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Abstract: Recent advances with large-scale pre-trained language models (e.g., BERT) have brought
significant potential to natural language processing. However, the large model size hinders their use
in IoT and edge devices. Several studies have utilized task-specific knowledge distillation to compress
the pre-trained language models. However, to reduce the number of layers in a large model, a sound
strategy for distilling knowledge to a student model with fewer layers than the teacher model is
lacking. In this work, we present Layer-wise Adaptive Distillation (LAD), a task-specific distillation
framework that can be used to reduce the model size of BERT. We design an iterative aggregation
mechanism with multiple gate blocks in LAD to adaptively distill layer-wise internal knowledge
from the teacher model to the student model. The proposed method enables an effective knowledge
transfer process for a student model, without skipping any teacher layers. The experimental results
show that both the six-layer and four-layer LAD student models outperform previous task-specific
distillation approaches during GLUE tasks.

Keywords: model compression; knowledge distillation; BERT; text classification; natural language
processing; deep learning

1. Introduction

In recent years, large-scale pre-trained language models such as BERT [1], RoBERTa [2],
XLNet [3], ELECTRA [4], and GPT [5] led to breakthroughs in natural language processing
(NLP). Fine-tuning these pre-training frameworks with downstream tasks as a form of
transfer learning has become the de facto standard in NLP. Recent research [6,7] also indicates
that even larger models can lead to a better performance on downstream tasks, which has
caused scientists to put more effort into building a much larger language model. Even
though these growing trends of building large pre-trained language models have improved
the performance of numerous NLP downstream tasks, these state-of-the-art models are too
big to be deployed on computationally limited devices such as IoT or smartphones, which
hampers the wide application of pre-trained language models. As a result, compressing
large-sized pre-trained language models into moderate scales is an important issue.

Knowledge distillation [8,9] is a model compression technique that aims to transfer
knowledge from a larger teacher model to a smaller student model, thus reducing the
number of model parameters. Recently, there have been several breakthroughs [10–13]
related to the compression of BERT models in the pre-training stage, which is also called
task-agnostic distillation [13]. To prevent re-building a pre-trained language model, re-
searchers [14,15] are seeking an alternative that can directly distill knowledge from a teacher
model for a downstream task, such as task-specific distillation [13]. In this way, given a
downstream task, the teacher is the BERT model that was fine-tuned on the task, and the
goal of the student model is to mimic the outputs of the teacher during the given task.
Different from the traditional knowledge distillation approach [8], Sun et al. [14] proposed
Patient Knowledge Distillation (PKD). PKD allows for a student to effectively obtain the
teacher model’s knowledge by minimizing the differences in the hidden states of each layer
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between the teacher model and the student model. Although PKD achieves comparable
performances on various downstream tasks, the approach skips every two layers of the
teacher model during distillation, which makes it a sub-optimal strategy for distilling
layer-wise knowledge from the teacher model.

To fix this problem in PKD [14], instead of skipping some teacher layers, Passban
et al. [15] proposed Attention-Based Layer Projection for Knowledge Distillation (ALP-KD)
to optimize the student model with all layers in the teacher model. However, each layer
in BERT [1] plays a role in the NLP pipeline [16]. The lower layers of BERT handle more
local syntax, while the higher layers are in charge of complex semantics [16]. As a result,
BERT’s sentence processing depends on these layer-by-layer sequential patterns [16]. In
other words, the strategy of distilling higher layers of a teacher model to lower layers of a
student model in ALP-KD [15] violates the nature of BERT.

To solve the problems related to both PKD [14] and ALP-KD [15] when improving
model compression, in this work, we propose Layer-wise Adaptive Distillation (LAD).
Inspired by the Highway Networks [17], we designed a Gate Network with multiple gate
blocks in LAD. Our proposed LAD framework with a Gate Network is shown in Figure 1c.
Each gate block is equipped with an adjustable weight matrix to adaptively determine
the distillation ratio from multiple teacher layers to a single layer in the student model,
which resolves the layer selection problem [14] that occurs when distilling knowledge from
a teacher to a student. In addition, the LAD framework utilizes an iterative aggregation
mechanism to retain the sequential patterns of processing text in BERT layers [16], which
relieves the problem of exposing all of the teacher layers when training a student model [15].
We list our contributions as follows:

• We designed a novel task-specific distillation framework called Layer-wise Adaptive
Distillation (LAD), which can train the student model without skipping any teacher
layers for better model compression.

• The proposed method achieved competitive performances on several GLUE tasks and
reduced the performance gap between the teacher and the student model.

• The proposed method can benefit task-specific distillation by retaining the sentence-
processing nature of BERT [16].

• Our method can further be applied to IoT or edge devices to leverage the pre-trained
language models for natural language applications.

Figure 1. Differences in model structures of three distillation frameworks. Trm means a Transformer
layer. In each subplot, the left shows the teacher model, and the right indicates the student model.
(a) Patient knowledge distillation (PKD) [14]; (b) Attention-Based Layer Projection for Knowledge
Distillation (ALP-KD) [15]; (c) Our proposed method.

2. Related Work

Recently, the compression of BERT in terms of knowledge distillation has attracted the
attention of NLP researchers. DistillBERT [10] is a small pre-trained BERT model, which was
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trained by mimicking the output of masked language modeling from the teacher model. Its
model size is 40% smaller (66M) than a BERTBASE teacher (110M), and achieves a comparable
performance on various downstream tasks. TinyBERT [11] and its variant BERT-EMD [18]
further minimize the differences in self-attention distribution when distilled from a pre-
trained teacher. MobileBERT [12] also re-designed the Transformer layer architecture to
reduce the number of parameters in each Transformer layer. Although these approaches can
successfully make large-sized models into smaller ones and gain comparable performances
to the corresponding teacher model, the model and the training procedures both need to
be re-formulated for the purpose of distilling knowledge from the teacher model to the
student model. Therefore, in this work, we focus on exploring task-specific knowledge
distillation methods.

The PKD [14] and ALP-KD [15] models are directly related to our study. PKD has
two variants: PKD-Last and PKD-Skip. The former distills the knowledge of the last p
layers in the teacher model to the student model; the latter only distills the knowledge from
every p layer to the student model. Although PKD-Skip has a better model performance
on the GLUE tasks, this method ignores the information in the skipped layers. To better
distill the knowledge from the teacher model, ALP-KD [15] proposed an attention-based
strategy to dynamically determine the distillation ratio from all layers in the teacher
model. Nevertheless, according to their experiments, ALP-KD does not exhibit significant
improvements in model performances. This circumstance may result from the distillation
of higher teacher layers to lower student layers in ALP-KD, which violates the sentence-
processing nature of BERT [16].

Differing from PKD [14] and ALP-KD [15], to more effectively distill knowledge from
every layer in the teacher model, we leverage additional weight matrices in our Gate
Network to help the student model adaptively learn the information in multiple teacher
layers during training.

3. Materials and Methods
3.1. Internal Knowledge in Teacher Layers

Assume we have a labeled dataset X = {xi, yi}K
i=1, where K is the number of samples

in the dataset X. We denote the i-th input instance as xi and i-th output instance as yi. Given
input xi to our teacher model f t, a sequence of hidden states Ht

i is generated, as follows:

ht
i,n = f t

n(xi; θt
n), n = 1, . . . , N; (1)

Ht
i = {ht

i,1, ht
i,2, . . . , ht

i,N} (2)

where ht
i,n ∈ Rl×d is the output hidden states from n-th teacher layer given input xi, l is

the input sequence length and d is the hidden dimension of teacher model f t. f t
n(xi; θt

n) is
the n-th layer of the teacher model with learnable parameters θt

n, and N is the number of
teacher layers. Ht

i represents the internal knowledge of all teacher layers.

3.2. Gate Block

Consider the n-th layer of our teacher model f t. For the purpose of explaination,
we intentionally left the notation of n and denote teacher hidden state as h. Let ĥ be the
previous output of gate block G, where

G(h, ĥ) = LN(ĥ · T(h) + h · (1− T(h))). (3)

Here, LN is layer normalization [19], and T(h) is the Transform gate:

T(h) = σ(Wh + b), (4)

where σ is sigmoid function and W, b are learnable parameters. The output of the Transform
gate T(h) is a tensor; each value in the tensor T(h) ranges from 0 to 1. Equation (3) can be
viewed as a linear combination of its input, and Transform gate T(h) can be viewed as the
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weighted coefficients of Equation (3). Later on, we will replace h with ht
i,n to specifically

denote the layer information of a given instance xi.

3.3. Iterative Aggregation Mechanism

To retain the sentence processing properties of BERT [16], we applied the gate block
defined as above. We designed an iterative algorithm to aggregate information in our
framework. The hidden state ĥi,n of n-th gate block Gn with respect to input xi is defined as:

ĥi,n =

{
Gn(ht

i,n, 0) if n = 1
Gn(ht

i,n, ĥi,n−1) if n = 2, . . . , N
(5)

Here, ht
i,n is the hidden state of n-th teacher layer given input xi. ĥi,n−1 is the hidden

state with aggregated information from previous teacher layers. With the operation in
Equation (5), the aggregated hidden states ĥi,n−1 can be iteratively passed layer by layer.
We collectively denoted all the aggregated hidden states as Ĥi:

Ĥi = {ĥi,1, ĥi,2, . . . , ĥi,N} (6)

Taking a six-layer student model as an example, we can obtain a sequence of hidden
states Hs

i given input xi:

hs
i,m = f s

m(xi; θs
m), m = 1, . . . , 6; (7)

Hs
i = {hs

i,1, hs
i,2, . . . , hs

i,6}, (8)

where f s
m represents the m-th layer of the student model f s with learnable parameters θs

m,
and hs

i,m ∈ Rl×d is the output hidden state from the m-th student layer. Then, we can take
every p’s hidden states from Ĥi, defined in Equation (6), and restrict p = N/M, where M
is the number of layers in f s. In the case of distilling knowledge from a 12-layer teacher to
a 6-layer student model, we have p = 12/6 = 2, which means we learn information from
every even teacher layer:

H̃i = {ĥi,2, ĥi,4, ĥi,6, ĥi,8, ĥi,10, ĥi,12}. (9)

We then optimize our student model f s by minimizing the mean square error between
Hs

i and H̃i:

Lhidden =
K

∑
i=1

M

∑
m=1

(hs
i,m − ĥi,mp)

2. (10)

Note again that K is the number of samples in our dataset.

3.4. Learn Predictions from the Teacher

In addition to leveraging the aggregated internal knowledge, we encourage the student
model to learn predictions from the teacher. We extract the soft labels ỹt

i for each input
instance xi from a teacher model:

zt
i = f t(xi; θt) (11)

ỹt
i = softmax(zt

i /τ) (12)

where zt
i is the output logits of the teacher model, and τ is the softmax temperature [8]. We

can also obtain the output probability ỹs
i of a student model for any given instance xi in a

similar way:

zs
i = f s(xi; θs) (13)

ỹs
i = softmax(zs

i /τ) (14)
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where zs
i is the output logits of the student model, and the softmax temperature is also

denoted as τ. Then, we calculate the KL-divergence of ỹt
i and ỹs

i to measure the distance of
probability distributions between the soft labels from the teacher model and the output
from the student model:

Lsoft = DKL(ỹt||ỹs) =
K

∑
i=1

ỹt
i log(

ỹt
i

ỹs
i
) (15)

By minimizing Lsoft, we can train a student model to learn the predictions of the
teacher model.

3.5. Learn Predictions from a Downstream Task

To better help our student model solve downstream tasks, we also define an objective
function for our student model with the ground truths in each task. For each input instance
xi in a task, we can obtain the output probability ỹs

i of a student model f s(xi; θs) from the
output logits zs

i :

zs
i = f s(xi; θs) (16)

ỹs
i = softmax(zs

i ) (17)

where zs
i represents the output logits of the student model. We define the objective with

cross-entropy:

Lhard = −
K

∑
i=1

yi log ỹs
i (18)

3.6. Distillation Objective

Finally, we combine all the objective functions for our overall LAD framework:

LLAD = αLsoft + βLhard + γLhidden (19)

where α, β, and γ are hyper-parameters controlling the importance of each loss function. In
all the experiments, we set β equal to 1− α.

4. Experiments
4.1. Datasets

The General Language Understanding Evaluation (GLUE) [20] is a benchmark used
to train and evaluate NLP models. This comprises nine datasets of natural language
understanding (NLU) with either single-sentence or paired-sentence tasks. In this work,
we use tasks from the GLUE benchmark to compare our proposed method with other
task-specific distillation models. The tasks are described as follows:

4.1.1. SST-2

The Stanford Sentiment Treebank [21] is a single-sentence sentiment classification task
consisting of sentences extracted from movie reviews. Given an input sentence, the model
has to determine whether the sentiment behind the statement is Positive or Negative.

4.1.2. MRPC

The Microsoft Research Paraphrase Corpus [22] is a corpus consisting of sentence pairs
collected from online news sources. Each sentence pair is labeled with human annotation,
indicating whether two sentences are semantically equivalent.

4.1.3. QQP

The Quora Question Pairs (https://quoradata.quora.com/First-Quora-Dataset-Rele
ase-Question-Pairs accessed on 22 January 2023) dataset contains about 300,000 question

https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
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pairs collected from the Quora community’s question-answering website. This is a binary
classification task where a model has to predict whether a pair of questions are semantically
equivalent.

4.1.4. MNLI

The Multi-Genre Natural Language Inference Corpus is a large-scale textual entail-
ment dataset containing 393K training sentence pairs. Given a premise sentence P and a
hypothesis sentence H, a model has to identify whether the premise entails the hypothesis,
contradicts the hypothesis, or neither. There are two validation datasets: MNLI (matched)
and MNLI (mismatched). The data sources for the premise sentences in the MNLI (matched)
are the same as those in the training dataset.

4.1.5. QNLI

The Question-answering NLI (QNLI) is a sentence pair classification task in which a
model has to determine whether the sentence context contains the answer to the question.
The question-context pairs are transformed from the Stanford Question Answering Dataset.

4.1.6. RTE

The Recognizing Textual Entailment datasets combine a series of annual textual entail-
ment challenges, including RTE1 [23], RTE2 [24], RTE3 [25], and RTE5 [26]. The sentences
are from news and Wikipedia texts, and all datasets are converted into a two-class setting.
Assume we are given a sentence pair. The RTE’s tasks is to let a model determine whether
the first sentence entails the second sentence.

4.2. Teacher Model

We obtained the pre-trained model weights of the BERTBASE encoder from Hug-
gingFace’s model hub (https://huggingface.co/models accessed on 1 November 2022).To
generate the task-specific teacher models, we followed the fine-tuning procedures provided
by the original paper [1] and fine-tuned the model on each downstream task with the
hyperparameters suggested by HuggingFace (https://github.com/huggingface/transfo
rmers/tree/main/examples/pytorch/text-classification accessed on 1 November 2022).
We then used each task-specific teacher model to generate the internal hidden states and
the soft labels [8].

4.3. Baselines and Implementation Details

We summarize the existing methods of knowledge distillation in Table 1. PKD [14],
BERT-of-Theseus [27], and ALP-KD [15] are used as the baseline models in our experi-
ments due to their direct relatedness to our work in task-specific distillation. Task-agnostic
methods such as DistilBERT [10] and MobileBERT [12] are not directly comparable to ours
since they use a pre-training compression setting instead of performing distillation during
training for downstream tasks.

Our proposed student models, LAD6 and LAD4, are lightweight versions of BERT, where
the subscript indicates the number of Transformer layers [28] in the model. Each Transformer
layer contains 12 attention heads, with a hidden dimension size of 768. Before training, each
m-th layer in the student models was initialized with the weights of the corresponding n-th
layer in a pre-trained BERTBASE, where n is equal to m multiplied by p, and p is the number
of teacher layers divided by the number of student layers. For example, the first layer of
LAD6 is initialized with the parameters from the second layer of the pre-trained teacher
model; the first layer of LAD4 is initialized with the parameters from the third layer of the
pre-trained teacher model. After the initialization of student models, we created the Gate
Network by stacking gate blocks. The number of gate blocks equals the number of teacher
layers. It should be noted that there is no parameter-sharing between each gate block, and
the weight matrix of each gate block is initialized with Xavier Initialization [29].

https://huggingface.co/models
https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification
https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification
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Table 1. Comparison with previous knowledge distillation approaches for transformer-based models.

Method Teacher Model Use of External Data? Knowledge Distillation Type

BERTBASE [1] - - -

BERT-PKD [14]
BERTBASE No Task-specificBERT-of-Theseus [27]

ALP-KD [15]

DistilBERT [10] BERTBASE Yes

Task-agnostic
MobileBERT [12] IB-BERTLARGE Yes
TinyBERT [11] BERTBASE Yes
MINILM [13] BERTBASE No
BERT-EMD [18] BERTBASE Yes

LAD (ours) BERTBASE No Task-specific

During the f LAD6 and LAD4 training, the batch size and sequence length were 32 and
128 across all tasks, respectively. In addition, we used different AdamW optimizers [30] to
update the Gate Network and the student model separately. For our LAD6 student, the
training epochs on SST-2, MRPC, QQP, MNLI, QNLI, and RTE are 20, 20, 5, 4, 4, and 10,
respectively. For LAD4, the training epochs on the same six tasks were 20, 30, 5, 4, 10, and
30. For the other hyperparameters, we set the softmax temperature τ from {5, 10, 20}, soft
target weight α from {0.2, 0.5, 0.7}, and the aggregated hidden loss weight γ from {100, 500,
1000}. The learning rate of student models was {1× 10−4, 3× 10−4, 5× 10−4, 7× 10−4} for
all the GLUE tasks.For the Gate Network, the learning rates for the QQP task and the RTE
task were {1× 10−7, 3× 10−7, 5× 10−7} and {1× 10−5, 3× 10−5, 5× 10−5} respectively,
and the learning rates for the remaining tasks were {1× 10−6, 3× 10−6, 5× 10−6} (Learning
rate warmup over the first 10% training steps for RTE and MRPC, 30% training steps for
the remaining tasks.). Then, we performed a grid search over τ, α, γ, and learning rates
mentioned above to choose the best model.

5. Results
5.1. Results on GLUE Test Sets

We evaluated our six-layer LAD student model using the GLUE test sets and summa-
rized the results in Table 2. The results show that our approach outperforms PKD [14] and
BERT-of-Theseus [27] in most of the GLUE tasks reported in Table 2, except RTE. However,
due to the small data size of RTE, the difference (0.4%) between LAD and BERT-of-Theseus
is marginal. Furthermore, the proposed LAD framework obtained a much higher MNLI
score than the other two baselines. When directly compared with PKD, LAD performs
better in all of the tasks. PKD even exhibited a massive decrease in MRPC when the model
was evaluated in terms of accuracy. These results show that the proposed LAD approach
can more effectively distill the knowledge of the teacher model than PKD.

Table 2. Results of the six-layer student models from the GLUE test server. Two evaluation metrics with
a slash (F1/accuracy scores) are reported for QQP, and accuracy scores are reported for the other tasks.

Model #Params SST-2 MRPC QQP MNLI m/mm QNLI RTE

BERTBASE * [1] 110M 93.2 89.1 71.7/89.2 84.2/84.3 91.0 67.4

BERT-PKD [14] 66.5M 92.0 85.0 70.7/88.9 81.5/81.0 89.0 65.6
BERT-of-Theseus [27] 66.5M 92.2 87.6 71.6/89.3 82.4/82.1 89.6 66.2
LAD 66.5M 92.5 87.6 72.2/89.4 84.0/83.0 90.1 65.8

* Teacher model for LAD.

5.2. Results on GLUE Development Sets

We evaluated our approach with the six-layer and four-layer student models and com-
pared the results with ALP-KD [15] and BERT-of-Theseus [27] on the GLUE development
sets. Both six-layer and four-layer LAD students outperform the baselines in nearly all of
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the GLUE tasks, as reported in Table 3. These results show that our method is more robust
than the other two methods, and we found that LAD significantly outperforms ALP-KD on
larger datasets, such as QQP and MNLI. In addition, although BERT-of-Theseus performs
well with six-layer student models, it shows dramatic decreases in performance when the
model size becomes smaller.

Table 3. Results of six-layer and four-layer student models from the GLUE development sets. Two
evaluation metrics with a slash (F1/accuracy scores) are reported for MRPC and QQP, and accuracy
scores are reported for the other tasks. Xu et al. [27] averaged the scores of MNLI-m and MNLI-mm.

Model #Params SST-2 MRPC QQP MNLI m/mm QNLI RTE

BERTBASE * [1] 110M 93.46 90.81/87.01 88.02/91.07 84.6/85.04 91.94 70.04

BERT-of-Theseus [27] 66.5M 91.5 89.0/– 89.6/– 82.3 89.5 68.2
ALP-KD6 [15] 66.5M 91.86 –/85.05 –/90.73 81.86/– 89.67 68.59
LAD6 66.5M 91.86 89.59/84.56 88.20/91.16 83.78/84.40 90.74 68.59

BERT-of-Theseus [27] 52.5M 89.1 87.5/– 88.7/– 80.0 86.1 61.9
ALP-KD4 [15] 52.5M 90.37 –/82.57 –/90.54 79.62/– 87.02 67.15
LAD4 52.5M 91.74 88.71/83.09 87.56/90.78 81.01/81.47 89.24 67.15

* Teacher model for LAD.

5.3. Comparison with the Attention Mechanism

We demonstrated that our LAD students perform better on GLUE tasks than ALP-KD
students [15] in Table 3. As the ALP-KD framework is close to our approach, in this section, we
further investigate the difference between LAD and ALP-KD. However, directly comparing
the two approaches is not intuitive due to the different framework structures, which we
show in Figure 1. Therefore, we intend to discover whether the gate block mechanism is
better than the attention mechanism. Passban et al. (2020) built a competitive baseline called
ALP-NO, which only applied attention between every p teacher layer. To directly compare
our approach with the attention mechanism, we constructed an LAD-NO model, which is
similar to ALP-NO, with the gate blocks in our LAD framework. We show the LAD-NO
structure in Figure 2.

Figure 2. The model structure of LAD-NO. The left shows the teacher model, and the right indicates
the student model.

We list the LAD-NO and ALP-NO scores for the GLUE development sets in Table 4. For
the experiments of the six-layer student models, we observe that LAD-NO6 outperforms
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ALP-NO6 on four of the six GLUE tasks. These results show that our approach works better
than the attention mechanism from internal knowledge distillation in most of the cases.

Table 4. Performance comparisons between LAD-NO and ALP-NO [15] on GLUE development sets.
The value in parentheses represents the difference in performance between the student model and its
corresponding teacher model.

Model #Params SST-2 MRPC QQP MNLI m/mm QNLI RTE

BERTBASE * [1] 110M 93.46 90.81/87.01 88.02/91.07 84.6/85.04 91.94 70.04

ALP-NO6
‡ 66.5M 91.86 –/85.78 –/90.64 81.99/– 89.71 68.95

LAD-NO6 66.5M 92.32 88.52/82.84 87.59/90.77 83.42/83.66 90.72 68.95
‡ Results from [15]; * Implemented by ourselves.

5.4. Analysis of the Directions of Gates

In this section, we discuss the importance of the sentence processing order in the
BERT model [1,16]. The Gate Network in our LAD framework is designed to propagate the
distilled knowledge from lower hidden layers to higher ones (Figure 1c). We want to know
if reversing the order of the Gate Network affects the performance of LAD student models
due to the sentence processing nature of BERT. Thus, we aimed to propagate the distilled
knowledge from higher hidden layers to lower ones, and reported the results in Table 5.
Comparing LAD6 with LAD6-Reverse, we found that, once we reverse the order of our
Gate Network, the performance decreases. The result also implies that the design of our
layer-wise distillation framework can benefit model performance on downstream tasks.

Table 5. Analysis of the propagation direction of the Gate Network. LAD6-Reverse indicates that we
reversed the direction in the Gate Network during knowledge distillation.

Prediction Set Strategy SST-2 MRPC QQP MNLI (m/mm) QNLI RTE

GLUE test LAD 92.5 87.6/82.0 72.2/89.4 84.0/83.0 90.1 65.8
LAD-Reverse 91.4 84.3/75.9 71.9/89.1 83.8/82.9 89.9 63.1

5.5. Analysis of Aggregated Knowledge

In our proposed method, the Gate Network is the critical component when aggregating
knowledge from multiple layers of the teacher model. This section investigates how
much aggregated knowledge and how many gate blocks we need for more effective
distillation. We conducted experiments with six different LAD6 models on three of the
GLUE development sets. Each student model learns the different extent of aggregated
knowledge produced by the different number of gate blocks. We summarize the results
of this experiment in Table 6. According to the experimental results, the more aggregated
knowledge the students learn, the better the performances the students will achieve. This
observation implies that learning more aggregated knowledge improves distillation, which
also explains the effectiveness of layer-wise distillation.

Table 6. Performance comparisons of transferring different extent of aggregated internal knowledge.

Gate ID Student Layer ID SST-2 QNLI RTE

12 6 87.04 85.92 55.60

12,10 6,5 87.73 86.84 57.04

12,10,8 6,5,4 90.25 88.32 58.84

12,10,8,6 6,5,4,3 90.48 89.27 59.21

12,10,8,6,4 6,5,4,3,2 91.28 90.43 66.43

12,10,8,6,4,2 6,5,4,3,2,1 91.86 90.76 67.87
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6. Conclusions

Model compression for large-scale pre-trained language models is imperative in the
current trend of natural language processing when utilizing them in real-world applications.
This work proposes a novel task-specific layer-wise distillation framework to leverage
knowledge in the teacher model without manually skipping any teacher layers, while
retaining the sentence processing nature of BERT. Our experiments demonstrate that the
proposed method outperforms the baseline approaches on most GLUE tasks and shows
the effectiveness of our LAD framework. Furthermore, the proposed method provides an
improved solution for model compression, which can be further applied to IoT or edge
devices for better deployment of BERT for natural language applications.
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