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Abstract: Reaction wheels (RW), the most common attitude control systems in satellites, are highly
prone to failure. A satellite needs to be oriented in a particular direction to maneuver and accomplish
its mission goals; losing the reaction wheel can lead to a complete or partial mission failure. Therefore,
estimating the remaining useful life (RUL) over long and short spans can be extremely valuable.
The short-period prediction allows the satellite’s operator to manage and prioritize mission tasks
based on the RUL and increases the chances of a total mission failure becoming a partial one. Studies
show that lack of proper bearing lubrication and uneven frictional torque distribution, which lead
to variation in motor torque, are the leading causes of failure in RWs. Hence, this study aims to
develop a three-step prognostic method for long-term RUL estimation of RWs based on the remaining
lubricant for the bearing unit and a potential fault in the supplementary lubrication system. In the
first step of this method, the temperature of the lubricants is estimated as the non-measurable state of
the system using a proposed adjusted particle filter (APF) with angular velocity and motor current
of RW as the available measurements. In the second step, the estimated lubricant’s temperature
and amount of injected lubrication in the bearing, along with the lubrication degradation model,
are fed to a two-step particle filter (PF) for online model parameter estimation. In the last step, the
performance of the proposed prognostics method is evaluated by predicting the RW’s RUL under
two fault scenarios, including excessive loss of lubrication and insufficient injection of lubrication.
The results show promising performance for the proposed scheme, with accuracy in estimation of the
degradation model’s parameters around 2–3% of root mean squared percentage error (RMSPE) and
prediction of RUL around 0.1–4% error.

Keywords: fault diagnosis; fault prognosis; fault estimation; particle filters; reaction wheels;
lubrication decay; remaining useful life

1. Introduction

Over the past four decades, condition monitoring and, in particular, fault diagnosis
and prognosis (FDP) for condition-based maintenance (CBM) and safety assurance have
been fields of interest [1,2]. The primary purpose of FDP and CBM is to detect, isolate, and
predict the propagation of incipient faults in their early stages. The use of FDP in field
research has been widespread, ranging from manufacturing to aerospace. However, Li-ion
batteries and rotating machinery systems for electrical and industrial applications have
received the most attention.

In aerospace, the low cost of developing and launching modular and nano/microsatellites
has contributed to their rapid growth in the past few years. These satellites are usually used
for educational or monitoring purposes [3] and have a long-expected lifetime. In general,
systems are prone to faults and failures during their lifetime. Moreover, the small satellite’s
housing space limitations make carrying spare parts and incorporating hardware redundancy
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units virtually impractical. These reasons make fault-tolerant controllers (FTC) and analytical
redundancy algorithms crucial.

The attitude control system (ACS), as one of the essential parts of a satellite, is prone to
faults [4], and its failure has been the main reason for many satellite mission failures. Both
long-term and short-term estimates of RW’s RUL can be beneficial. The satellite’s operators
can remedy mission failure using the knowledge of RUL predictions for prioritizing mission
tasks. Additionally, RUL prediction over extended periods can help the operators develop
alternative attitude control methods to avoid potential future collisions or failures. Kepler
is an example of substituting control approaches after losing its first and second RWs [5].
Table 1 lists more examples of RWs and ACS failures.

Table 1. Samples of ACS and RW failure.

Year Satellite Cause of Failure Ref

2001 BIRD Experienced failures of 3 out 4 RWs,
plus the gyroscope failure. [3]

2001 Odin Lost 1 RW mid-mission; a redundant
RW allowed mission completion. [3]

2006 FUSE Four RWs failed over six years
(2001–2007). [6]

2008 Orbcomm 1–5 (5 units) All satellites had problems with
their RWs. [3]

2009 SumbandilaSat
Lost Z-axis RW. Adaptive control

algorithms allowed
mission completion.

[3]

2013 Kepler space telescope Experienced failures of two RW
assemblies in 2012 and 2013. [5,6]

2013 Dawn space probe Experienced several failures of its
reaction wheels. [6]

2015 OCSD-A (AeroCube 7) Attitude control failure. [3]

In the past decades, many researchers have worked on determining and potentially
extending the lifespan of these critical satellite components, namely, RWs [7]. Creating an
effective prognosis system is particularly challenging due to the complexity of faults, the
lack of knowledge about how they progress, and the inherent uncertainty in predicting
future failure or degradation [5]. Therefore, despite considerable research in fault detection,
diagnostics, and isolation (FDDI) of ACS and RW satellites, few are on these systems’
failure prognosis and RUL estimation.

A combination of a backpropagation neural network with a similitude method is
presented in [8] for RUL estimation of momentum wheels (MW). This method relies
on temperature and angular speed as indicators of bearing friction torque and critical
parameters.

Another data-based method using a long short-term memory (LSTM) neural network
is proposed in [9] to estimate the motor torque of RWs as the health index (HI). In the first
step of this study, an LSTM is trained using historical data to forecast RWs’ angular speed
(ωm) and motor current (Im). The ωm and Im are then fed into another LSTM to estimate
the RW torque as its HI. In [10], the authors extend their work by suggesting a “Three-stage
Data-Driven Approach” for estimating RWs’ RUL. The third step estimates the RUL based
on a pre-defined failure threshold for the estimated HI.

Muthusamy and Kumar [11] present a data-driven RUL estimation approach for a
single gimballed control moment gyros (CMG) with output residuals as HI for the CMG.
The polynomial general path model (GPM) is applied for the prognostic method. Moreover,
the Bayesian updating method is employed to combine real-time and historical run-to-
failure data for more accurate estimation from the GPM. The advantage of this method
is that it only requires attitude rate measurements to work; no other measurements are
required for this method.
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The accuracy of all the reviewed data-driven and hybrid methods is highly dependent
on the amount of labeled run-to-failure data sets from the same type of system and under
the same operating conditions [12], both of which are difficult and expensive to acquire in
aerospace systems. This shortcoming of data-driven and hybrid methodologies highlights
the need for model-based methods.

The model-based prognostics methods are generally associated with an estimation
method for the desired system states. The Kalman filter (KF) is one of the most widely
used stochastic estimation methods [13]. KF-based prognosis has the advantage of low
computational burden as it does not require all the previous measurements to update the
most recent state, but rather only the most recent measurements to do so. However, some
limitations restrict these methods, including their inability to handle nonlinear models
and non-Gaussian noise. Yun et al. [14] use a multi-scale extended Kalman filter (EKF)
for RUL estimation of RWs’ motors. As the EKF method uses local linearization about
the estimated state, it can be used with nonlinear systems. The damping coefficient is
estimated using micro EKF, input current, and measured output angular velocity in the
first stage of this method. Using a macro EKF to adjust the degradation model, the system’s
RUL is estimated via the estimated damping coefficient as the motor’s HI. Based on the
estimated states of the system and their distributions, Monte Carlo (MC) simulations are
conducted until the system’s HI reaches a pre-defined threshold and RUL’s probability
density function (PDF) can be computed. Although this method performs well for the
short-term prognosis of state-of-health (SOH), it lacks accuracy for long-term diagnosis
and RUL prediction.

Despite EKF’s ability to estimate parameters of nonlinear degradation models, er-
rors in Jacobian matrices with higher-order terms can majorly affect EKF’s accuracy [15].
Rahimi et al. [16] present a model-based FDDI method using a covariance-based adap-
tive unscented Kalman filter (AUKF) to estimate and track sudden changes in a system’s
non-measurable parameters. They estimate the motor torque and bus voltage of Ithaco
Type A RWs as unknown system parameters, utilizing ωm Im as measurement. Later,
in [17], Rahimi et al. present a RW’s RUL estimation method using estimated motor
torque as the system’s HI. For this purpose, a PF is used for online parameter tracking of
the HI’s exponential deterioration trend. The simulation results show that this method
can estimate the RUL of the RW while handling both Gaussian and non-Gaussian noise.
Bialke et al. [6,18] conducted a root cause analysis of Ithaco RWs failure and found a strong
correlation between geomagnetic storms and these failures. These articles indicate that the
common fault in RWs’ friction factors is abrupt changes in dry friction, which can cause
short-term failure or be resolved by high rotation speed. Considering these findings, the
changes in the wet friction factor are fewer than those in dry friction [6], which would
not be a perfect choice as an incipient fault that causes long-term failure. In most of the
published literature for fault prognosis of space systems and actuators, including RWs,
the focus has been on estimating torque/back-electro motive force gains or bus voltage to
identify anomalies in system behavior. The effects of lubrication and temperature changes
in the RW system have rarely been looked at and investigated.

As a rotary system, the bearing unit of an RW requires proper lubrication for its entire
operational life. Typically, the lubricant stored in the bearing housing is sufficient for
3–4 years of operation under normal conditions, and adding a supplementary lubrication
system will extend the life of the system [6]. However, the limited amount of lubricant that
a nano/micro-satellite can carry and its harsh operating environment make it impossible
to recharge lubrication reservoirs. Therefore, a HI based on the cumulative consumption
of lubricant for the bearing unit of MWs is proposed in [19]. As a first step, the authors
use the physics of failure to develop a degradation model for lubrication loss. Lubrication
evaporation, degradation, and migration, driven by the vacuum, thermal gradient, and
centrifugal force, are the primary sources of lubrication loss in the bearing unit of an RW.
The experiments in [19–21] also show that, among the three primary sources of lubricant
loss, lubrication evaporation and creeping play the most critical roles, and they are both
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functions of lubricant temperature. The analysis of the main causes of lubrication loss
led to the development of a nonlinear temperature function as a degradation model.
Using maximum likelihood and experimental data, the authors were able to estimate the
parameters of the proposed degradation model. Applying empirical mode decomposition
(EMD) to the measured temperature from the experimental setup, a trend was obtained
in the lubricant’s temperature. Next, the obtained trend is fed into the degradation model
to estimate future lubrication consumption. As a means of dealing with uncertainty, a
bootstrap simulation is also used in this study. While this method provides a long-term
RUL estimation for MW, it only considers monotonic temperature trends and ignores the
effect of temperature fluctuations caused by the satellite’s orientation relative to the sun.
Figure 1 shows a sample of the seasonal thermal trend for the Kepler space telescope’s
RW [22].
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In [23], the authors proposed a fast and accurate end-to-end architecture for detecting
and identifying the anomalies occurring in spacecraft RWs using a One-Dimensional
Convolutional Neural Network (1D-CNN) with an LSTM network architecture. The types
of faults they investigated in their work include low and high bus voltage faults, motor
current loss, and high friction faults. Although they investigated a friction-related fault in
the system, they did not explicitly investigate the temperature and lubrication effects on
system performance and its RUL. Zhang et al. [24] aimed to design a prediction framework
that meets satellite state on-orbit prediction requirements. These requirements include data
reconstruction, similar data screening, self-revised prediction, and the fuzzy expression
of results. They proposed a Fourier-based Broad Learning System (BLS) to improve the
depiction accuracy of a standard BLS in learning satellite telemetry data that requires less
computational and time resources. The metric they were interested in determining through
their proposed data-driven approach was the state of health, which was available in the
telemetry data they started their work with. Therefore, the notion of individual physical
and tangible satellite or RW parameters was not in their work scope. From the reviewed
literature, while active and passive lubrication injection systems have been proposed
to ensure proper bearing lubrication in satellite missions lasting 30 years or longer, the
estimation of RUL based on the remaining lubrication and failure prognostic due to fault in
the injection system remains a challenge. The existing literature does not explicitly address
the investigation of RW RUL prediction based on temperature or lubrication anomalies in
RWs. Therefore, this study aims to address this gap in the literature.

As shown in Figure 2, to address these problems, we propose a three-step prognosis
approach for RUL estimation of RWs based on the lubrication consumption of the bearing
unit as follows:
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Step 1. Since direct measurement of the lubricant’s temperature under the operation
condition is not practical, in the first step of this research, we investigate the estimation of
the lubricant temperature using angular velocity (ωm) and motor current (Im) as measure-
ments and a high-fidelity model of the Ithaco RW proposed in [25,26].

Step 2. In the second step, an online parameter tracking of the lubricant consumption
model, as well as the degradation model, is conducted using the estimated lubricant’s
temperature and the measured amount of injected lubricant.

Step 3. The last step is to predict the RUL of RW based on two scenarios of failure:
(1) The cumulative consumption of lubricant reaches the amount stored in the system.
(2) Deficiencies in lubrication injection and supplemental lubrication systems lead to bearing
unit dry-out. In the first scenario, the fault occurs during normal operating conditions
and will be accelerated by lubrication bleeding or RW heating. However, a fault in the
supplementary lubrication system causes an unbalanced injection of lubrication in the
second scenario (see Figure 2).

In addressing the identified gap in the literature, this study offers the following
novelties:

(1) Investigation of the temperature and lubrication effects on RWs deterioration and
its impact on RWs remaining useful life that has not been previously addressed in
the literature;

(2) A three-step process to determine the RUL of RWs undergoing temperature and
lubrication malfunctions that include a novel particle filter resampling approach to
improve the accuracy and efficiency of estimation results.

The remainder of this paper is organized as follows: In Section 2, preliminaries
are provided to familiarize the reader with the background contents. In Section 3, the
methodology used in this study is detailed. In Section 4, results and discussions of this
study’s outcomes are provided, and Section 5 provides concluding remarks and future
directions for this study.

2. Preliminaries

This section provides background and theories used in this study to help the reader
follow the content easier and for the paper to be self-contained. This includes satellite RW
modeling, degradation modeling, and the state estimation theory used in this work.
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2.1. Satellite’s RW Model

The two primary sources of lubrication loss in RW’s bearing unit are evaporation and
creeping. They are both functions of the lubricant’s temperature. As a result, monitoring
the temperature is crucial to developing an HI based on cumulative lubrication loss. It
is generally not possible to directly measure the lubricant’s temperature. Therefore, in
this study, an estimation approach is employed that uses angular velocity (ωm) and motor
current (Im), a high-fidelity model of RW, and Vcomm as the input of the system. A model
of Ithaco ’type A’ RW by Goodrich [25] is adapted and used for this purpose, as shown in
Figure 3, with its model parameters listed in Table 2.
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Table 2. RW’s model parameters from the data in [25].

Parameter Unit Value

Input voltage (Vcomm) V 0–5
Drive Gain (Gd) A/V 0.19

Driver Bandwidth (−3 dB) (ωd) rad/sec 9
Motor Torque Constant (Kt) N-m/A 0.029

Motor Back-EMF (Ke) V/rad/sec 0.029
Speed limiter negative feedback gain (Ks) V/rad/sec 95

Overspeed Threshold (ωs) rad/sec 690
Coulomb friction (τc) N-m 0.002
Flywheel Inertia (J) N−m− sec2 0.0077

Number of Motor Poles (N) – 36
Cogging Torque Amplitude (B) N-m 0.22

Motor Torque Ripple Coefficient (C) – 0
Input Resistance (RIN) Ω 2

Voltage Feedback Gain (K f ) V/V 0.5
Torque Noise Angle Deviation (θa) rad 0.05

Torque Noise High Pass Filter Frequency (ωa) rad/sec 0.2

Now that the RW model is fully detailed, modeling the degradation trend for the
analysis in this study is explained in the next section.

Several essential loops in the RW model ensure precision. Figure 3 shows these loops
with dashed polygons, and they can be mathematically expressed as:

1. The electro-motive force (EMF) torque limiting loop:

Ibus =

(
1

Vbus − 1

)(
I2
mRB + 0.04|Im|Vbus + Pq + ωm ImKe

)
(1)

where Vbus and Ibus stand for bus voltage and current, respectively, Ke is the back
electro-motive force (BEMF) voltage gain, and ωm represents wheel’s angular speed;

2. The Coulomb friction is created by the dry friction within bearings. This loss torque is
independent of the angular velocity or the temperature;

3. The negative feedback viscous friction:

τv = (0.0049− 0.0002(Tlub + 30))ωm (2)

where τv and Tlub are the viscous torque and the lubricant’s temperature, respectively.
This friction is driven by the resistive force between the bearing surface in relative
motion through the lubricant and is in addition to the Coulomb friction;

4. The negative feedback speed limiter loop prevents the wheel from accelerating to
unsafe speeds. This loop is triggered by exceeding the speed threshold, ωs, and
generates negative feedback via gain Ks, which feeds the torque command;

5. The motor torque control unit is a voltage-controlled current source with a gain
Gd. Through a constant torque gain Kt, the motor delivers a torque proportional to
the current driver, Im. Moreover, a non-ideal RW has a limitation for following the
input frequency, which can be presented as a low-pass filter with a bandwidth of
9 rad/sec, ωd;

6. τnoise is an extremely low-frequency torque variation forced by lubricant dynamics
and can be presented as follows:

τnoise = J − w θaω2
a sin(ωat) (3)

The nonlinear mathematical model of the RW in Figure 3 can be expressed as follows:

.
Im = Gdωd[ f3(ωm, Im)− f5(ωm)]−ωd Im + GdωdVComm.

ωm = 1
Jw
{ f1(ωm) + kt Im[ f2(ωm) + 1]− τvωm − τc f4(ωm) + τnoise}

(4)
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where

f1(ωm) = Csin
(

Nt
2 ωm

)
f2(ωm) = Bsin(3Ntωm)

f3(ω, Im, Vbus) = H f (V(ωm, Im, Vbus))V(ωm, Im, Vbus)
f4(ωm) = sign(ωm)

f5(ωm) = Ks[|ωm| −ωs]Hs(|ωm| −ωs)
V(ωm, Im, Vbus) = K f [Vbus − 6− [1 + Rin Ibus]Hb(Ibus)− |Keωm|]

(5)

The f1 to f5 terms indicate different building blocks of the RWs while Im and Vcomm
are the motor current and the torque command voltage, respectively.

For the numerical solution of the nonlinear model, the discontinuous functions are
needed to be approximated. In [25], an approximation based on the sigmoidal function is
proposed for the sign(·) and Heaviside functions. Since the accuracy of this approximation
is highly dependent on the size of the sigmoidal parameter and the use of MATLAB for
simulation to handle sign(·) function in this study, an approximation for the Heaviside
functions is proposed as:

Hb(Ibus) =

{
1, Ibus > 0
0, Ibus ≤ 0

= f loor
(

sign(Ibus)+1
2

)
H f (V) =

{
0, V > 0
1, V ≤ 0

= −sign(sign(V)− 1)

Hs(|ωm| −ωs) =

{
1, abs(ωm)−ωs ≥ 0
0, abs(ωm)−ωs < 0

= round((sign(abs(ωm)−ωs) + 1)/2)

(6)

Therefore, the proposed Hb, H f , and Hs are no longer dependent on the size of the
sigmoid parameter.

2.2. Degradation Model

Considering lubricant evaporation and creeping due to temperature gradient, Jin
et al. [19] suggest an exponential relationship between the lubricant’s temperature and the
loss rate of lubricant as:

β(t) = β0e−b/Tlub(t) + wk (7)

where β0 and b indicate model parameters to be estimated, Tlub(t) is the temperature of
the lubricant at time t and wk is the process noise with the variance of σ2

B. Assuming the
effect of the temperature is immediate, and the damage incurred accumulates over time,
the degradation X(t) at time t can be written as:

X(t|T(τ), 0 ≤ τ ≤ t) = β0

t∫
0

e−b/Tlub(τ)dτ + B(t) (8)

where B(t) represents the Wiener process with the variance of σ2
B. Since the estimation of

the Tlub and the amount of the injected lubricant is periodic, the degradation model can be
presented in the discrete format as:

X(ti) ≈ β0

ti

∑
j=1

e
−b
Tj ∆(ti) + B(ti) (9)

This concludes the introduction of the degradation model in this study. In the next
section, some background on the estimation theory will be provided for the state and
parameter estimations in this study.
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2.3. Particle Filter

The particle filter is a recursive Bayesian estimation technique based on the Monte
Carlo simulation [27]. This method can approximate the posterior PDF of the state by
sequentially selecting random samples (particles) and continuously adjusting their weights
and positions according to new measurements.

To illustrate how PF works, a general nonlinear system can be written as:{
xk = f (xk−1, wk−1)
yk = h(xk, uk, εk)

(10)

where xk ∈ Rn and yk ∈ Rm represent the unobservable state and measurement, re-
spectively. wk−1 and εk are process and measurement noises, f (·) and h(·) indicate state
transition and measurement equations, respectively, and uk is the known input of the
system.

The PF process consists of two steps: (i) the prediction step and (ii) the update step. In
the prediction step, base000000000d on the posterior PDF p(xk−1|y1:k−1), the prior PDF at
cycle k can be calculated as:

p(xk|y1:k) =
∫

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1 (11)

where y1:k is y1:k = [y1, y2, · · · , yk] and p(xk|xk−1) denotes one-step transition probability.
Using the Bayes’ rule and measurement at cycle k, the posterior PDF is updated as:

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)∫

p(yk|xk)p(xk|y1:k−1)dxk−1
(12)

where p(xk|y1:k) is the likelihood function. Consecutive calculations of Equations (11)
and (12) will form a recursive Bayesian estimation. A Monte Carlo simulation method is
used to estimate particle size as high-dimensional integrals, making it difficult to calculate
PDFs analytically:

p(xk|y1:k) =
N

∑
i=1

wi
kδ
(

xi
k − xk

)
(13)

where xi
K (i = 1, · · · , N) are particles sampled from the importance function, δ(·) and N are

the Dirac function and the number of particles, respectively. wi
k represent the corresponding

weight calculated as:

w̃i
k = wi

k−1

[
p
(

yk

∣∣∣xi
k

)
p
(

xi
k

∣∣∣xi
k−1

)
/q
(

xi
k

∣∣∣xi
1:k, y1:k

)]
; wi

k = w̃i
k/

(
N

∑
j=1

w̃j
k

)
(14)

where q
(

xi
k

∣∣xi
1:k, y1:k

)
determines the importance function. The transition probability repre-

sents an importance function in the standard form of PF
(

q
(
xi

k

∣∣xi
1:k, y1:k

)
= p

(
xi

k

∣∣∣xi
k−1

))
,

so the transition equation of weights can be simplified as:

w̃i
k = wi

k−1 p
(

yk

∣∣∣xi
k

)
; wi

k =
w̃i

k

∑N
j=1 w̃j

k

(15)

Based on the obtained w̃i
k, the predicted state (x̂) can be written as:

x̂ =
N

∑
j=1

wj
kxi

k (16)

Figure 4 shows the steps for the PF process. PF starts with a uniform distribution
for the particles, i.e., all particles have the same size (wi

k = 1
N ). After one transition step,
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particles are evaluated using the updated measurement ( p(yk
∣∣xi

k) ), and the result forms
a probability density function represented with a curve. The particles’ weight is then
computed based on Equation (15), which is presented by the size of the particles. As shown
in Figure 4, some particles have a large diameter (i.e., weight), others are smaller, and some
have disappeared, meaning their weight is negligible.
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The original formulation of the particle filter does not include a resampling stage,
which can impose some issues on the filter’s performance. Hence, in the next section,
resampling is discussed.

2.3.1. Resampling

One issue with particle filtering is that after several iterations of particle propagation,
the weight distribution among the particles becomes skewed, with few particles having a
significant weight and most particles having very little weight. Resampling can address this
degeneracy, but it may also lead to sample impoverishment, where only a small number
of particles have significant weights while the majority of particles with low weights
are discarded. To address this trade-off, resampling can be applied at predetermined
intervals only when the variance of the non-normalized weights exceeds a certain threshold,
indicating sample degeneracy. A method for determining the effective sample size (Ne f f ) is
using [27,28]:

Ne f f ≈
1

∑N
i=1
(
w2

i
) (17)

Resampling only happens when a certain threshold (Nth) is reached. To renormal-
ize the distribution, the resampling step duplicates the particles with large weights and
eliminates those with small weights. The weight of each renormalized particle will then
be set to 1/N [27]. Figure 5 shows the steps of PF when it benefits from the resampling
step. At the resampling stage, particles with higher weights are broken into multiples,
whereas particles with negligible weights are removed. Once resampling is performed, all
the resampled particles get the same size because all weights are reset to 1/N as described
in the initialization step. Notice that after the resampling step, the number of particles
remains the same (N) but their distribution is different.
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Although resampling can help renormalize the samples, performing it on each step due
to a poor choice of Ne f f highlights the effect of abrupt noises and leads to confusion of PF
for tracking. Section 3.1.1 further discusses this issue and how the proposed methodology
can address it.

3. Methodology

In this section, the proposed methodology is detailed using the material provided in
the earlier sections along with the enhancements put forward in this study.

In this study, as noted in the Introduction section and shown in Figure 2, a three-step
prognosis approach for RUL estimation of RWs based on the lubrication consumption of
the bearing unit is proposed in three steps as follows:

3.1. Step 1—Lubricant’s Temperature Estimation

Direct measurement of the lubricant’s temperature under the operating condition is
generally not practical. Hence, in the first step of this approach, the lubricant’s temperature
in the RW is estimated using its angular velocity (ωm) and motor current (Im) as measure-
ments and a high-fidelity mathematical model of the Ithaco RW as presented in Figure 3
and Equations (1)–(6) with model parameters in Table 2.

As mentioned in Section 2.3.1, although resampling in the formulation of PF can help
renormalize the samples, it can be computationally expensive. One of the approaches to
remedying this challenge is to use adaptive sampling; hence, a new adaptive sampling
approach is proposed here to speed up the PF estimations, as detailed in the next section.

3.1.1. Proposed Adaptive Resampling

In the adaptation proposed in this study, when the p
(
yk
∣∣xi

k
)

in Equation (15) does not
satisfy a certain threshold, the resampling step, despite its common purpose, spreads the
particles in a broader range. For triggering this adaptation, the average of the maximum
value of p

(
yk
∣∣xi

k
)

in the interval of two triggered resampling steps is compared with a
threshold (pe f f ). This way of triggering the resampling stage prevents the sudden effect
of abrupt noises and impacts when it senses the confusion of particles in an interval. In
the case of abrupt changes, the combination of PF and adaptive resampling enables faster
tracking of estimated states.
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3.1.2. Proposed Adaptive Sample Improvement

Since the f (.) and h(.) can both be nonlinear, the distribution of p
(
yk
∣∣xi

k
)

can also
be a function of other variable inputs (uk) of the model. If p

(
yk
∣∣xi

k
)

has an acceptable
distribution, the difference between w̃i

k will increase gradually, and particles with higher
probability will get highlighted. In the case that the xk has a low contribution to changing
yk, the w̃i

k would be distributed uniformly. The uniform distribution of w̃i
k leads to an

inefficient resampling step. To overcome this issue, despite the PF, the importance function
q
(

xi
k

∣∣xi
1:k, y1:k

)
in Equation (15) can be replaced by:

q
(

xi
k

∣∣∣xi
1:k, y1:k

)
= p

(
xi

k

∣∣∣xi
k−1

)
γ
(

ωi
k−1, p

(
xi

k

∣∣∣xi
k−1

)
, uk, N

)
(18)

Assuming γ(.) is equal to:

γ
(

w̃i
k−1, p

(
xi

k

∣∣∣xi
k−1

)
, uk, N

)
= wi

k−1 p
(
yk
∣∣xi

k
)
/[1− 1/exp[c1(uk)[β− sign(β)c2]]]

β = 1
N − wi

k−1 p
(
yk
∣∣xi

k
) (19)

where c1(uk) is a function of known input variables of the system and c2 is a constant,
Equation (15) can be rewritten as:

w̃i
k = 1− 1/exp[c1(uk)[β− sign(β)c2]]; β =

1
N
− wi

k−1 p
(

yk

∣∣∣xi
k

)
(20)

The right-hand side of Equation (20) shows an adapted logistic function with a maxi-
mum value of 1, and its growth rate is a function of uk. The proposed mutation of ω̃i

k can
magnify the contribution of xi

k on yk, which enhances the efficiency of the resampling step
and prevents confusion in the filter.

Figure 6 compares the steps of APF proposed here, which benefit from the adaptive
sample improvement step and classic PF discussed in Section 2.3. As can be seen, since
the probability diagram has a uniform shape, the change in the weight of particles is not
considerable enough to be recognized by the classic resampling step, as shown in Figure 6a.
The adaptive sample improvement step, on the other hand, can distinguish this difference
via the amplifying impact of Equation (19), as shown in Figure 6b.
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Once the estimation is complete, the next step is to use the obtained information and
propagate it in time to obtain the RUL, which is discussed next.

3.1.3. Proposed Multi-Step Online Parameter Estimation

The proposed parameter estimation method has been developed to address the esti-
mation confusion error resulting in cases where the number of measurements is less than
the number of to-be-estimated parameters.

The general parameter estimation problem in a nonlinear system can be written as:{
θk = θk−1 + αk
yk = h(θk, uk)

(21)

where θk, αk, h(.), and uk are the parameter vector of the model, fault parameter vector,
transition function, and the input vector of the model, respectively.

Assuming the parameter vector of the model consists of n parameter as:

θk =
{

θi
k

}
; i = 1, . . . , n (22)

the multi-step parameter estimation is applicable if θi
k can be singled as:

yk = hi
(

θi
k, uk

)
yk−j;

{
i ∈ {1, · · · , n}
j ∈ {1 : k− 1} (23)

Having Equation (23), the sub-nonlinear system equation for θi
k can be presented as:{

θi
k = θi

k−1 + αi
kyk

yk−j
= hi(θi

k, uk
) (24)

As can be seen with the estimation of θi
k using the obtained sub-nonlinear system, PF

is independent of other model parameters and resolves the confusion in the estimation.
Figure 7 shows the flow of the proposed multi-step parameter estimation method.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 25 
 

 

 
Figure 7. Flow of multi-step online parameter estimation. 

3.2. Step 2—Degradation Model’s Estimation 
In the second step, an online parameter tracking of the lubricant consumption model, 

as well as the degradation model, is conducted using the estimated lubricant’s tempera-
ture and the measured amount of injected lubricant. 

3.3. Step 3—Remaining Useful Life Estimation 
The last step is to predict the RUL of RW based on two scenarios of failure: (1) The 

cumulative consumption of lubricant reaches the amount stored in the system. (2) Defi-
ciencies in lubrication injection and supplemental lubrication systems lead to bearing unit 
dry-out. In the first scenario, the fault occurs during normal operating conditions and will 
be accelerated by lubrication bleeding or RW heating. However, a fault in the supplemen-
tary lubrication system causes an unbalanced lubrication injection in the second scenario 
(see Figure 2). 

Prediction of RUL 
In general, the RUL of a system at time 𝑘 can be defined as:  𝑅𝑈𝐿௞ = 𝑡௘௡ௗ − 𝑡௞ (25)

where 𝑡௞ is the time 𝑘 and 𝑡௘௡ௗ is failure time which is defined as:  𝑡௘௡ௗ = 𝑡൫𝑋෠௧ = 𝑋௧௛ห𝜃෠௞൯ (26)

In which 𝜃෠௞ , 𝑋෠௧ , and 𝑋௧௛  stand for the estimated parameters of the degradation 
model, the predicted state of the system in future time 𝑡 based on the estimated parame-
ter at time 𝑘 (𝜃෠௞), and the threshold which defines the system’s failure, respectively. 

In the next section, the preliminary material and the proposed methodology are put 
together to show results and discussions for a case study on a RW’s remaining useful life 
estimation based on its residual lubricant level for the bearing unit and its impact on the 
unit’s life expectancy. 

4. Results and Discussion 
In this study, the RUL of RWs, based on the residual lubricant level for the bearing 

unit, is studied under two incipient fault scenarios to evaluate the proposed method’s 
effectiveness: 
(1) Normal or excessive lubricant loss. Under this scenario, the RW will operate until it 

runs out of lubricant. In this case, the cumulative loss of lubricant acts as the HI of 
the system, and the maximum amount of lubricant it can carry is the threshold;  

(2) Insufficient lubrication caused by a fault in the supplementary lubrication system. 
This scenario results in bearings drying out while there is still lubricant in the 

Figure 7. Flow of multi-step online parameter estimation.

3.2. Step 2—Degradation Model’s Estimation

In the second step, an online parameter tracking of the lubricant consumption model,
as well as the degradation model, is conducted using the estimated lubricant’s temperature
and the measured amount of injected lubricant.

3.3. Step 3—Remaining Useful Life Estimation

The last step is to predict the RUL of RW based on two scenarios of failure:
(1) The cumulative consumption of lubricant reaches the amount stored in the system.
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(2) Deficiencies in lubrication injection and supplemental lubrication systems lead to bear-
ing unit dry-out. In the first scenario, the fault occurs during normal operating conditions
and will be accelerated by lubrication bleeding or RW heating. However, a fault in the
supplementary lubrication system causes an unbalanced lubrication injection in the second
scenario (see Figure 2).

Prediction of RUL

In general, the RUL of a system at time k can be defined as:

RULk = tend − tk (25)

where tk is the time k and tend is failure time which is defined as:

tend = t
(
X̂t = Xth

∣∣θ̂k
)

(26)

In which θ̂k, X̂t, and Xth stand for the estimated parameters of the degradation model,
the predicted state of the system in future time t based on the estimated parameter at time
k (θ̂k), and the threshold which defines the system’s failure, respectively.

In the next section, the preliminary material and the proposed methodology are put
together to show results and discussions for a case study on a RW’s remaining useful life
estimation based on its residual lubricant level for the bearing unit and its impact on the
unit’s life expectancy.

4. Results and Discussion

In this study, the RUL of RWs, based on the residual lubricant level for the bearing
unit, is studied under two incipient fault scenarios to evaluate the proposed method’s
effectiveness:

(1) Normal or excessive lubricant loss. Under this scenario, the RW will operate until it
runs out of lubricant. In this case, the cumulative loss of lubricant acts as the HI of the
system, and the maximum amount of lubricant it can carry is the threshold;

(2) Insufficient lubrication caused by a fault in the supplementary lubrication system.
This scenario results in bearings drying out while there is still lubricant in the sup-
plementary lubrication system. For this scenario, HI is computed as the difference
between the normal lubricant loss and the injection amount, and the failure threshold
is the amount of lubrication loss the bearing unit can tolerate without additional
lubrication.

The simulations were set up, as shown in Figure 8. The Runge–Kutta method (RK4),
with a sampling interval of 0.05 s, was used in MATLAB for the numerical integration of
the states. The simulation parameters are as listed in Table 2, while white noise with a
standard deviation σn was added to the nominal states to produce measured states.
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4.1. Step 1—Lubricant’s Temperature Estimation

In this section, the performance of the first step of the proposed method is examined
by following a temperature path introduced in Table 3. As shown in Figure 8, the proposed
temperature path (Tlub) is fed to the RW’s model, and angular velocity and motor current
([ωm, Im]) are considered the measurements. After adding the white noise to the measured
values, they are fed to the state estimation block with Vcomm as the system’s input.

Table 3. Validation scenario for the first-state estimation block.

Time Range (Sec) Tlub (
◦
C) Vcomm (Volt)

t ≤ 50 23 1
t = 50 31 1

50 < t < 250 Tlub(t− dt)×
[
1/ exp

(
−3× 10−4 × t

)]
1

250 ≤ t < 300 Tlub(t− dt)×
[
1/ exp

(
−3× 10−4 × t

)]
3

t ≥ 300 Tlub(t− dt)×
[
1/ exp

(
3× 10−4 × t

)]
3

The objective of the state estimation block is to estimate the temperature of the lubricant
(T̂lub) as the unmeasured state of the system using the available measurements, input
variables, and the model of the RW. The nonlinear model of the system (Equation (10)) can
be presented as follows:{

xk = (Tlub)k = (Tlub)k−1 + wk−1
yk = [(ωm)k, (Im)k] = h((Tlub)k, (Vcomm)k, εk)

(27)

where h(.) represent the RW’s model.
Figure 9 shows the performance of PF in the estimation of Tlub under low (σI =

3× 10−2, σω = 3× 10−3) and high (σI = 3× 10−2, σω = 3× 10−3) noise conditions. As it
can be seen, the PF is able to accurately track the changes in Tlub, if these changes are not
significant. In the case of abrupt changes, the PF convergence is no longer acceptable.
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Figure 9. Result of the estimated Tlub, using PF: (a) low noise scenario and (b) high noise scenario.

To overcome this issue, an adaptation of resampling (explained in Section 3.1.1) is
used in this study. Figure 10 shows the performance of the combination of PF and the
adapted resampling step in the estimation of Tlub.
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Figure 10. Result of the estimated Tlub, using a combination of PF and adaptive resampling: (a) low
noise scenario and (b) high noise scenario.

Results in Figure 10 show that adaption in the resampling step significantly improved
the ability of the PF to trace sudden changes in Tlub; however, Figure 10b illustrates that
this accuracy improvement comes with inaccuracy in the confidence interval. The source of
this inaccuracy is the low contribution of temperature to changing the measured variables
compared with the effect of measurement noise; this low contribution leads to an almost
uniform distribution of p

(
yk
∣∣xi

k
)

and inefficiency of the resampling step in narrowing down
the confidence interval (CI) and consequently not satisfying the Ne f f (Equation (17)), which
results in repeating the resampling step after any update step.

To address the inefficiency of the resampling step, the proposed adaptive sample
improvement (explained in Section 3.1.2) is adjusted in a way that Equation (20) can be
rewritten as:

w̃i
k = 1− 1/exp

[
−1010−Vcomm × [β− 0.6× sign(β)]

]
β =

1
N
− wi

k−1 p
(

yk

∣∣∣xi
k

)
(28)

This adjustment amplifies the differences in ω̃i
k and enables the resampling step to

narrow down the CI. Figure 11 shows the performance of the APF on the same experimental
condition.
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Figure 11. Result of the estimated Tlub, using APF: (a) low noise scenario and (b) high noise scenario.
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4.2. Step 2—Degradation Model’s Estimation

As shown in Equation (8), the degradation model comes with two parameters (β0
and b) that need to be estimated to predict the evolution of lubrication consumption.
For this purpose, a long-term estimation of the lubricant’s temperature through PF and
APF was simulated. The degradation model parameters were then estimated using a
PF block fed by the estimated temperature of lubricant and simulated measurements of
lubrication consumption. Figure 12 indicates the flow of online parameter estimation for
the degradation model.
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Figure 12. Flow of one-step online parameter estimation for degradation model.

As it is impractical to measure lubrication consumption over 0.05 s, which is the time
step necessary for estimating the temperature, X is calculated as the cumulative sum of
lubrication consumption over 4 min using Equation (29).

Xk =
4800k

∑
j=1

βk exp

(
bk
Tj

)
∆t (29)

where ∆t is equal to 0.05 s. The nonlinear model of the degradation problem (Equation (22)) can
be rewritten as: 

θk = [bk, βk] = [bk−1, βk−1] + αk

yk = Xk − Xk−1 =
4800k

∑
j=4800(k−1)

βkexp
(

bk
Tj

)
∆t (30)

Figure 13 compares the estimated parameters (b̂, β̂) with their actual values. In order to
address this issue, a two-step particle filter (Figure 14) is formed from the proposed multi-
step online parameter estimation (explained in Section 3.1.3). As can be seen, estimated b̂
and β̂ cannot accurately follow their actual values even though the estimated lubrication
consumption path shown in Figure 15 overlaps the actual one.
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Figure 13. Result of the estimated (a) b̂ and (b) β̂ using the one-step online parameter
estimation method.
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Figure 14. Flow of two-step online parameter estimation for degradation model.

Sensors 2023, 23, x FOR PEER REVIEW 17 of 25 
 

 

ቐ𝜃௞ = ሾ𝑏௞, 𝛽௞ሿ = ሾ𝑏௞ିଵ, 𝛽௞ିଵሿ + 𝛼௞𝑦௞ =  𝑋௞ − 𝑋௞ିଵ = ෍ 𝛽௞𝑒𝑥𝑝 ቆ𝑏௞𝑇௝ ቇ ∆𝑡ସ଼଴଴௞௝ୀସ଼଴଴(௞ିଵ)  (30)

Figure 13 compares the estimated parameters (𝑏෠, 𝛽መ) with their actual values. In order 
to address this issue, a two-step particle filter (Figure 14) is formed from the proposed 
multi-step online parameter estimation (explained in Section 3.1.3). As can be seen, esti-
mated 𝑏෠ and 𝛽መ  cannot accurately follow their actual values even though the estimated 
lubrication consumption path shown in Figure 15 overlaps the actual one. 

  
(a) (b) 

Figure 13. Result of the estimated (a) 𝑏෠ and (b) 𝛽෠ using the one-step online parameter estima-
tion method. 

 
Figure 14. Flow of two-step online parameter estimation for degradation model. 

 

0 100 200 300 400 500 600
Times horizon (min)

20

25

30

35

40

45

0 100 200 300 400 500 600
Times horizon (min)

3

4

5

6

7

8

9

10

11 10-6

Lu
br

ic
an

t C
on

su
m

pt
io

n 
(m

L)

Figure 15. Result of the estimated lubrication consumption (X̂k − X̂k−1) using the one-step online
parameter estimation method.

The first PF block uses the ratio of three consecutive measurements of lubrication
consumption to estimate b using:

Xk − Xk−1
Xk−1 − Xk−2

= exp
(

bk

(
1

Tk−1
− 1

Tk

))
(31)

where Xk and Tk are the cumulative consumption of lubricant and the temperature of
lubricant at time k. Applying the alternation presented in Equation (29) converts Equation
(31) to:

Xk − Xk−1
Xk−1 − Xk−2

=
4800k

∑
j=4800(k−1)

exp(−b/Tj)/
4800(k−1)

∑
j=4800(k−2)

exp(−b/Tj) (32)

Using Equation (32), the sub-nonlinear system equation in Equation (24) can be written
as: 

θ1
k = bk = bk−1 + α1

k

yk
yk−1

=
Xk−Xk−1

Xk−1−Xk−2
=

4800k
∑

j=4800(k−1)
exp(−b/Tj)/

4800(k−1)
∑

j=4800(k−2)
exp(−b/Tj) (33)


θ2

k = βk = βk−1 + α2
k

yk = Xk − Xk−1 =
4800k

∑
j=4800(k−1)

βk exp
(

b̂k
Tj

)
∆t (34)

Figure 16 compares the estimated b̂ using the estimated lubricant’s temperature from
Section 4.1.
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Figure 16. Result of the estimated b̂ using the two-step method and estimated the lubricant’s
temperature via: (a) PF and (b) APF.

Having the estimated b̂, the second PF estimates the second parameter of the degrada-
tion model using Equation (34) as the model and cumulative consumption of the lubricant
as the measurements. Figure 17 shows the estimated β̂k for both estimated temperatures
using PF and APF.
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Figure 17. Result of the estimated β̂ using the two-step method and estimated the lubricant’s
temperature via: (a) PF and (b) APF.

4.3. Step 3—Remaining Useful Life Estimation

This section evaluates the performance of the proposed three-step prognosis method
using estimated degradation model parameters for both fault scenarios. As a result of
the first fault scenario, the rate at which the lubricant is injected is greater than normal,
resulting in a faster consumption of resources than expected. In contrast, the second fault
scenario causes less lubrication injection, which cannot compensate for normal lubrication
loss. The bearing unit dries out due to this scenario over time.
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The failure time (tend) from Equation (26) can be adjusted for the first fault
scenarios as:

tend = t
(

X̂t − Xk = Xtotal − Xk

∣∣∣[b̂k, β̂k

])
(35)

where X̂t and Xk are estimated cumulative consumption of lubrication up to time t and
k (current time), and Xtotal represents the total lubrication that the system is carrying,
respectively. However, the adjusted failure time for the second fault scenario should be
considered as:

tend = t
(

X̂t − Xh
t = Xbearing

∣∣∣[b̂k, β̂k

])
(36)

where Xh
t and Xbearing are the cumulative consumption of lubrication up to time t in the

healthy system and the maximum amount of lubrication that the bearing unit can lose
without any effects on its capability, respectively. Table 4 lists the fault scenarios for
evaluating the proposed method in RUL estimation.

Table 4. Fault scenarios for prognostics evaluation.

First Scenario: Excessive Lubrication Loss

Time Range (min) b (
◦
C) β (mL/sec)

t ≤ 159 37 7.494× 10−6

t > 159 25 8.054× 10−6

Second Scenario: Insufficient Lubrication Injection

Time Range (min) b (
◦
C) β (mL/sec)

t ≤ 159 37 7.494× 10−6

t > 159 49 7.000× 10−6

Under the assumptions that the system is suffering from the first fault scenario, and
the lubricant temperature (T̂lub) changes periodically over three months, as displayed in
Figure 18, Figure 19 shows the cumulative sum of lubrication consumption. Assuming the
system is experiencing the second fault scenario, and the system’s temperature is gradually
rising due to improper lubrication, as shown in Figure 20, Figure 21 shows the cumulative
sum of normal lubrication consumption and injected lubricant difference.
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Figure 18. Assumed lubricant temperature (first fault scenario).
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Figure 19. Failure prognosis results (first fault scenario): (a) using PF for temperature estimation and
the two-step method for parameter estimation; (b) using APF for temperature estimation and the
two-step method for parameter estimation; and (c) using APF for temperature estimation and the
one-step method for parameter estimation.
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and the two-step method for parameter estimation; (b) using APF for temperature estimation and the
two-step method for parameter estimation; and (c) using APF for temperature estimation and the
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4.4. Discussion

An enhanced estimation method APF based on the combination of PF and adaptive
sample improvement (Section 3.1.2) has been proposed in this research to overcome the
inefficiency of the resampling step due to the uniform distribution of particles. Based
on the result shown in Figure 7, the proposed APF method performs better for lubricant
temperature estimation than the combination of PF and adaptive resampling methods in
higher noise cases. In low-noise cases, the APF results in more accuracy with a narrower
CI; however, the low speed of recovery from confusion caused by voltage change causes
less desirable results compared with the combination of PF and adaptive resampling.

Table 5 compares the performance of combined PF and adaptive resampling with APF
as estimation methods, using the RMSPE of the estimated lubricant temperature (T̂lub). The
outcome of the simulations can vary in each run due to the random nature of the data and
particle generation. Therefore, a set of 20 simulations was conducted, and the average
values of the whole set were reported under each measure. The lower RMSPE specifies
better performance and more accurate estimates, meaning that in the higher measurement
noise, APF performs better. Moreover, in both the APF and PF methods, the more particles,
the better the accuracy, which comes at the price of computation.



Sensors 2023, 23, 1474 23 of 25

Table 5. Performance comparison for different types of estimation methods on Tlub estimation.

Low Noise
σI=3×10−2, σω=3×10−3

High Noise
σI=1.3×10−1, σω=3×10−3

Number of Particles
RMSPE

PF & Adaptive Resampling APF PF & Adaptive Resampling APF

50 2.359% 2.554% 3.596% 3.048%
100 2.216% 2.471% 3.118% 2.691%
150 2.012% 2.292% 2.745% 2.697%
200 1.983% 2.340% 2.742% 2.605%
250 2.015% 2.378% 2.735% 2.589%
300 1.935% 2.436% 2.707% 2.496%
350 1.919% 2.305% 2.748% 2.480%

In the next stage, one-step and two-step parameter estimation methods were applied
for online parameter estimation of the degradation model based on the estimated tempera-
ture of the lubricant (Section 4.2). Based on the comparison of Figures 13, 16 and 17, the
proposed two-step parameter estimation method is superior in terms of accuracy. Addi-
tionally, by analyzing Figure 17a,b, it can be seen that using the APF method to estimate the
temperature of the lubricant will result in a more precise and less fluctuating β̂ estimation.

Table 6 also shows the performance of combined methods of lubricant temperature
and the degradation model’s parameter estimations in terms of RMSPE. Based on the
presented values, the combination of APF and two-step PF results in the lowest RMSPE
among all tested methodologies, indicating greater accuracy.

Table 6. Performance comparison for degradation model estimation evaluation.

First Fault Scenario Second Fault Scenario

Methodology
Average of RMSPE over 20 Simulation Runs

b β b β

APF + Two-step PF 3.947% 2.051% 1.920% 2.709%
PF + Two-step PF 5.081% 3.586% 3.726% 4.707%
APF + one-step PF 136.999% 23.896% 66.172% 24.303%

In the final step, the RUL of RW has been predicted under two fault scenarios and
using the assumed temperature trend (Section 4.3). Comparing Figures 19 and 21, the
accuracy of using the two-step method in online parameter estimation of the degradation
model leads to more precise RUL prediction. Table 7 compares the performance of the three
tested methodologies for their accuracy in predicting RUL in both fault scenarios. Table 7
shows that the combined APF and one-step methods are not only not accurate enough to
predict RUL, but the predicted result using that can also vary in a wide range, making it
unreliable. As can be expected from the results shown in Tables 6 and 7, the accuracy of
using APF compared to PF in estimating lubricant temperature leads to a more accurate
RUL prediction.

Table 7. RUL estimation performance.

First Fault Scenario Second Fault Scenario

Methodology
RUL Estimation Percentage Error over 20 Simulation Runs

Lower Bound Upper Bound Average Lower Bound Upper Bound Average

APF + Two-step PF 0.137% 0.552% 0.346% 0.308% 4.322% 2.343%
PF + Two-step PF 0.868% 2.088% 1.578% 0.428% 4.780% 2.453%
APF + one-step PF 2.308% 8.561% 6.137% 6.675% 16.442% 11.602%
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5. Conclusions

This study proposed a novel approach for estimating the RUL of satellites’ RW. The
proposed methodology was evaluated on the RW remaining useful life estimation case
study resulting from the amount of lubricant left in the RW’s bearing unit and potential
faults in the supplementary lubrication system. The novelty was twofold: (1) the new
adaptive resampling method for the particle filter detailed in Section 3.1.1 and 3.1.2; and
(2) a new multi-step online parameter estimation method detailed in Section 3.1.3. The
proposed approach consists of three steps: in the first step, using the RW’s angular velocity
and motor current as available measurements, the APF was utilized to estimate the lubricant
temperature in the bearing unit. In the second step, the amount of injected lubrication in
the bearing, the estimated lubricant temperature, and the lubrication degradation model
were fed to a two-step PF for online model parameter estimation. Finally, in the third
step, RW’s RUL was predicted under two fault scenarios, including excessive lubrication
loss and insufficient lubrication injection, to evaluate the performance of the proposed
prognostic method. The results showed that the RUL was successfully predicted, with
error rates ranging from ~0.1 to 4%. In conclusion, the proposed scheme can be considered
a practical technique for long-term RUL estimation for deteriorating systems, including
small satellites.

A combination of fault diagnostic and failure prognostic methods can ensure the
validity of the system’s model parameter and the reliability of the prognostic process. A
potential path for future works is to benefit from the proposed multi-step online parameter
estimation method to monitor other parameters of the RW model, particularly the motor
torque constant (kt), which could improve the dependability and accuracy of lubricant
estimated temperature. Further research can also focus on hybrid prognostic methods.
Combining model-based approaches to estimate the current state of the system and data-
driven methods to forecast the future path can enhance and narrow down the CI of the
predicted RUL.
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