
Citation: Na, J.; Zhang, H.; Lian, J.;

Zhang, B. Genetic Algorithm-Based

Online-Partitioning BranchyNet for

Accelerating Edge Inference. Sensors

2023, 23, 1500. https://doi.org/

10.3390/s23031500

Academic Editor: Paolo Gastaldo

Received: 20 November 2022

Revised: 24 January 2023

Accepted: 26 January 2023

Published: 29 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Genetic Algorithm-Based Online-Partitioning BranchyNet for
Accelerating Edge Inference
Jun Na 1 , Handuo Zhang 2, Jiaxin Lian 2 and Bin Zhang 1,*

1 Software College, Northeastern University, Shenyang 110169, China
2 School of Computer Science and Engineering, Northeastern University, Shenyang 110169, China
* Correspondence: zhangbin@mail.neu.edu.cn

Abstract: In order to effectively apply BranchyNet, a DNN with multiple early-exit branches, in edge
intelligent applications, one way is to divide and distribute the inference task of a BranchyNet into
a group of robots, drones, vehicles, and other intelligent edge devices. Unlike most existing works
trying to select a particular branch to partition and deploy, this paper proposes a genetic algorithm
(GA)-based online partitioning approach that splits the whole BranchyNet with all its branches. For
this purpose, it establishes a new calculation approach based on the weighted average for estimating
total execution time of a given BranchyNet and a two-layer chromosome GA by distinguishing
partitioning and deployment during the evolution in GA. The experiment results show that the
proposed algorithm can not only result in shorter execution time and lower device-average energy
cost but also needs less time to obtain an optimal deployment plan. Such short running time enables
the proposed algorithm to generate an optimal deployment plan online, which dynamically meets
the actual requirements in deploying an intelligent application in the edge.

Keywords: BranchyNet; DNN partitioning; genetic algorithm; distributed DNN inferencing

1. Introduction

The distinguishing ability to learn higher-level feature representations at successive
nonlinear layers makes deep neural networks (DNNs) widely applied in image classifica-
tion. With the progression of hardware and learning techniques, DDNs become deeper.
This dramatically increases the inference latency. However, the time needed to process an
image usually depends on its complexity. For example, it is faster to recognize a person
standing in front of a plain blue backdrop than amid a crowd. As the images in real-world
datasets always have different classification difficulties, various researchers proposed the
model early-exit mechanism and corresponding implementations for accelerating DNN
inference by exiting the inferencing process earlier when reaching the required inference
accuracy [1–4]. For example, BranchyNet [1] is a programming framework that implements
the model early-exit mechanism. A standard DNN can be resized to its BranchyNet version
by adding exit branches with early exit points at certain layer locations. Then, simple
images can be classified and exit the network through these early-exit points without going
through all the layers of the original DNN, which leads to speedups of about two to five
times in inference time, as shown in [1].

Although the BranchyNet can effectively reduce inference time according to the clas-
sification complexity of different images by satisfying the required inference accuracy, it
increases the model size by adding additional branches. For instance, the authors in [1]
add a branch consisting of one convolutional layer and one fully-connected layer into the
basic LeNet-5 network. As a result, the total number of layers increases to seven, 1.4 times
the original model’s. For AlexNet, the authors add two branches with a total of five addi-
tional layers. The number of layers gets to 1.625 times that of the original model. Larger
models undoubtedly need more storage for storing and running. Moreover, running these

Sensors 2023, 23, 1500. https://doi.org/10.3390/s23031500 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23031500
https://doi.org/10.3390/s23031500
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-7132-8589
https://doi.org/10.3390/s23031500
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23031500?type=check_update&version=1


Sensors 2023, 23, 1500 2 of 18

additional branches can also cost more energy. In the above Branchy-LeNet (B-LeNet), a
complex image will go through all seven layers before achieving its classification result,
which runs one convolutional layer and one fully-connected layer additionally. Similarly, a
complex image processed by the Branchy-AlexNet (B-AlexNet) needs to run three convolu-
tional layers and two fully connected layers additionally. Evidently, this costs more energy
than when processed by the original networks. Therefore, when applying BranchyNet in
real applications, it is crucial to design and implement an efficient application strategy.

In order to effectively apply BranchyNet, the framework DDNNs [5] adopt BranchyNet
to distribute DNNs across the cloud, edge, and devices. It divides a BranchyNet into
three parts at pre-defined early-exit points. Moreover, the authors propose three different
aggregation methods to integrate results from various same-level exit points. Edgent [6,7]
jointly applies model early-exit and model partition. It first trains a branchy model at the
offline configuration stage. Then, it tries to obtain an optimal partition at the online tuning
stage to maximize inference accuracy under the given latency requirement. This approach
cuts the DNN according to the current bandwidth state and deploys the two sub-models to
a model device and the edge server. The authors in [4] propose an approach to utilize the
communication channels efficiently when an edge device with a built-in auxiliary network
shares workload with an edge server with a remote principal network. They introduce the
dynamic network-sizing technology to vary the depth of the auxiliary network to adjust
the amount of workloads to be transferred to the principal network while maintaining
overall accuracy. These works only cut the BranchyNet into two or three fixed parts to
support collaborated inferencing among cloud, edge, and devices. However, dividing a
BranchyNet into multiple pieces for distributed collaboration by a group of robots, drones,
vehicles, and other intelligent edge devices is still challenging.

Unlike most existing cloud–edge or edge–device collaborations, this work focuses on
collaborative inferencing among several intelligent edge devices. Let us take the example
of object identification in public security systems or city surveillance systems illustrated
in Figure 1. A pre-trained B-AlexNet is divided into five pieces and deployed into two
drones, a camera, a smartphone, and a smart car. To perform the object identification task,
the leftmost drone capture images as input to the B-AlexNet and runs the first branch. If
the first branch can result in a correct identification result, it will return the identification
result to the business system. Otherwise, the process goes back to the first convolutional
layer, whose result will be sent to the camera. In turn, the camera will run the inference
task assigned to it and send the corresponding output to the smartphone, which performs
the second exit branch and obtains corresponding identification results. There are more
similar application scenarios, such as distributed fall detection [8] and traffic prediction [9].

The above illustration shows that the DNN partitioning problem is different from the
general task offloading problem [10–12], which is a topic of interest in edge computing and
mobile edge computing. The task offloading problem emphasizes offloading all or part of
computing tasks from an edge device to the associated edge server. On the contrary, DNN
partitioning aims to split a large computation task into many sub-tasks and distribute them
to a group of edge devices to use the free resources of such edge devices fully. As a result,
an edge device needs to perform its task with the help of a selected edge server in task
offloading, while the edge devices cooperate to perform a task without an edge server after
DNN partitioning.

In order to accelerate edge inference, it has been emerging to partition a complete
neural network into several parts and deploy them to a group of edge devices [13,14].
Due to the fact that intermediate results no longer need to be further sent to the remote
cloud center, all inference tasks will be completed in the edge environment. This ensures
data privacy and saves transmission costs. However, unlike only dividing a network
into two or three parts, partitioning a network into multiple parts is an NP-hard problem.
Although some strategies are trying to split a DNN into several parts effectively [15–17],
most of them try to select a particular branch to split and deploy rather than partitioning



Sensors 2023, 23, 1500 3 of 18

the whole BranchyNet with all branches which reduces the applicability and flexibility of
the generated deployment plan.

Figure 1. Illustration of a distributed DNN inference by collaboration among multiple edge devices.

This paper proposes a novel genetic algorithm (GA)-based BranchyNet partitioning
approach for accelerating edge inference. In order to ensure the applicability of the resulting
deployment plan, the partitioning problem is defined as a constrained optimization problem
to generate an optimal deployment plan under a given amount of available resources.
Then, a two-layer chromosome GA is designed to solve the established problem more
efficiently. Experiments are taken on partitioning B-AlexNet and B-ResNet proposed in [1].
By comparing with methods proposed in [5,18,19], the proposed GA significantly decreases
the inferencing latency. The main contributions of this paper are as follows:

• Firstly, this paper presents the formulation for estimating the total execution time of a
complete BranchyNet, including inferencing and transmitting the intermediate results,
and converses the BranchyNet partitioning problem into a constrained optimization
problem;

• Secondly, this paper puts forward a two-layer chromosomes GA. It emphasizes the
consistency between partitioning and deployment and divides chromosomes into
partitioning and deployment chromosomes accordingly;

• Finally, this paper presents a comprehensive experiment evaluation by comparing
the proposed method with four other typical DNN partitioning approaches based on
B-AlexNet and B-ResNet in inferencing performance and algorithm efficiency.

The rest of this paper is organized as follows. Section 2 reviews and classifies existing
DNN partitioning approaches. Section 3 presents the problem formulation for achieving
optimal BranchyNet partitioning. Then, Section 4 describes the proposed algorithm’s
details, including the network’s pre-processing and improving basic GA, and Section 5
provides the corresponding experimental results. Finally, Section 6 concludes this work
and outlines possible directions for future research.

2. Literature Review

According to the different deployment targets of DNN, existing DNN partitioning
methods can be divided into the following two categories.

One way is to divide a DNN into two or three parts for deploying to the edge device,
edge server, and remote cloud. For example, the authors in [20] propose to cut a CNN model
at the end of the convolutional layer. Then, they allocate and perform the convolutional
layers at the edge and the rest of the fully-connected layers in the cloud. Instead of selecting
a fixed partitioning point according to the network structure, the authors in [18] observe



Sensors 2023, 23, 1500 4 of 18

that ideal fine-grained DNN partition points depend on the layer compositions of the DNN,
the particular mobile platform used, the wireless network configuration, and the server
load. With this in mind, they propose a lightweight scheduler named Neurosurgeon to
automatically partition DNN computation between mobile devices and data centers for
either the best end-to-end latency or mobile energy consumption by testing every candidate
point after each layer. Refs. [6,21,22] also adopt similar strategies in order to identify the
best partition points. However, unlike other works using exhaustive searching, ref. [22]
solves the problem by mixed integer linear programming.

The other way is to divide a DNN into more than two parts and deploy them onto
multiple devices. There are usually three different perspectives to partition a DNN into
multiple parts. Firstly, considering the requirements for storing large inputs or weights,
inputs partitioning [23,24] and weights partitioning [25] approaches are proposed. These
two kinds of strategies attempt to slice a DNN horizontally, which enables a single-edge
device to store part of the input data or weight when it does not have enough storage.
Secondly, layer-based partitioning is proposed to solve the depth problem in DNN infer-
ence [15,16]. Thirdly, more works are emerging to provide a hybrid solution [14,17,26–29].
For example, ref. [26] adopts both input partitioning and layer-based partitioning to obtain
a group of small enough sub-models. Ref. [17] proposes a grid fashion to fuse and partition
layers vertically. Ref. [28] models a DNN as a data-flow graph and transforms the DNN
partitioning problem into a graph-partitioning problem.

In summary, there is a common assumption in nearly all of the above works: the
DNN is a well-organized linear structure. Although [6,21] added early-exit branches to the
original DNN before partitioning, they split the pre-trained BranchyNet into several inde-
pendent linear DNNs before partitioning. They selected the best partition points by testing
all positions after each layer in all these linear DNNs, which, in essence, only selects and
deploys part of the original BranchyNet. It is hard to ensure the actual inference accuracy.
As far as we know, there are currently few solutions specifically for BranchyNet partitioning.
Moreover, more studies have begun to focus on the joint optimization of DNN partitioning
and resource allocation [30–32]. However, it is still an open and critical challenge.

3. Problem Formulation
3.1. System Model

As illustrated in Figure 1, suppose there are N edge devices in an edge network.
Regarding the available memory, computation capacity, and energy, various edge devices
can perform different sub-tasks of a given inference. Then, when an intelligent edge
application needs to be deployed, the corresponding edge server will act as a master to
break down the DNN inference tasks according to the current states of all edge devices
and the communication bandwidth of the edge network. Similar to [6], this process can be
divided into three main stages, as shown in Figure 2.

At the offline training stage, a BranchyNet is trained for running. Then, the online
partitioning and deploying stage will first predict the performance of each layer in the
pre-trained model. This can be achieved by PALEO [33], the layer performance regression
function in [6,18], or other layer prediction models. Based on the result of layer performance
prediction, the model partitioning algorithm generates an optimal deployment, according
to which the sub-tasks are assigned to selected edge devices. Then, these edge devices
perform the original inference task collaboratively at run-time. Unlike offline partitioning,
which partitions a model immediately after training without considering existing available
resources in the run-time environment, this work focuses on online partitioning that tries
to achieve better execution performance in a given run-time environment.



Sensors 2023, 23, 1500 5 of 18

Figure 2. The basic process for partitioning and distributing inference tasks contained in an intelligent
edge application.

In real-world applications, the online partitioning and deploying algorithm will be
deployed on the edge server. Then, after a user deploys an intelligent application to the
edge environment, the edge server will extract the inferencing task and the corresponding
BranchyNet. It partitions and dispatches the BranchyNet according to the current status of
each edge device which will then cooperate to complete a further distributed inferencing
process without the edge server.

3.2. Duration for Performing a Sub-Task in the Cooperative Inferencing

Each device must receive input from its preceding device and deliver the output to
its next device during cooperative inferencing. For example, in Figure 2, the B-AlexNet
is divided into five sub-models and deployed to five different devices. To perform the
assigned inference task, the camera needs to receive input from the first drone and send its
output to the smartphone, which will, in turn, execute the next sub-model.

Let us suppose a complete inference task is divided into n sub-tasks deploying to
n selected devices. This paper uses pi(i = 1, 2, . . . , n) to represent a sub-model to be
performed and dj(j = 1, 2, . . . , n) to represent one of those selected devices. If a sub-model
pi is deployed to device dj, the corresponding execution time ti,j is defined as

ti,j = tci,j + tri + tsi (1)

where tci,j is the time of executing sub-model pi on device dj, tri and tsi are the time for
receiving the input of pi and sending the output of pi, respectively. If tti is used to represent
the total transmission time, then tti = tri + tsi and ti,j = tci,j + tti.

3.3. Duration for Executing a Complete BranchyNet

Different from conventional linear structure DNNs, a BranchyNet usually has several
early-exit branches. Based on the idea of an early-exit mechanism, not all the branches
would be executed for processing a given input. Therefore, it is different from the total exe-
cution time calculation for linear structure DNNs, which can be easily achieved by summing
up the execution duration of all the sub-tasks. The total execution time of a BranchyNet
varies according to the complexity of the given input. This paper adopts the weighted
average duration to represent the duration of performing a complete BranchyNet inference.

In detail, suppose there are m branches in a given BranchyNet. Each branch bi(i = 1,
2, . . . , m) has a total execution duration tbi and a proportion representing the percentage of
samples exit from this branch pbi. Then, the duration for performing the given BranchyNet
is defined as

T =
m

∑
i=0

pbi × tbi (2)



Sensors 2023, 23, 1500 6 of 18

where
m
∑

i=0
pbi = 1. The value of each pbi can be achieved after training or testing the

BranchyNet model, which equals the ratio of the number of samples exiting from branch
bi and the total number of samples, while the execution time of a complete branch bi is
obtained by summing up the execution time of all layers that a sample traverses before
exiting, i.e.,

tbi =
n

∑
i=1

n

∑
j=1

αi,j × ti,j (3)

where αi,j is a coefficient to indicate whether a sub-model pi is assigned to device dj, whose
value is either 0 or 1. When αi,j = 1, the sub-model pi is assigned to device dj. Otherwise,
i.e., αi,j = 0, the sub-model pi is assigned to another device rather than dj. If a branch
is divided into n parts, and each part is uniquely deployed to one specific device, then,

for any device dj(j = 1, 2, . . . , n), the equation
n
∑

i=1
αi,j = 1 makes sense. Likewise, for any

sub-model pi(i = 1, 2, . . . , n),
n
∑

j=1
αi,j = 1.

3.4. Problem Formulation

Except for the above time cost for performing a BranchyNet, given the memory
and power consumption requirements of performing each sub-model, it is also necessary
to consider the available amount of memory and energy on each device to achieve a
feasible partition. In summary, this work aims to minimize the execution time of a given
BranchyNet under the constraints of memory and energy consumption, which is formulated
the BranchyNet partition problem as the following constrained optimization problem.

min T

s.t.

{
rmi ≤ mj, αi,j = 1,
epj × ti,j ≤ cj, αi,j = 1.

(4)

Here, mj is the size of available memory on device dj, and rmi is the required memory
for running sub-model pi. If pi is assigned to device dj, i.e., αi,j = 1, the available amount
of memory dj should not be less than the required amount of memory rmi. Similarly, the
remaining energy cj should not be less than the required amount of energy, which is the
product of the average running power epj and the sub-model execution time ti,j. If there
are more constraints, such as computing capabilities, communication bandwidth, and
other aspects, the problem can be modeled by adding corresponding constraints to the
above formulation.

Based on Equations (2) and (3), the problem can be finally defined as follows:

min
m

∑
k=0

(pbi ×
nbk

∑
i=1

nbk

∑
j=1

αi,j × ti,j)

s.t.

{
rmi ≤ mj, αi,j = 1,
epj × ti,j ≤ cj, αi,j = 1.

(5)

where nbk is the number of pieces branch bk is divided into.
All of these αi,j(∀i, j ∈ {1, . . . , n}) form an n-by-n matrix A, which represents an actual

deployment plan. This paper aims to achieve a specific matrix A with the shortest execution
time under memory and energy consumption constraints. Let us suppose a BranchyNet
with L layers will be partitioned and deployed to N devices. There are CN−1

L−1 different
partition plans and PN

N different deployment plans. Therefore, the above problem is a
typical NP problem.



Sensors 2023, 23, 1500 7 of 18

4. The Proposed Two-Layer Chromosome GA

A genetic algorithm (GA) is a method to search for the optimal solution by simulating
the natural evolution process. When solving complex combinatorial optimization prob-
lems, a GA can usually obtain better optimization results faster than some conventional
optimization algorithms. The chromosome coding scheme is the fundamental element of
a GA. This section analyzes problems of applying the basic GA to solve the formulated
optimization problem and then introduces the corresponding solution in this paper.

4.1. Linearization of a BranchyNet

In order to calculate and represent the partitioning plan conveniently, a linearization
strategy is proposed to convert a BranchyNet into a linear model. The linearization result
of the B-AlexNet is shown in Figure 3.

Figure 3. An example of relationship among a linearized BranchyNet, a partitioning plan, and a
deployment plan.

In Figure 3, the first line illustrates the linearized results of the B-AlexNet, where
circles are the fork nodes in the B-AlexNet. To distinguish different layers in a B-AlexNet,
this work labels a layer as lx,y, where x refers to the branch the layer belongs to, and y
indicates the position that the layer is located in the branch. For example, in the B-AlexNet,
as there are three branches, the value of x is 0, 1, or 2. l1,2 is the second layer of the first
exit branch. To simplify the representation and computation in the proposed algorithm,
layers in the linearized model are further transformed to Li(i = 1, 2, . . . , n), and a mapping
is established between labels in the linearized model layer and their original position.

After the above linearization, a partition plan can be easily represented as a vector. As
shown in the middle of Figure 3, if there are L layers in the linearized model, there should
be L− 1 possible cut points. Hence, a partitioning plan can be modeled as a vector with
L− 1 elements, each of which is either 0 or 1, and the value 1 represents a selected cut point.
The B-AlexNet is divided into five parts in the illustrating example, so there are four cut
points, as shown in Figure 3.

Moreover, a deployment plan can be modeled as an N× L matrix, A. The value of any
ai,j in A is either 1 or 0. If ai,j = 1, it means that layer Lj is assigned to device di. As shown
at the bottom of Figure 3, there are five devices and thirteen layers. A deployment plan
is modeled as a matrix with five rows and thirteen columns. The value 1 at the first line
means layers L1, L2, L3, and L4 are deployed to device d1, where L1, L2, L3, and L4 are the
identifiers of layers in the linearized model.

4.2. Problems with Basic Crossover Operator

The basic process of a GA starts with generating an initial population, i.e., a set of
chromosomes. Then, it runs through the loop, including individual evaluation, selection,
crossover, and mutation, until satisfying the given termination condition. The crossover



Sensors 2023, 23, 1500 8 of 18

operator plays a core role in a GA, which acts on a group of chromosomes and generates
new individuals by replacing part of the chromosomes of two father-generation individuals.

For example, in order to obtain an optimal deployment plan, the chromosome in the
GA should be modeled as an N × L matrix according to the above representation of a
deployment plan, such as C1 and C2 in Figure 4. C1 represents a deployment plan where
there are three devices and a seven-layer model. The model is divided into three pieces.
Layers L1 and L2 are deployed to device d1, layers L3, L4, and L5 are deployed to device
d2, and layers L6 and L7 are deployed to device d3. Similarly, C2 also shows a deployment
plan which divides the model into three pieces. Figure 4 shows the computing process in a
partially mapped crossover operator.

Figure 4. Illustration of the computing process in the partially mapped crossover operator.

In Figure 4, C11 and C21 are two new individuals generated by swapping the subsec-
tions in each father individual included in the rectangles. According to the chromosome
coding rules, the model is divided into five parts in the newly generated individuals,
C11 and C21. In other words, a five-part partitioning plan is generated by the crossover
operation based on two three-part partitioning plans.

Furthermore, such deployment plans will lead to extra network bandwidth and
equipment energy consumption caused by repeated transmission between devices. For
example, if deploying the inference task according to C11, the output of L1 will be sent from
d1 to d2, and then the output of L2 will be sent back from d2 to d1. In turn, the output of L4
will be sent from d1 to d2 again. As a result, the intermediate results need to be transferred
four times among the given three devices, twice as many as deployed according to C1.

4.3. The Proposed Improvement

To ensure the new individuals generated by crossover are still consistent with the
corresponding partitioning plans their parents belong to, this work proposes dividing the
chromosomes into two classes, i.e., partitioning chromosomes and deployment chromo-
somes. Based on the representation introduced above, if an L-layers BranchyNet will be
partitioned and deployed to N devices, this work adopts the representation of a partitioning
plan which is a vector of length L− 1 as a partitioning chromosome and the representation
of a deployment plan which is an N × L matrix as a deployment chromosome.

As illustrated in Figure 3, there is a one-to-many relationship between the partitioning
chromosome and the deployment chromosome. Let us suppose there are N devices to
participate in the collaborative inferencing, and each device will be only assigned one sub-
model. Then, the total number of deployment chromosomes related to a given partitioning
chromosome is N!. Conversely, only one partitioning chromosome can be abstracted from
a given deployment chromosome. Based on the relationship between the partitioning and
deployment chromosomes, it is easy to build up corresponding conversion algorithms.

Then, this work modifies the process in the basic GA by performing crossover and
mutation on partitioning chromosomes and selection on deployment chromosomes. A
complete process of the improved GA is shown in Algorithm 1.



Sensors 2023, 23, 1500 9 of 18

Algorithm 1: The framework of the proposed genetic algorithm
Input: a linear model model, a performance description of a group of candidate

devices D, initial partitioning chromosome population size PCN, the
proportion of the initial deployment chromosome population pdc, crossover
probability pc, mutation probability pm, maximum number of iterations
MAXGEN, the number of consecutive occurrences of the same optimal
value SVG

Output: an optimal deployment plan dc
1 begin
2 n← number of candidate devices in D
3 l ← number of layers in model
4 latency[n][l]← each DNN layer’s execution times on each device in D
5 PP← randomly generate PCN partitioning chromosomes
6 PD ← randomly generate n!× pdc deployment chromosomes for each

partitioning chromosome in PP
7 SIZE = PCN × n!× pdc
8 currentGen = 0
9 max f = 0

10 while currentGen < MAXGEN do
11 currentGen ++
12 OP = selection(PD)
13 PP← extract partitioning chromosomes from OP
14 update PP through crossover and mutation
15 PD ← randomly generate SIZE deployment chromosomes based on OP

conforming to PP
16 max f = max f itness(PD)
17 if max f has appeared SVG times continuously then
18 break
19 end
20 end
21 return the individual that has the maximal fitness in current set PD
22 end

Firstly, Algorithm 1 takes a linearized model model to be partitioned and its layer-
performance estimation on every candidate device D as input. Moreover, since the al-
gorithm constructs two layers of populations, i.e., the partitioning population and the
deployment population, the initial sizes of these two populations need to be set. As shown
in the input description, this algorithm takes an input parameter PCN to configure the
number of initial individuals in the partitioning population. Then, if there are n devices
to participate in the collaborated inferencing, there will be PCN × n! possible deploy-
ment individuals. To control the size of the deployment population, the algorithm adopts
an additional parameter, pdc(0 < pdc <= 1), which is a proportion for generating de-
ployment individuals. As a result, the size of the deployment population can reduce to
PCN × n!× pdc.

Then, the algorithm can be divided into two parts. The first section consists of lines
2 through 9 and is responsible for initializing the algorithm. The second section lines 10
through 20, is the core process of the algorithm. In each iteration of the genetic algorithm,
an optimal group of individuals OP is selected from the current deployment population
PD (line 12), and the corresponding partitioning chromosome is extracted (line 13). The
algorithm performs crossover and mutation operations on these partitioning chromosomes
and generates a new generation of partitioning chromosomes (line 14). Then, based on the
newly generated partitioning population, the existing excellent deployment chromosomes
are filtered, and some new deployment chromosomes will be generated at the same time to



Sensors 2023, 23, 1500 10 of 18

complete the iteration of the deployment population (line 15). Finally, the current maximum
fitness value is calculated on the newly generated deployment population, and the loop is
terminated when the termination condition is met (lines 16 to 19).

The time complexity of GA is O(TNM), where T is the maximum iteration times, N
is the population size, and M is the number of genes in each individual. As we set the
maximum iteration time to 200 in our experiments, the time complexity is O(200NM).
The corresponding codebase is open-source and can be found at https://github.com/
handuoZhang/PGA (accessed on 31 December 2022).

According to the problem formulation described above, the fitness function is defined
as follows:

fitness(dc) =


105

m
∑

k=0
(pbi×

nbk
∑

i=1

nbk
∑

j=1
dci,j×ti,j)

dc satisfies all constraints

10−6 dc does not satisfy all constraints

(6)

Here, dc is the α matrix in Equation (5), representing a specific deployment plan.

5. Performance Evaluation

This section demonstrates the effects of the proposed algorithm. To provide a com-
prehensive comparison, this work evaluates the performance of the proposed BranchyNet
partitioning approach on the B-AlexNet and B-ResNet proposed in [1] compared with four
other typical DNN partitioning methods. Model training and inferencing are performed on
the Cifar-10 dataset [34], which consists of 32× 32 color images divided into ten classes.
Furthermore, all of the experimental results are collected by running the same algorithm
ten times as a group on a laptop with an AMD Ryzen7 5700U CPU and 16 GB memory in a
Pycharm environment.

5.1. Experiments on Partitioning B-AlexNet

Firstly, a simulated distributed system with six devices with different configurations
is set up, as shown in Table 1.

Table 1. Performance parameters of edge devices in experiments on B-AlexNet.

Device No. GFLOPS I/O Bandwidth (MBPS)

1 0.218 140.85
2 9.920 1525.63
3 0.213 135.89
4 13.500 1698.25
5 0.247 140.91
6 3.620 159.45

As mentioned above, PALEO [33] is a performance model that can estimate DNN
performance under a given deployment assumption. Therefore, this experiment employs
PALEO to evaluate the memory requirements and execution time of different DNN layers
running on each candidate device in Table 1 and construct corresponding performance
description D in Algorithm 1.

Based on the number of devices to join into an inference, the initial partitioning and
deployment chromosome population size are set as follows in Table 2:

https://github.com/handuoZhang/PGA
https://github.com/handuoZhang/PGA


Sensors 2023, 23, 1500 11 of 18

Table 2. The initial partitioning and deployment chromosome population size in experiments on
B-AlexNet.

Number of Devices
Initial Size of
Partitioning
Population

Initial Size of
Partitioning
Population

Proportion of the
Initial Deployment

Chromosomes

2 2 4 1
3 2 12 1
4 2 48 1
5 2 120 0.5
6 2 144 0.1

The other parameter values in Algorithm 1 are set as follows. In both the basic GA
and the improved GA, the crossover probability is 0.5, the mutation probability is 0.01,
the maximum iteration number is 200, and the algorithm will be terminated when the
optimal fitness value remains unchanged for 50 consecutive generations. In the basic GA,
the chromosomes are modeled as deployment chromosomes.

To compare the resulting total execution time generated by different algorithms, this
work considers two scenarios according to whether the partitioning and deploying are
considered simultaneously.

5.1.1. Total Execution Time Comparison under Considering Partitioning and Deploying
Separately

Considering partitioning and deploying separately means that the partitioning plan
and deployment plan are generated one after another. In other words, the optimization
is divided into two steps, i.e., first, to generate an optimal partitioning plan and then
generate an accordingly optimal deployment plan. Specifically, the following experiment
compares the proposed algorithm with generating the optimal deployment plan based on
exhaustive searching after partitioning the B-AlexNet by the algorithms proposed in [18,19]
and partitioning the B-AlexNet on one of the two fork points.

Here, the network structure and performance settings in implementing the Neurosur-
geon DNN segmentation algorithm [18] are the same as in the proposed GA introduced
above. Moreover, the current data center load level is set to 0. Moreover, the local process-
ing time, edge processing time, and output transmission time of each DNN layer in the
shortest-path-based approach [19] are also calculated by PALEO, and the corresponding
SDAG in this approach is constructed according to the method in [19]. The settings in other
experiments are the same as those in this experiment, which will not be described below.
Figure 5 shows the average total execution time and device-average energy cost.

(a) (b)

Figure 5. Performance comparison on partitioning B-AlexNet by considering partitioning and
deploying separately. (a) Comparison on average total execution time. (b) Comparison on device-
average energy cost.



Sensors 2023, 23, 1500 12 of 18

The above results show that the proposed GA results in a shorter average total exe-
cution time and lower device-average energy cost than other approaches. The reason is
that the improved GA tries to find the best partitioning plan based on the corresponding
performance when actually deploying to a given environment. A more detailed comparison
of total execution time is shown in Table 3.

Table 3. Comparison of B-AlexNet total execution time (ms) found by different approaches.

Approach Average Maximum Minimum Mode Standard Deviation

First-Fork 271.90 315.48 206.53 315.48 56.26
Second-Fork 227.18 237.87 202.23 237.87 17.22

Neurosurgeon [18] 67.91 96.67 24.76 96.67 37.13
Shortest-Path [19] 60.72 96.67 24.76 24.76 37.90

Proposed GA 24.80 24.86 24.76 24.81 0.03

As shown in Table 3, the average total execution time resulting from the proposed
algorithm is shorter than other approaches. Moreover, the standard deviation is almost 0,
which indicates that the proposed algorithm is also more stable.

5.1.2. Total Execution Time Comparison When Considering Partitioning and Deploying
Simultaneously

As a GA is an approximate algorithm, it cannot ensure obtaining the absolute optimal
solution. This experiment adopts an exhaustive method that can provide the optimal total
execution time and energy cost in any given setting as the baseline and then compares the
corresponding results by running the basic and improved GA. The following figure shows
the average total execution time and device-average energy cost by dividing the B-AlexNet
into different pieces from three to six.

As shown in Figure 6, both the average total execution time and the device-average
energy cost of the proposed GA are close to the absolute optimal value, which is visibly
superior to a basic GA. Compared with the absolute optimal value, the proposed algorithm
has a difference of about 3%, 8%, 21%, and 34% in average total execution, and a difference
of about 2%, 3%, 12%, and 23% in the device-average energy cost, respectively. A more
detailed comparison of the total execution time is shown in Table 4.

Table 4. Comparison of B-AlexNet total execution time in deploying to from three to six devices.

Number of
Partitions Approach Average Maximum Minimum Mode Standard

Deviation

3
Opt. Value 25.32 25.32 25.32 25.32 0
Basic GA 70.93 100.78 25.32 97.48 36.11
Prop. GA 26.10 32.79 25.32 25.38 2.35

4
Opt. Value 22.66 22.66 22.66 22.66 0
Basic GA 65.93 98.75 23.48 61.65 28.41
Prop. GA 24.51 30.36 22.90 22.90 2.42

5
Opt. Value 24.04 24.04 24.04 24.04 0
Basic GA 70.16 97.16 26.85 50.19 25.27
Prop. GA 29.22 34.86 24.05 30.82 3.76

6
Opt. Value 25.12 25.12 25.12 25.12 0
Basic GA 89.80 153.49 36.79 66.08 33.82
Prop. GA 43.62 86.87 30.86 38.57 16.32



Sensors 2023, 23, 1500 13 of 18

(a) (b)

Figure 6. Performance comparison on partitioning B-AlexNet by considering partitioning and
deploying simultaneously. (a) Comparison on average total execution time. (b) Comparison on
device-average energy cost.

Here, the maximum and minimum values of total execution time obtained from the
actual experiment show the variation range of all resulting total execution times. The
average and median values reflect the most common values of all resulting total execution
time, and the standard deviation indicates their volatility. From the above statistical
results, it can be seen that the gap between the improved GA and the optimal value
increases with the complexity of the problem. When deploying an L-layers BranchyNet
to N devices, the total number of possible deployment plans is N!× CN

L , i.e., L!/(L− N)!.
For example, in this experiment, when the number of partitions reaches 6, there are 6!, i.e.,
720, possible deployment plans for each partitioning plan. If each partition contains at
least one convolutional layer, there are C6

8 , i.e., 28, possible partitioning plans. As a result,
the number of possible deployment plans reaches 6!× C6

8 , i.e., 20,160. This is why there
is a sudden decrease in algorithm stability. However, compared with the basic GA, the
proposed GA achieves a shorter total execution time which is less than half of that of the
basic GA.

Moreover, this work compares the average computation time for generating a deploy-
ment plan by exhaustive searching, basic GA, and the proposed GA. Table 5 shows the
results. As mentioned above, the primary and improved GA will stop when an optimal
fitness value remains unchanged for 50 consecutive generations or they reach the maximum
iteration number of 200 in the experiment setting. Moreover, all the algorithms are executed
ten times, and the average value is calculated and compared in the following table.

Table 5. Comparison of the average computation time for generating a deployment plan of a given
B-AlexNet.

Number of
Partitions

Exhaustive
Searching (ms) Basic GA (ms) Proposed GA

(ms) ES/PGA

3 577.37 630.46 575.29 1
4 3111.94 3387.30 2395.67 1.3
5 127,744.53 9193.03 8207.73 15.6
6 5,612,393.62 28,999.22 19,932.17 131

In Table 5, the rightmost column shows the execution time of the exhaustive searching
compared to the proposed GA, which increases with the number of partitions rapidly.
When the number of partitions is relatively small, the basic GA and proposed GA take more
time to satisfy the terminal condition, which is longer than the time needed by exhaustive
searching. However, as the number of partitions increases, the execution time required
by the exhaustive method increases explosively, which is significantly higher than that of
both GAs.



Sensors 2023, 23, 1500 14 of 18

5.2. Experiments on Partitioning B-ResNet

Similar to the experiments above, the experiments setting and results on partitioning
B-ResNet are as follows.

As the number of layers in a B-ResNet is much larger than in a B-AlexNet, this
experiment constructs a simulated distributed system with only four different devices.
Table 6 shows the device configurations, and Table 7 shows the initial population size.
Other parameter settings are the same as those in the experiments on B-AlexNet.

Table 6. Performance parameters of edge devices in experiments on B-ResNet.

Device No. GFLOPS I/O Bandwidth (MBPS)

1 0.218 140.85
2 9.920 1525.63
3 0.213 135.89
4 13.500 1698.25

Table 7. The initial partitioning and deployment chromosome population size in experiments on
B-ResNet.

Number of Devices
Initial Size of
Partitioning
Population

Initial Size of
Partitioning
Population

Proportion of the
Initial Deployment

Chromosomes

2 2 4 1
3 2 12 1
4 2 48 1

In the scenario that considers partitioning and deploying separately, this experiment
also compares the proposed GA with the approaches partitioning the given B-ResNet in
two parts and then selecting an optimal deployment plan. Figure 7 shows the comparisons
of optimal average total execution time and device-average energy cost calculated by each
method. Moreover, Table 8 shows the comparison of statistical results of the resulting total
execution time.

(a) (b)

Figure 7. Performance comparison on partitioning B-ResNet by considering partitioning and deploy-
ing separately. (a) Comparison on average total execution time. (b) Comparison on device-average
energy cost.

Table 8. Comparison of B-ResNet total execution (ms) resulted by different approaches.

Approach Average Maximum Minimum Mode Standard Deviation

First-Fork 1948.94 3588.72 309.15 309.15 1728.496
Second-Fork 1935.40 2016.63 1881.24 1881.24 69.92

Neurosurgeon [18] 267.60 296.04 224.93 296.04 36.72
Shortest-Path [19] 260.49 296.04 224.93 224.93 37.48

Proposed GA 230.53 243.55 224.93 224.96 8.98



Sensors 2023, 23, 1500 15 of 18

From the above results, it can be found that the proposed GA also has the best stability
from the other methods and can result in a shorter total execution time. However, the
base model of B-ResNet is ResNet-110 [1], which has 109 convolutional layers and 1 fully-
connected layer. Only adding two branches that totally have 5 convolutional layers and 2
fully-connected layers increases less than 5% computation, which has little impact on the
overall execution time and energy cost. This is the reason why the proposed GA in this
experiment is not as effective as the previous experiment.

In the scenario that considers partitioning and deploying simultaneously, this experi-
ment also compares the average total execution time and device-average energy cost of the
proposed GA with the optimal value and that of the basic GA, which is shown in Figure 8.
Moreover, the statistical results of the resulting average total execution time are compared
in Table 9.

(a) (b)

Figure 8. Performance comparison on partitioning B-ResNet by considering partitioning and de-
ploying simultaneously. (a) Comparison on average total execution time. (b) Comparison on device-
average energy cost.

Table 9. Comparison of B-AlexNet total execution time in deploying to three to six devices.

Number of
Partitions Approach Average Maximum Minimum Mode Standard

Deviation

2
Opt. Value 224.93 224.93 224.93 224.93 0
Basic GA 260.65 313.56 224.93 241.92 30.35
Prop. GA 230.53 243.55 224.93 224.96 8.98

3
Opt. Value 225.21 225.21 225.21 225.21 0
Basic GA 278.40 312.78 242.21 296.47 26.67
Prop. GA 234.21 243.91 225.21 225.22 9.50

4
Opt. Value 213.55 213.55 213.55 213.55 0
Basic GA 329.96 373.71 235.17 339.48 40.32
Prop. GA 267.04 305.18 230.53 277.57 26.58

Similar to the corresponding results in experiments on B-AlexNet, the proposed GA
also presents higher stability than the basic GA. However, as the number of possible de-
ployment plans increases dramatically in partitioning a B-ResNet, the differences between
the results of the proposed GA and the optimal value achieved by exhaustive searching
turn out to be larger than that of partitioning B-AlexNet. However, the algorithm can be
fine-tuned to achieve a better result by adjusting its maximum number of iterations and
terminal condition.

At last, Table 10 shows the comparison on execution time by running different algorithms.



Sensors 2023, 23, 1500 16 of 18

Table 10. Comparison of the average computation time for generating a deployment plan of a given
B-ResNet.

Number of
Partitions

Exhaustive
Searching (ms) Basic GA (ms) Proposed GA

(ms) ES/PGA

2 534.76 572.74 558.87 1
3 22,076.23 3904.00 3656.95 6
4 9,549,783.88 10,590.18 8878.47 1075.6

The rightmost column in Table 10 shows how many times the execution time of the
exhaustive searching compared to the proposed GA, which increases with the number
of partitions rapidly. Similar to the conclusion in partitioning B-AlexNet, as the number
of partitions increases, the execution time required by the exhaustive method increases
explosively, which is significantly higher than that of the two GAs, and the proposed GA
shows its advantage in applying it for performing online partitioning.

6. Conclusions

This paper proposes a GA-based BranchyNet partitioning approach for accelerating
edge inference. Considering the structural particularity of BranchyNet, this paper puts
forward a weighted-average calculation approach for estimating the BranchyNet total
execution time. Moreover, it proposes a two-layer chromosome GA by distinguishing
partition and deployment during the evolution of a GA. In detail, there are two evolution
levels in the proposed GA. On one side, crossover and mutation perform on partitioning
chromosomes, ensuring the top-down consistency between the partitioning population
and deployment population. On the other side, selection performs on the deployment
chromosomes, which further drives the evolution of the partitioning population by ensuring
down–top consistency.

In order to show the effects of the proposed approach, this work conducts a group
of comprehensive experiments on both B-AlexNet and B-ResNet. The experiment results
show that the proposed algorithm can not only result in shorter inferencing time and lower
device average energy cost but also requires less time to obtain an optimal deployment
plan. Such short running time of the proposed algorithm enables it to generate an optimal
deployment plan online to satisfy the actual requirements in deploying an intelligent
application dynamically. To further improve this work, the approach for finding the
best settings of the algorithm parameters needs to be further studied to obtain better
operation effects.

Author Contributions: Conceptualization, J.N. and B.Z.; methodology, J.N., H.Z. and J.L.; validation,
J.L.; investigation, J.N. and H.Z.; data curation, H.Z. and J.L.; writing—original draft preparation,
J.N.; writing—review and editing, J.N.; supervision, B.Z.; funding acquisition, B.Z. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the Key Project of the National Natural Science Foundation of
China: U1908212.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets can be obtained from http://www.cs.toronto.edu/~kriz/
cifar.html (accessed on 17 November 2021).

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses,
or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html


Sensors 2023, 23, 1500 17 of 18

References
1. Teerapittayanon, S.; McDanel, B.; Kung, H.T. Branchynet: Fast inference via early exiting from deep neural networks. In

Proceedings of the 2016 23rd International Conference on Pattern Recognition (ICPR), Cancún, Mexico, 4–8 December 2016;
pp. 2464–2469.

2. Panda, P.; Sengupta, A.; Roy, K. Energy-efficient and improved image recognition with conditional deep learning. ACM J. Emerg.
Technol. Comput. Syst. (JETC) 2017, 13, 1–21. [CrossRef]

3. Leroux, S.; Bohez, S.; De Coninck, E.; Verbelen, T.; Vankeirsbilck, B.; Simoens, P.; Dhoedt, B. The cascading neural network:
building the internet of smart things. Knowl. Inf. Syst. 2017, 52, 791–814. [CrossRef]

4. Lo, C.; Su, Y.Y.; Lee, C.Y.; Chang, S.C. A dynamic deep neural network design for efficient workload allocation in edge computing.
In Proceedings of the 2017 IEEE International Conference on Computer Design (ICCD), Boston, MA, USA, 5–8 November 2017;
pp. 273–280.

5. Teerapittayanon, S.; McDanel, B.; Kung, H.T. Distributed deep neural networks over the cloud, the edge and end devices. In
Proceedings of the 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), Atlanta, GA, USA,
5–8 June 2017; pp. 328–339.

6. Li, E.; Zeng, L.; Zhou, Z.; Chen, X. Edge AI: On-demand accelerating deep neural network inference via edge computing. IEEE
Trans. Wirel. Commun. 2019, 19, 447–457. [CrossRef]

7. Zeng, L.; Li, E.; Zhou, Z.; Chen, X. Boomerang: On-demand cooperative deep neural network inference for edge intelligence on
the industrial Internet of Things. IEEE Netw. 2019, 33, 96–103. [CrossRef]

8. Na, J.; Zhang, H.; Lian, J.; Zhang, B. Partitioning DNNs for Optimizing Distributed Inference Performance on Cooperative Edge
Devices: A Genetic Algorithm Approach. Appl. Sci. 2022, 12, 10619. [CrossRef]

9. He, Q.; Dong, Z.; Chen, F.; Deng, S.; Liang, W.; Yang, Y. Pyramid: Enabling hierarchical neural networks with edge computing. In
Proceedings of the ACM Web Conference 2022, Lyon, France, 25–29 April 2022; pp. 1860–1870.

10. Chen, J.; Deng, Q.; Yang, X. Non-cooperative game algorithms for computation offloading in mobile edge computing environ-
ments. J. Parallel Distrib. Comput. 2023, 172, 18–31. [CrossRef]

11. Lv, X.; Du, H.; Ye, Q. TBTOA: A DAG-Based Task Offloading Scheme for Mobile Edge Computing. In Proceedings of the ICC
2022-IEEE International Conference on Communications, Seoul, Republic of Korea, 16–20 May 2022; pp. 4607–4612.

12. Li, M.; Mao, N.; Zheng, X.; Gadekallu, T.R. Computation offloading in edge computing based on deep reinforcement learning. In
Proceedings of International Conference on Computing and Communication Networks; Springer: Singapore, 2022; pp. 339–353.

13. Jouhari, M.; Al-Ali, A.; Baccour, E.; Mohamed, A.; Erbad, A.; Guizani, M.; Hamdi, M. Distributed CNN Inference on Resource-
Constrained UAVs for Surveillance Systems: Design and Optimization. IEEE Internet Things J. 2021, 9, 1227–1242. [CrossRef]

14. Tang, E.; Stefanov, T. Low-memory and high-performance CNN inference on distributed systems at the edge. In Proceedings of
the 14th IEEE/ACM International Conference on Utility and Cloud Computing Companion, Leicester, UK, 6–9 December 2021;
pp. 1–8.

15. Zhou, J.; Wang, Y.; Ota, K.; Dong, M. AAIoT: Accelerating artificial intelligence in IoT systems. IEEE Wirel. Commun. Lett. 2019,
8, 825–828. [CrossRef]

16. Zhou, L.; Wen, H.; Teodorescu, R.; Du, D.H. Distributing deep neural networks with containerized partitions at the edge. In
Proceedings of the 2nd USENIX Workshop on Hot Topics in Edge Computing (HotEdge 19), Renton, WA, USA, 9 July 2019.

17. Zhao, Z.; Barijough, K.M.; Gerstlauer, A. Deepthings: Distributed adaptive deep learning inference on resource-constrained iot
edge clusters. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2018, 37, 2348–2359. [CrossRef]

18. Kang, Y.; Hauswald, J.; Gao, C.; Rovinski, A.; Mudge, T.; Mars, J.; Tang, L. Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge. ACM SIGARCH Comput. Archit. News 2017, 45, 615–629. [CrossRef]

19. Tian, X.; Zhu, J.; Xu, T.; Li, Y. Mobility-included DNN partition offloading from mobile devices to edge clouds. Sensors 2021,
21, 229. [CrossRef] [PubMed]

20. Ko, J.H.; Na, T.; Amir, M.F.; Mukhopadhyay, S. Edge-host partitioning of deep neural networks with feature space encoding for
resource-constrained internet-of-things platforms. In Proceedings of the 2018 15th IEEE International Conference on Advanced
Video and Signal Based Surveillance (AVSS), Auckland, New Zealand, 27–30 November 2018; pp. 1–6.

21. Wang, H.; Cai, G.; Huang, Z.; Dong, F. ADDA: Adaptive distributed DNN inference acceleration in edge computing environment.
In Proceedings of the 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS), Tianjin, China,
4–6 December 2019; pp. 438–445.

22. Gao, M.; Cui, W.; Gao, D.; Shen, R.; Li, J.; Zhou, Y. Deep neural network task partitioning and offloading for mobile edge comput-
ing. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019;
pp. 1–6.

23. Mao, J.; Chen, X.; Nixon, K.W.; Krieger, C.; Chen, Y. Modnn: Local distributed mobile computing system for deep neural
network. In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE), Lausanne, Switzerland,
27–31 March 2017; pp. 1396–1401.

24. Mao, J.; Yang, Z.; Wen, W.; Wu, C.; Song, L.; Nixon, K.W.; Chen, X.; Li, H.; Chen, Y. Mednn: A distributed mobile system with
enhanced partition and deployment for large-scale dnns. In Proceedings of the 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), Irvine, CA, USA, 13–16 November 2017; pp. 751–756.

http://doi.org/10.1145/3007192
http://dx.doi.org/10.1007/s10115-017-1029-1
http://dx.doi.org/10.1109/TWC.2019.2946140
http://dx.doi.org/10.1109/MNET.001.1800506
http://dx.doi.org/10.3390/app122010619
http://dx.doi.org/10.1016/j.jpdc.2022.10.004
http://dx.doi.org/10.1109/JIOT.2021.3079164
http://dx.doi.org/10.1109/LWC.2019.2894703
http://dx.doi.org/10.1109/TCAD.2018.2858384
http://dx.doi.org/10.1145/3093337.3037698
http://dx.doi.org/10.3390/s21010229
http://www.ncbi.nlm.nih.gov/pubmed/33401409


Sensors 2023, 23, 1500 18 of 18

25. Shahhosseini, S.; Albaqsami, A.; Jasemi, M.; Bagherzadeh, N. Partition pruning: Parallelization-aware pruning for deep neural
networks. arXiv 2019, arXiv:1901.11391.

26. Kilcioglu, E.; Mirghasemi, H.; Stupia, I.; Vandendorpe, L. An energy-efficient fine-grained deep neural network partitioning
scheme for wireless collaborative fog computing. IEEE Access 2021, 9, 79611–79627. [CrossRef]

27. Hadidi, R.; Cao, J.; Woodward, M.; Ryoo, M.S.; Kim, H. Musical chair: Efficient real-time recognition using collaborative iot
devices. arXiv 2018, arXiv:1802.02138.

28. De Oliveira, F.M.C.; Borin, E. Partitioning convolutional neural networks for inference on constrained Internet-of-Things
devices. In Proceedings of the 2018 30th International Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD), Lyon, France, 24–27 September 2018; pp. 266–273.

29. Mohammed, T.; Joe-Wong, C.; Babbar, R.; Di Francesco, M. Distributed inference acceleration with adaptive DNN partitioning
and offloading. In Proceedings of the IEEE INFOCOM 2020-IEEE Conference on Computer Communications, Toronto, ON,
Canada, 6–9 July 2020; pp. 854–863.

30. He, W.; Guo, S.; Guo, S.; Qiu, X.; Qi, F. Joint DNN partition deployment and resource allocation for delay-sensitive deep learning
inference in IoT. IEEE Internet Things J. 2020, 7, 9241–9254. [CrossRef]

31. Tang, X.; Chen, X.; Zeng, L.; Yu, S.; Chen, L. Joint multiuser dnn partitioning and computational resource allocation for
collaborative edge intelligence. IEEE Internet Things J. 2020, 8, 9511–9522. [CrossRef]

32. Dong, C.; Hu, S.; Chen, X.; Wen, W. Joint Optimization With DNN Partitioning and Resource Allocation in Mobile Edge
Computing. IEEE Trans. Netw. Serv. Manag. 2021, 18, 3973–3986. [CrossRef]

33. Qi, H.; Sparks, E.R.; Talwalkar, A. Paleo: A Performance Model for Deep Neural Networks. 2016. Available online: https:
//openreview.net/pdf?id=SyVVJ85lg (accessed on 12 June 2021).

34. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images; Technical Report; University of Toronto: Toronto,
ON, Canada, 2019.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2021.3084689
http://dx.doi.org/10.1109/JIOT.2020.2981338
http://dx.doi.org/10.1109/JIOT.2020.3010258
http://dx.doi.org/10.1109/TNSM.2021.3116665
https://openreview.net/pdf?id=SyVVJ85lg
https://openreview.net/pdf?id=SyVVJ85lg

	Introduction
	Literature Review
	Problem Formulation
	System Model
	Duration for Performing a Sub-Task in the Cooperative Inferencing
	Duration for Executing a Complete BranchyNet
	Problem Formulation

	The Proposed Two-Layer Chromosome GA
	Linearization of a BranchyNet
	Problems with Basic Crossover Operator
	The Proposed Improvement

	Performance Evaluation
	Experiments on Partitioning B-AlexNet
	Total Execution Time Comparison under Considering Partitioning and Deploying Separately
	Total Execution Time Comparison When Considering Partitioning and Deploying Simultaneously

	Experiments on Partitioning B-ResNet

	Conclusions
	References

