the same as TE industrial process. b1, b2, c1, and c2
are set to 0.02, 0.01, 0.01, and 0.01, respectively;

(vi) OSEGPR: the number of online validation sample sets is set to 43, the ensemble size is
set to 5, and Manhattan distance similarity is chosen.

(vii) SS-OSEGPR: the number of online validation sample sets is set to 43, the ensemble
size is set to 5, the confidence threshold for selecting pseudo-labels is set to 0.1, and
Manhattan distance similarity is chosen.

(viii) ODCSSS: clustering radius R is set to 4.9, minimum density threshold M is set to 12,
and maximal ensemble size m is set to 2;

(ix) ODCSS: clustering radius R is set to 4.8, minimum density threshold M is set to
14, controlling parameter α is set to 0.6, proportion of deleted data P is set to 0.9,
confidence threshold IRth is set to 0.1, and maximal ensemble size m is set to 3.

3.4.3. Prediction Results and Discussion

Table 7 compares the best prediction performance of different soft sensor methods
on the CTC process. As can be seen, OSVR and OSELM achieve poor performance on
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substrate concentration prediction. JITGPR provides better performance than MWGPR
and PALM performs better than other single-model methods. In comparison, the proposed
ODCSS method still shows the lowest RMSE, MAE, MAPE, and the highest R2, implying
the best prediction performance. Overall, the performance improvement of the proposed
ODCSS approach compared to MWGPR, JITGPR, OSELM, OSVR, PALM, OSEGPR, and
SS-OSEGPR methods is 21.4%, 16.2%, 25.8%, 26.3%, 11.7%, 10.6%, and 9%, respectively,
when using RMSE as the baseline. After adding the pseudo-labeled data, the proposed
ODCSS shows a 7% performance improvement compared with ODCSSS. These results
further confirm that ODCSS has significantly better prediction accuracy than traditional
soft sensors for semi-supervised data streams.

Table 7. Comparison of different soft sensor methods for prediction of substrate concentration in
CTC fermentation process.

Method RMSE MAE MAPE (%) R2

MWGPR 0.3174 0.2405 8.5315 0.9347
JITGPR 0.2978 0.2266 8.0920 0.9425
OSELM 0.3363 0.2544 9.0366 0.9276
OSVR 0.3385 0.2621 9.2811 0.9257
PALM 0.2827 0.2178 7.9556 0.9482

OSEGPR 0.2792 0.2135 7.6421 0.9495
SS-OSEGRP 0.2739 0.2082 7.4001 0.9514

ODCSSS 0.2682 0.2005 7.1162 0.9534
ODCSS 0.2495 0.1841 6.4624 0.9597

Figure 8 shows the scatter plots of the prediction results from different methods. The
closer the scatter points are to the diagonal line, the more accurate the prediction results
are. All compared methods exhibit different degrees of deviation. Among them, the
scatter points of OSELM (Figure 8c) and OSVR (Figure 8d) are far from the diagonal line
throughout the prediction zone. The rest of the methods have a tendency to deviate from
the diagonal line at different zones. In contrast, the proposed ODCSS method (Figure 8i)
obtains the closest and most dense overall scatter points to the diagonal line, thus providing
the best prediction performance.
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Figure 8. Scatter plots of substrate concentration predictions by different soft sensor methods.
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In addition, the dynamic clustering process is also illustrated through three-dimensional
variables obtained by PCA. As shown in Figure 9, the red triangular points are outliers
and the remaining colors correspond to clusters. Although some of the data are mixed
after visualization using PCA, it does not affect the understanding of the clustering process
in this paper. As Figure 9b shows, when the 48th sample arrives, the size of data in the
cluster and outliers increases over time. The 49th sample arrives and the outliers within
the radius accumulate to the set threshold and a new cluster is formed, as shown by the
pink points in Figure 9c. When the data in a cluster are accumulated to a certain extent, the
obsolete samples in the cluster are deleted in order to improve operation efficiency and
assure prediction accuracy, as shown in Figure 9d,e. Figure 9f–i shows the repetition of the
above process.
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Moreover, we further explore the influences of the parameters on the proposed ODCSS
algorithm, as shown in Table 8. After fixing clustering radius R as 4.8, minimum density
threshold M as 14, and maximum ensemble size m as 3, prediction performance of ODCSS
under different combinations of the ratio of the deleted data P ∈ [0.4, 0.6, 0.8], controlling
parameter α ∈ [0.7, 0.9], and confidence threshold IRth ∈ [0.05, 0.2, 0.15] are compared.
These results show the strong stability and excellent accuracy of the proposed ODCSS
method when using varying model parameters.
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Table 8. Performance comparison of the proposed method under different parameters for substrate
concentration prediction.

No. P α IRth RMSE R2

1 0.4 0.7 0.05 0.2558 0.9576
2 0.6 0.7 0.05 0.2573 0.9571
3 0.8 0.7 0.05 0.2687 0.9532
4 0.4 0.9 0.05 0.2540 0.9582
5 0.6 0.9 0.05 0.2551 0.9578
6 0.8 0.9 0.05 0.2535 0.9584
7 0.4 0.7 0.1 0.2533 0.9584
8 0.6 0.7 0.1 0.2543 0.9581
9 0.8 0.7 0.1 0.2596 0.9563
10 0.4 0.9 0.1 0.2591 0.9565
11 0.6 0.9 0.1 0.2495 0.9597
12 0.8 0.9 0.1 0.2531 0.9585
13 0.4 0.7 0.15 0.2568 0.9573
14 0.6 0.7 0.15 0.2535 0.9584
15 0.8 0.7 0.15 0.2659 0.9542
16 0.4 0.9 0.15 0.2512 0.9591
17 0.6 0.9 0.15 0.2545 0.9580
18 0.8 0.9 0.15 0.2608 0.9559

Similar to TE process, a Freidman test with a Finner post hoc method is conducted
in order to further assess different soft sensor methods in the CTC fermentation process.
For this purpose, the test set was divided in batch order and a total of 13 batches of RMSE
values are obtained, and then a non-parametric Friedman test is performed. The statistical
test results are also tabulated in Table 9. It can be readily observed that, similar to TE
process, MWGPR, JITGPR, OSELM, and OSVR reject the H0 hypothesis, which indicates
that the prediction performance of ODCSS is remarkably different from these methods in
CTC process. In comparison, PALM, OSEGPR, SS-OSEGPR, and ODCSSS accept the H0
hypothesis, which reveals that there is no significant difference between ODCSS and the
other compared methods in terms of the overall prediction performance.

Table 9. Statistical test results for the RMSE differences on the testing subsets between ODCSS and
other compared soft sensor methods in CTC fermentation process.

Method
Statistical Test

Statistic p-Value Result

MWGPR 3.23875 0.00270 Reject H0
JITGPR 2.85010 0.00785 Reject H0
OSELM 3.36830 0.00227 Reject H0
OSVR 3.95128 0.00035 Reject H0
PALM 1.55460 0.13400 Accept H0

OSEGPR 2.07280 0.05674 Accept H0
SS-OSEGRP 1.61938 0.13338 Accept H0

ODCSSS 1.16595 0.24363 Accept H0
ODCSS (the control method) - - -

To further explore the prediction capability of the different methods on local prediction
stages, the RMSE values from different soft sensor methods on the 13 test batches are
presented in Table 10. As can be seen from the table, the proposed ODCSS method shows
poor prediction performance in the first two batches of prediction and then provides the
best prediction accuracy in most later batches. Similar to TE process, these results once
again confirm the strong online learning capability of ODCSS. However, we can also
notice that ODCSSS provides poor prediction RMSE for batch 11. Such a problem may
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be addressed by introducing other adaptation mechanisms to further enhance the online
learning capability of ODCSS in accommodating complex data stream environments.

Table 10. The prediction RMSE values of different soft sensor methods on the test batches in CTC
fermentation process.

No.
Method

ODCSS
RankMWGPR JITGPR OSELM OSVR PALM OSEGPR SS-

OSEGRP ODCSSS ODCSS

1 0.3169 0.3148 0.5521 0.3223 0.2872 0.3724 0.3441 0.2726 0.3321 6
2 0.4614 0.2720 0.3908 0.4051 0.1984 0.1823 0.1985 0.2075 0.3117 6
3 0.2173 0.2940 0.3561 0.3170 0.2018 0.2167 0.2160 0.2013 0.1880 1
4 0.2987 0.2978 0.2943 0.3106 0.2051 0.2330 0.2202 0.1875 0.1904 2
5 0.2359 0.2597 0.1869 0.2470 0.2033 0.1598 0.1459 0.1701 0.1506 2
6 0.3406 0.3530 0.2413 0.3909 0.2491 0.2723 0.2751 0.2332 0.2153 1
7 0.3155 0.2437 0.3635 0.3827 0.4303 0.3986 0.3810 0.3950 0.2232 1
8 0.3118 0.2122 0.2686 0.3649 0.2522 0.2684 0.2657 0.2576 0.2006 1
9 0.2677 0.3026 0.3300 0.2594 0.2221 0.2776 0.2755 0.3193 0.2530 2

10 0.3342 0.3045 0.3578 0.3528 0.3296 0.2947 0.2975 0.3166 0.2862 1
11 0.3704 0.2994 0.2662 0.3880 0.2949 0.2539 0.2530 0.2829 0.2968 6
12 0.3189 0.3775 0.3021 0.3616 0.2847 0.3134 0.3146 0.2858 0.2746 1
13 0.2582 0.2739 0.2897 0.2568 0.3902 0.2824 0.2818 0.2669 0.2302 1

Mean 0.3113 0.2927 0.3230 0.3353 0.2730 0.2712 0.2668 0.2613 0.2425 1

4. Conclusions

This paper presents an online-dynamic-clustering-based soft sensor (ODCSS) for in-
dustrial semi-supervised data streams. By applying online dynamic clustering to process
data streams, ODCSS enables automatic generation and update and deletion of obsolete
samples, thus realizing dynamic identification of process state. In addition, an adaptive
switching prediction method combining online selective ensemble with JITL is used to
effectively handle gradual and abrupt time-varying features, thus preventing model degra-
dation. Moreover, to tackle the label scarcity issue, semi-supervised learning is introduced
to obtain high-confidence pseudo-labeled samples online. The proposed ODCSS is a fully
online soft sensor method that can effectively deal with nonlinearity, time variability, and
shortage of labeled samples in industrial data streaming environments.

To verify the effectiveness and superiority of the proposed ODCSS method, two ap-
plication cases are considered. Meanwhile, seven representative soft sensor methods and
ODCSSS (without pseudo-labeled samples) are compared with the proposed ODCSS. From
the RMSE, MAE, MAPE, and R2, it is evident that the proposed method outperforms the
other compared methods in terms of all evaluation metrics. Especially, in TE process, with
RMSE as a baseline, ODCSS improves prediction accuracy by 48.7% compared to OSELM,
and introduction of semi-supervised learning improves prediction performance by 3.6%
compared to ODCSSS. For the CTC fermentation process, although ODCSS does not show
significant differences from some methods in terms of overall testing performance, the
superiority of the proposed method becomes more and more obvious with accumulation
of streaming data and advancement in online learning. Both the TE and CTC application
results confirm that the proposed ODCSS method can well address time-variability, nonlin-
earity, and label scarcity problems and thus achieve high-precision real-time prediction of
subsequent online arrived samples by using only very few labeled samples and adding
high-confidence pseudo-labeled data.

Currently, there is still a lack of research on soft sensor modeling for data streams,
and this study is only a preliminary attempt. There are still several issues requiring
further attention. First, although the proposed algorithm has good prediction accuracy,
computational burden of online modeling will inevitably increase with accumulation of
process data streams. Thus, how to improve the efficiency of online modeling is also a major
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concern. Second, with evolution of process data streams, optimal model parameters also
change, so it is appealing to adjust the model parameters adaptively. Third, the proposed
method only considers identifying local features based on the spatial relationship between
samples. For data streams, temporal relationships between samples are also worth noting.
Fourth, as streaming data accumulate, mining the hidden features of streaming data using
incremental deep learning is also an interesting research direction. These issues remain to
be studied in our later work.
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Appendix A. Gaussian Process Regression

The Gaussian process (GP) is a set of any finite random variables with joint Gaussian
distribution [57]. For dataset D = {X, y} = {xi, yi}n

i=1, x and y represent the input and
output matrices. The regression model can be described as follows:

y = f (x) + ε, ε ∼ N
(

0, σ2
n

)
(A1)

where n represents the number of samples in the dataset, x and y represent the input and
output vector, respectively. f (·) denotes the unknown function. ε is the Gaussian noise with
zero mean and variance σ2

n . From the perspective of function space, a Gaussian process can
be specified by covariance function C

(
x, x’) and mean function m(x) as follows:{

m(x) = E[ f (x)]
C
(
x, x’) = E

[
( f (x)−m(x))

(
f
(
x’)−m

(
x’))] (A2)

Therefore, the Gaussian process can be described as follows:

f (x) ∼ GP
(

m(x), C
(

x, x’
))

(A3)

After preprocessing the data, it is assumed that the training sample set is a zero mean
Gaussian process:

y ∼ GP(0, C) (A4)

where C is an n × n covariance matrix with Cij = C
(
xi, xj

)
, which represents the ijth

element in C, and 0 represents a zero matrix.
When new test sample x∗ arrives, the prediction mean ŷ∗ and σ2

∗ variance are given as{
ŷ∗ = kT

∗C
−1y

σ2
∗ = C(x∗, x∗)− kT

∗C−1k∗
(A5)

where k∗ = [C(x∗, x1), · · · , C(x∗, xn))]T represents the covariance of x∗ and training inputs.
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Appendix B. Self-Training

As a typical method for semi-supervised learning, self-training uses the existing
labeled samples to label the remaining unlabeled samples, thus augmenting the training
data to improve the model performance. It has been widely used in natural language
processing [58], object detection [59], and pattern recognition [60]. The specific steps are as
follows.

Step 1: model f is trained using labeled training sample set L.
Step 2: use model f to predict the pseudo-labels for unlabeled set U.
Step 3: select some high-confidence samples from the prediction results to add to the

labeled training set to form a new training set L′.
Step 4: retrain the model with new training sample set L′.
Step 5: update the unlabeled set and then go to Step 2.

Appendix C. Just-In-Time Learning (JITL)

JITL is also known as instance-based learning, locally weighted learning, inert learn-
ing, or on-demand modeling [61]. It is an online modeling framework widely used in
process modeling, process monitoring [62], controller design [63], and soft sensor applica-
tions [64] due to its strong ability to handle process nonlinearity and time-varying process
characteristics. The JITL framework consists of the main steps as follows:

Step 1: store all input and output data D = {X, y} = {xi, yi}n
i=1 to the database.

Step 2: when query sample xt arrives, the most similar samples to xt are selected from
the database according to a similarity criterion.

Step 3: build a local model based on the selected samples and provide prediction
output ŷt.

Step 4: discard the local model and go to Step 2.
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