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Abstract: Deep learning methods are widely used in sensor-based activity recognition, contributing
to improved recognition accuracy. Accelerometer and gyroscope data are mainly used as input to
the models. Accelerometer data are sometimes converted to a frequency spectrum. However, data
augmentation based on frequency characteristics has not been thoroughly investigated. This study
proposes an activity recognition method that uses ensemble learning and filters that emphasize the
frequency that is important for recognizing a certain activity. To realize the proposed method, we
experimentally identified the important frequency of various activities by masking some frequency
bands in the accelerometer data and comparing the accuracy using the masked data. To demonstrate
the effectiveness of the proposed method, we compared its accuracy with and without enhancement
filters during training and testing and with and without ensemble learning. The results showed that
applying a frequency band enhancement filter during training and testing and ensemble learning
achieved the highest recognition accuracy. In order to demonstrate the robustness of the proposed
method, we used four different datasets and compared the recognition accuracy between a single
model and a model using ensemble learning. As a result, in three of the four datasets, the proposed
method showed the highest recognition accuracy, indicating the robustness of the proposed method.

Keywords: frequency emphasis; ensemble learning; deep learning

1. Introduction

In recent years, the widespread use of smartphones and wearable devices has facili-
tated user activity sensing. These devices can perform activity recognition using accelerom-
eter and gyroscope data as time-series data [1,2]. Activity recognition can be used, for
example, to determine a user’s health status [3,4]. Activity recognition technology can
also be applied to sports such as volleyball and badminton [5,6]. For enhanced service
applications, it is desirable to recognize activities accurately and in detail. For this purpose,
Sikder et al. [7] transformed accelerometer and gyroscope data into frequency and power
spectrum and used them as input to a convolutional neural network (CNN) to classify
six types of activities. That study used the frequency spectrum as input for the model
and evaluate recognition accuracy but did not consider the difference in frequency charac-
teristics between activity. Other studies have focused on the frequency characteristics of
activities. Ooue et al. [8] converted accelerometer data into a power spectrum to determine
the frequency characteristics of different walking patterns and found that they differed
between normal walking and walking with a limp. Therefore, it is likely that the frequency
characteristics of each activity will differ in activity recognition, and there may be important
frequencies for the prediction of each activity. Liu et al. [9] analyzed the power spectrum of
input data to obtain the major frequency bands and proposed a tree-structured wavelet
neural network (T-WaveNet) for time-series signal analysis but did not perform frequency
enhancement of the input data. In this study, we propose an activity recognition method
that identifies the important frequency for recognizing a certain activity, applies a filter that
emphasizes each frequency in the input, and performs ensemble learning during training
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and testing. The aim is to improve the accuracy of activity recognition and to facilitate
the development of various activity recognition services using a general-purpose method
based on frequency enhancement and ensemble learning. As discussed below, parts of
studies on activity recognition proposed converting accelerometer data into a frequency
spectrum as the input of CNN. In contrast, this study makes the following contributions:

• We experimentally identified the important frequency of various activities using the
Human Activity Sensing Consortium (HASC) activity recognition dataset [10].

• We developed a new method to improve the accuracy of activity recognition by
creating a filter that emphasizes the important frequency of each activity and ap-
plying it to training and testing data, training the model with the data, and using
ensemble learning.

2. Related Research
2.1. Sensor-Based Activity Recognition

Various methods for sensor-based activity recognition, including CNN and ensemble
learning, have been developed. Shaohua et al. [11] used three-axis smartphone accelerom-
eter data to perform activity recognition using CNN, Long Short-Term Memory (LSTM),
Bidirectional LSTM, Multilayer Perceptron, and support vector machine (SVM) models, and
compared their accuracies using two large datasets. According to their experimental results,
the CNN model had the highest accuracy. Ito et al. [12] performed Fourier transform pro-
cessing of accelerometer and gyroscope data to create a spectrum image, which was used as
input to a CNN model for activity recognition. This model had three convolutional layers
and three pooling layers. After integrating the features of the spectrogram images from
the accelerometer and gyroscope, classification was performed on all three fully-connected
layers. The best convolution size was obtained by comparing the accuracy of different
convolution sizes in the time and frequency directions. Subasi et al. [13] used ensemble
learning to classify seven types of activities using random forest and SVM methods and
compared their recognition accuracies with that of activity recognition using Adaptive
Boosting combined with these methods. Sakorn et al. [14] used acceleration and gyro data
collected by smartphones for activity recognition. They proposed a method that combines
a 4-layer CNN and an LSTM network, and showed that it improves the average accuracy
by up to 2.24% compared to state-of-the-art methods. Others have proposed models that
combine CNNs and BiGRUs, and have shown to significantly outperform the recognition
accuracy of other RNN models [15]. Nadeem et al. [16] proposed a method for extracting
optimal features using sequential floating forward search (SFFS), and showed that the
recognition accuracy is about 6% higher than when no features are selected. Muham-
mad et al. [17] proposed a two-level model and performed data recognition when multiple
activities are combined. All these studies used data obtained from accelerometers and
gyroscopes as input or spectrogram images to recognize activity. However, none of them
used data that utilized the characteristics of each activity.

2.2. Frequency Characteristics in Activity Recognition

Some studies have used the frequency characteristics of activities. Yoshizawa et al. [18]
used an Infinite Impulse Response (IIR) bandpass filter to detect change points from one
moving activity to another. A change point was detected when the sum of the fluctuations
of each component of the accelerometer data exceeded a certain value. The authors also
identified the important frequency by changing the spectrum coefficients used in the change
point detection method to determine the number of filters and pass frequencies of the IIR
bandpass filter. Fujiwara et al. [19] applied short-term Fourier transform to Doppler sensor
data to calculate the frequency components as features used to construct a lifestyle activity
recognition model. To reduce the dimensionality of the feature values, they used only a
portion of the frequency components. They determined the frequency components reduced
by examining changes in recognition accuracy while reducing high- and low-frequency
components. They found that recognition accuracy was highest when the bandwidth of
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the frequency components used as feature values ranged from 0 to 5 Hz. These studies
have demonstrated that there is an important frequency for activity recognition. However,
such frequency has been used mainly for model analysis or feature reduction and rarely for
improving the accuracy of activity recognition.

2.3. Activity Recognition Using Ensemble Learning

Irvine et al. [20] proposed a neural network ensemble learning method for the recog-
nition of daily activities in a smart home. Zhu et al. [21] used an ensemble learning of
two CNN models to classify seven types of activities. First, they made predictions using
a model that classified the seven types. Subsequently, if the results were of two specific
classes, they made predictions using another model that classified these two types. They
then obtained the final output by performing weighted voting on the outputs of the two
models. Yiming et al. [22] proposed a method that combines extreme learning machines
(ELMs) with pairwise diversity measure and glowworm swarm optimization-based selec-
tive ensemble learning (DMGSOSEN), which achieves higher recognition accuracy with
fewer models than the comparison method. Other methods include a CELearning model
using multiple layers of four different classifiers [23], an ensemble learning model using
Adaboost and SVM [24], a model combining gated recurrent units (GRU), CNN, and deep
neural networks (DNN) [25], and ensemble learning with multiple deep learning mod-
els [26]. Another study [27] applied multiple data augmentation to input data to perform
activity recognition using ensemble learning but did not focus on frequency characteristics.

3. Proposed Method

Figure 1 shows an overview of the proposed method. The proposed method improves
the accuracy of activity recognition by identifying important frequency bands for each
activity, creating a filter to enhance them, and applying each technique (DA: frequency
emphasis in training, TTA: frequency emphasis in testing, and EL: ensemble learning). The
method consists of three phases described in Sections 3.1–3.3.

3.1. Phase 1: Finding the Important Frequency for Each Activity

In this phase, the important frequency for each activity is obtained as follows:

1. The CNN model M is trained using the original accelerometer data xtrain as in general
activity recognition.

2. For acceleration data xvalid the subjects of which differ from that of xtrain, some fre-
quencies are masked by changing f in Equation (1) between (0, fs/2]:

x′ = Fm(x, f ) = i f f t(P( f f t(x), f )). (1)

3. Using the model M trained in step 1, the change in the recognition accuracy of the
data masked in step 2 is examined.

4. Step 3 is performed for each activity C to obtain the set of frequency bands to be
emphasized: F = { f C |C ∈ C} (Figure 1a).

Sensors 2023, 23, x FOR PEER REVIEW 3 of 14 
 

 

the IIR bandpass filter. Fujiwara et al. [19] applied short-term Fourier transform to Dop-

pler sensor data to calculate the frequency components as features used to construct a 

lifestyle activity recognition model. To reduce the dimensionality of the feature values, 

they used only a portion of the frequency components. They determined the frequency 

components reduced by examining changes in recognition accuracy while reducing high- 

and low-frequency components. They found that recognition accuracy was highest when 

the bandwidth of the frequency components used as feature values ranged from 0 to 5 Hz. 

These studies have demonstrated that there is an important frequency for activity recog-

nition. However, such frequency has been used mainly for model analysis or feature re-

duction and rarely for improving the accuracy of activity recognition. 

2.3. Activity Recognition Using Ensemble Learning 

Irvine et al. [20] proposed a neural network ensemble learning method for the recog-

nition of daily activities in a smart home. Zhu et al. [21] used an ensemble learning of two 

CNN models to classify seven types of activities. First, they made predictions using a 

model that classified the seven types. Subsequently, if the results were of two specific 

classes, they made predictions using another model that classified these two types. They 

then obtained the final output by performing weighted voting on the outputs of the two 

models. Yiming et al. [22] proposed a method that combines extreme learning machines 

(ELMs) with pairwise diversity measure and glowworm swarm optimization-based se-

lective ensemble learning (DMGSOSEN), which achieves higher recognition accuracy 

with fewer models than the comparison method. Other methods include a CELearning 

model using multiple layers of four different classifiers [23], an ensemble learning model 

using Adaboost and SVM [24], a model combining gated recurrent units (GRU), CNN, 

and deep neural networks (DNN) [25], and ensemble learning with multiple deep learn-

ing models [26]. Another study [27] applied multiple data augmentation to input data to 

perform activity recognition using ensemble learning but did not focus on frequency char-

acteristics. 

3. Proposed Method 

Figure 1 shows an overview of the proposed method. The proposed method im-

proves the accuracy of activity recognition by identifying important frequency bands for 

each activity, creating a filter to enhance them, and applying each technique (DA: fre-

quency emphasis in training, TTA: frequency emphasis in testing, and EL: ensemble learn-

ing). The method consists of three phases described in Sections 3.1–3.3.  

 

Figure 1. Cont.



Sensors 2023, 23, 1465 4 of 14Sensors 2023, 23, x FOR PEER REVIEW 4 of 14 
 

 

 

 

Figure 1. Overview of the proposed method. (a) Phase 1: Finding the important frequencies of each 

activity; (b) Phase 2: Emphasis during training; (c) Phase 3: Emphasis during testing. 

3.1. Phase 1: Finding the Important Frequency for Each Activity 

In this phase, the important frequency for each activity is obtained as follows: 

1. The CNN model 𝑀 is trained using the original accelerometer data 𝑥𝑡𝑟𝑎𝑖𝑛 as in gen-

eral activity recognition. 

2. For acceleration data 𝑥𝑣𝑎𝑙𝑖𝑑  the subjects of which differ from that of 𝑥𝑡𝑟𝑎𝑖𝑛, some fre-

quencies are masked by changing f in Equation (1) between (0, 𝑓𝑠/2]: 

𝑥′ = 𝐹𝑚(𝑥, 𝑓) = 𝑖𝑓𝑓𝑡(𝑃(𝑓𝑓𝑡(𝑥), 𝑓)). (1) 

3. Using the model 𝑀 trained in step 1, the change in the recognition accuracy of the 

data masked in step 2 is examined.  

4. Step 3 is performed for each activity  𝒸 to obtain the set of frequency bands to be 

emphasized: ℱ = {𝑓𝒸|𝒸 ∈ 𝒞} (Figure 1a). 

Note that 𝑥 ∈ ℝ3×𝑤 is the triaxial accelerometer data (𝑤 is the window size), 𝑓𝑓𝑡(⋅) 

is the Fourier transform, 𝑖𝑓𝑓𝑡(⋅) is the inverse Fourier transform, 𝑃(∙) is the process of 

masking frequency bands, 𝐹𝑚(𝑥, 𝑓) is the data after mask processing, 𝑓𝒸 is the important 

frequency at a given activity 𝒸, and 𝑓𝑠  is the sampling frequency of the accelerometer 

data. The frequency of 0 Hz is not masked because it is a DC component. The maximum 

frequency to be masked is 𝑓𝑠/2 because the frequency of the Fourier-transformed data has 

a maximum value of 1/2 of the sampling frequency. The frequency at which the recogni-

tion accuracy decreases is considered the important frequency. 

3.2. Phase 2: Emphasis during Training 

In this phase, the CNN model 𝑀𝑐 is trained on the training data 𝑥𝑡𝑟𝑎𝑖𝑛 using ℱ cal-

culated as described in Section 3.1, with the frequency band enhancement filter of Equa-

tion (1) applied to the data (Figure 1b). The number of models is |𝒞| because the models 
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Note that x ∈ R3×w is the triaxial accelerometer data (w is the window size), f f t(·)
is the Fourier transform, i f f t(·) is the inverse Fourier transform, P(·) is the process of
masking frequency bands, Fm(x, f ) is the data after mask processing, f C is the important
frequency at a given activity C , and fs is the sampling frequency of the accelerometer
data. The frequency of 0 Hz is not masked because it is a DC component. The maximum
frequency to be masked is fs/2 because the frequency of the Fourier-transformed data has a
maximum value of 1/2 of the sampling frequency. The frequency at which the recognition
accuracy decreases is considered the important frequency.

3.2. Phase 2: Emphasis during Training

In this phase, the CNN model Mc is trained on the training data xtrain using F
calculated as described in Section 3.1, with the frequency band enhancement filter of
Equation (1) applied to the data (Figure 1b). The number of models is |C| because the
models are trained using data enhancing the important frequency of each activity. The
frequency band weighting filter is implemented as Equation (1) where P(·) is the process
of frequency band enhancement. The f C obtained in Phase 1 is input to f in Equation (1).

In this study, four types of window functions were used as filters to enhance the
frequency bands. Examples of the filters used are shown in Figure 2. The peak window
does not change the amplitude spectrum of the important frequency of each activity as
determined experimentally but multiplies the amplitude spectrum of the other frequencies
by a factor of 1/2. The Gaussian window is a normally distributed window, with the
important frequency of each activity as the mean and a standard deviation of 10 adjusted
so that the maximum value is 1 and the minimum value is 0.5. The triangular window
is a window with the amplitude spectrum of the important frequency of each activity as
the vertex. The minimum value is set to 0.5. Random window is a random value of 0.5–1
applied to the (0,7.8] Hz portion of the amplitude spectrum. Using the random window, we
determined whether the emphasis on the important frequency of each activity contributes
to improving the accuracy of activity recognition. Figure 2 shows the filter for f c = 3 Hz.
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3.3. Phase 3: Emphasis during Testing

In this phase, Equation (1) was applied to the testing data xtest and inputted to the
model Mc trained in the previous phase. The final output is the result of the majority
voting on the output of each model (Figure 1c). This method can be regarded as a kind
of Test Time Augmentation (TTA) [28], a method in which the testing data are processed
to create several types of data, where the input data are augmented by frequency band
enhancement filters.

Note that in this study, in order to eliminate differences in recognition accuracy due to
differences in model structure, we used VGG16 [29] as the unified model used in Phases 1,
2, and 3.

4. Evaluation Experiment
4.1. Experiment Summary

We first conducted an experiment to determine the important frequency band for each
activity. We masked some frequencies in the accelerometer data and used these data as
input to the model to examine changes in accuracy and identify the important frequency
(i.e., the frequency at which accuracy decreased). Next, using the obtained frequency,
we created a frequency band enhancement filter for each activity and applied it to the
accelerometer data. We then conducted an ablation study to evaluate the contribution
of the three components of the proposed method (frequency emphasis during training,
frequency emphasis during testing, and ensemble learning) to recognition accuracy.
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4.2. Experimental Setup
4.2.1. Model Structure and Training Procedures

In the experiments, we used VGG16 as an activity recognition model modified for 1D
data. To reduce the influence of the model’s classifier, we applied a shallow classifier using
global average pooling, and the classifier was a single fully-connected layer. In training,
the batch size was set to 256, the learning rate was set to 0.001, and the number of epochs
was set to 200. The kernel size was set to three, the stride width was set to one, no padding,
Rectified Linear Unit was the activation function, and the pooling size was set to two.

4.2.2. Dataset

The HASC dataset was used for activity recognition. The sampling frequency was
100 Hz. We randomly sampled the acceleration data from 80 persons for training, 20
for validation, and another 30 for testing. The window size was 256 samples, divided
into time series. Six activity labels were used: stay (standing still), walk (walking), jog
(jogging), skip (skipping), stUp (climbing up a staircase), and stDown (climbing down a
staircase). Accelerometer data contain noise; however, in this study, we assumed that the
deep learning model could solve the classification problem even if the raw acceleration
data have noise. As a preprocessing step, we divided the data into time series using a
sliding window method, and we did not conduct further preprocessing.

4.3. Experiment Conducted to Identify Important Frequency

Figure 3 shows the results of the experiment conducted to determine the important
frequency band for each activity. Figure 3a shows that the accuracy of stay did not change
after the experiment, suggesting that the DC component at 0 Hz was important. Figure 3c
shows that the accuracy increased when the frequency around 1 Hz was masked. Figure 3e
shows that the recognition accuracy decreased when the frequency around 1 Hz was
masked. This frequency was important for stUp. Masking presumably improved accuracy
because it enabled the correct classification of jog data that had been misclassified as stUp.
Table 1 shows the important frequency for each activity. Relatively slow-moving activities,
such as walk and stUp, had low important frequency, while relatively fast-moving activities,
such as jog and stDown, had high important frequency. Based on these results, we created
a filter that emphasized the frequency around the selected frequency.
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Figure 3. Important frequency of each activity in HASC. The blue line in the graph shows the
recognition accuracy when we masked the frequencies of the original sensor data in order. The red
line shows the recognition accuracy when we used the original data. The yellow point is the lowest
recognition accuracy when we use the frequency masked data. Each activity is (a) stay, (b) walk,
(c) jog, (d) skip, (e) stUp, and (f) stDown.

4.4. Ablation Study
4.4.1. Experimental Procedure

In the training emphasis phase, six models were trained since HASC has six different
activities. In ablation study, we compared eight models listed in Table 2 to evaluate the
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effectiveness of DA, TTA, and EL proposed in this paper. (a) is our proposed method.
(b) uses DA and TTA with a single model. (c) uses DA with EL in which each branch uses
the same original sensor value in testing phase. (d) uses only DA with a single model.
(e) uses TTA with EL in which each branch is trained using the same original sensor value.
(f) only uses TTA. (g) is a simple ensemble learning, and (h) is a simple single model. In (b)
and (f), a single model makes six predictions, applying a different enhancement filter to the
test data xtest each time a prediction is made.

Table 1. Important frequency of each activity in HASC.

Activity Frequency (Hz)

stay 0.00
walk 0.78
jog 3.13

skip 1.56
stUp 1.17

stDown 1.95

Table 2. Accuracy of the eight methods used in the experiment. DA, TTA, and EL are denoted by
Xfor those applied and x for those not applied. The highest accuracy is underlined and bolded, and
the second highest is underlined.

Method DA TTA EL Accuracy

(a) X X X 0.890
(b) X X x 0.877
(c) X x X 0.881
(d) X x x 0.876
(e) x X X 0.880
(f) x X x 0.845
(g) x x X 0.880
(h) x x x 0.873

4.4.2. Results

Table 2 shows the validation results: the highest accuracy in bold and underlined
and the second-highest accuracy in underlined. Our proposed method (a) comprised
of the ensemble learning method with the frequency band enhancement filter applied
during training and testing had the highest accuracy, demonstrating the effectiveness of
the proposed method. Comparing (a) with (b), (c), and (e), the difference between (b)
and (a) was the largest. This suggests that ensemble learning contributed the most to
the improvement in accuracy. Comparing (a) and (g), the accuracy of (a) was about 1%
higher than that of (g), suggesting that applying a frequency band enhancement filter to the
dataset was effective. Between (f) and (h), (f) had lower accuracy. This may be because an
enhancement filter was used only during testing, and data that could not be classified by
the features learned during training were inputted, resulting in low accuracy. Between (b)
and (h), (b) had higher accuracy, suggesting that the use of the enhancement filter during
testing was more effective when combined with its use during training.

4.5. Effects of Window Functions

Table 3 shows the validation results: the highest accuracy in bold and underlined and
the second-highest accuracy underlined. Accuracy was highest when using the Gaussian
window, suggesting that a Gaussian window is appropriate for creating a frequency band
enhancement filter. The lowest accuracy was obtained when a random filter was applied,
suggesting that an emphasis on the important frequency band of each activity when
creating a filter contributes to higher activity recognition accuracy. Furthermore, recognition
accuracy was lower when the peak window was applied than when the Gaussian window
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was applied, suggesting that it is more effective to emphasize the frequency around the
important frequency than a single frequency.

Table 3. Accuracy when each filter was applied. The highest accuracy is underlined and bolded, the
second highest is underlined.

Filter Type Accuracy

Peak window 0.890
Gaussian window 0.896

Triangular window 0.888
Random 0.872

4.6. Validation Using Multiple Datasets
4.6.1. Datasets

To evaluate the robustness of the proposed method, we conducted experiments com-
paring some public datasets: HASC, UniMiB [30], PAMAP2 [31], and HHAR [32]. In this
experiment, we adopted “VGG16” as a single baseline model, “Ensemble learning” as a
simple ensemble model, and “Proposed method” combining DA using Gaussian window,
TTA, and EL. In UniMiB, we randomly sampled the acceleration data from 20 persons for
training, five for validation, and another five for testing. The window size was 151 samples,
divided into time series. There were 17 activities in total. In PAMAP2, we randomly sam-
pled the acceleration data from five persons for training, two for validation, and another
two for testing. The window size was 256 samples, and the stride size was 128 samples for
time series segmentation. There were 12 activities in total. In HHAR, we randomly sampled
the acceleration data from five persons for training, two for validation, and another two for
testing. The window size was 256 samples, and the stride size was 256 samples for time
series partitioning. There were six different activities.

4.6.2. Results

Figures 4–6 show the results of phase 1 of the proposed method to investigate the
important frequency of different activities in UniMiB, PAMAP2, and HHAR, respectively.
Table 4 shows the accuracy of the three models using each dataset. The highest accuracy
for each dataset is shown in bold. The proposed method had higher accuracy than the
ensemble learning when using HASC, PAMAP2, and HHAR and lower accuracy than the
ensemble learning when using UniMiB. Thus, the effectiveness of the proposed method
was demonstrated in three of the four datasets. This indicates that the proposed method
is robust in different domains. Table 4 shows that the difference in accuracy between
ensemble learning and the proposed method is smaller than the difference in accuracy
between VGG16 and ensemble learning. This suggests that the effect of the improvement in
accuracy by ensemble learning is greater than the application of the frequency-enhancement
filter. In PAMAP2 the accuracy of the proposed method is a little less than the conventional
ensemble method but reaches almost the same estimation accuracy. The proposed method
employs a frequency-enhanced method for each activity label compared to the conventional
ensemble. Therefore, the proposed method may not be more effective than the conventional
ensemble method when there are a very large number of behaviors and when similar
behaviors are included. It can also be seen that the accuracy of ensemble learning is higher
than the accuracy of the proposed method when the UniMiB dataset is used. This may be
due to the fact that, as shown in (b), (c), and (p) in Figure 6, there are more activities with a
smaller decrease in recognition accuracy when mask processing is performed than in the
other datasets.
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Figure 4. Important frequency of each activity in UniMiB. The blue line in the graph shows the
recognition accuracy when we masked the frequencies of the original sensor data in order. The
red line shows the recognition accuracy when we used the original data. The yellow point is the
lowest recognition accuracy when we use the frequency masked data. Each activity is (a) Standin-
gUpFS, (b) StandingUpFL, (c) Walking, (d) Running, (e) GoingUpS, (f) Jumping, (g) GoingDownS,
(h) LyingDownFS, (i) SittingDown, (j) FallingForw, (k) FallingRight, (l) FallingBack, (m) HittingOb-
stacle, (n) FallingWithPS, (o) FallingBackSC, (p) Syncope, (q) FallingLeft.

Table 4. Accuracy of the three models using each dataset. Bold type indicates the highest accuracy
using the respective dataset.

Method HASC UniMiB PAMAP2 HHAR

VGG16 0.873 0.663 0.787 0.715
Ensemble learning 0.880 0.707 0.812 0.753
Proposed method 0.896 0.703 0.818 0.760
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Figure 5. Important frequency of each activity in PAMAP2. The blue line in the graph shows the
recognition accuracy when we masked the frequencies of the original sensor data in order. The red
line shows the recognition accuracy when we used the original data. The yellow point is the lowest
recognition accuracy when we used the frequency masked data. Each of these activities is (a) lying,
(b) sitting, (c) standing, (d) walking, (e) running, (f) cycling, (g) Nordic walking, (h) ascending stairs,
(i) descending stairs, (j) vacuum cleaning, (k) ironing, and (l) rope jumping.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 14 
 

 

recognition accuracy when we used the frequency masked data. Each of these activities is (a) lying, 

(b) sitting, (c) standing, (d) walking, (e) running, (f) cycling, (g) Nordic walking, (h) ascending stairs, 

(i) descending stairs, (j) vacuum cleaning, (k) ironing, and (l) rope jumping. 

   

   

Figure 6. Important frequency of each activity in HHAR. The blue line in the graph shows the recog-

nition accuracy when we masked the frequencies of the original sensor data in order. The red line 

shows the recognition accuracy when we used the original data. The yellow point is the lowest 

recognition accuracy when we used the frequency masked data. Each activity is (a) Biking, (b) Sit-

ting, (c) Standing, (d) Walking, (e) Stair Up, and (f) Stair down. 

Table 4. Accuracy of the three models using each dataset. Bold type indicates the highest accuracy 

using the respective dataset. 

Method HASC UniMiB PAMAP2 HHAR 

VGG16 0.873 0.663 0.787 0.715 

Ensemble learning 0.880 0.707 0.812 0.753 

Proposed method 0.896 0.703 0.818 0.760 

Table 5. Important frequency of each activity in UniMiB. 

Activity Frequency (Hz) 

StandingUpFS 0.00 

StandingUpFL 4.30 

Walking 7.28 

Running 2.65 

GoingUpS 0.99 

Jumping 1.32 

GoingDownS 1.65 

LyingDownFS 2.98 

SittingDown 0.33 

FallingForw 1.65 

FallingRight 0.66 

FallingBack 0.33 

HittingObstacle 3.31 

FallingWithPS 0.33 

FallingBackSC 0.33 

Syncope 1.98 

FallingLeft 0.66 

  

Figure 6. Important frequency of each activity in HHAR. The blue line in the graph shows the
recognition accuracy when we masked the frequencies of the original sensor data in order. The red
line shows the recognition accuracy when we used the original data. The yellow point is the lowest
recognition accuracy when we used the frequency masked data. Each activity is (a) Biking, (b) Sitting,
(c) Standing, (d) Walking, (e) Stair Up, and (f) Stair down.

Table 5 shows that the important frequencies for Falling Right and Falling Left are
identical. This is thought to be because they are almost identical activities, differing only in
the direction of falling. Table 6 shows that, similar to HASC, PAMAP2 was less important
for relatively slow-moving activities such as lying and sitting and more important for
relatively fast-moving activities such as running and rope jumping. Table 7 shows that the
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HHAR includes only relatively slow-moving activities, which may account for the lower
important frequencies.

Table 5. Important frequency of each activity in UniMiB.

Activity Frequency (Hz)

StandingUpFS 0.00
StandingUpFL 4.30

Walking 7.28
Running 2.65

GoingUpS 0.99
Jumping 1.32

GoingDownS 1.65
LyingDownFS 2.98
SittingDown 0.33
FallingForw 1.65
FallingRight 0.66
FallingBack 0.33

HittingObstacle 3.31
FallingWithPS 0.33
FallingBackSC 0.33

Syncope 1.98
FallingLeft 0.66

Table 6. Important frequency of each activity in PAMAP2.

Activity Frequency (Hz)

lying 0.39
sitting 0.78

standing 3.91
walking 1.95
running 2.73
cycling 1.56

Nordic walking 1.95
ascending stairs 1.56

descending stairs 0.39
vacuum cleaning 0.78

ironing 0.39
rope jumping 2.34

Table 7. Important frequency of each activity in HHAR.

Activity Frequency (Hz)

Biking 0.39
Sitting 0.39

Standing 0.39
Walking 0.78
Stair Up 1.17

Stair Down 2.34

5. Conclusions

In this study, in order to improve the accuracy of activity recognition prediction
and to develop a variety of activity recognition services, we proposed a general-purpose
method based on frequency enhancement and ensembles. The proposed method (1) finds
important frequency in predicting each activity and creates a filter that emphasizes the
found frequency, (2) trains the model by applying the filter to training data, and (3) performs
ensemble learning by applying the filter to testing data.

The experiments conducted to identify the important frequency of each activity re-
vealed that the DC component of stay (0 Hz) was important. Relatively slow-moving
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activities are expected to have a lower important frequency, while relatively fast-moving
activities are expected to have a higher important frequency.

Ablation study results showed that the proposed method combining emphasis during
training and testing and ensemble learning resulted in the highest recognition accuracy. En-
semble learning was the element that contributed the most to the accuracy of the proposed
method. The frequency band enhancement filter was effective when applied to both the
training and testing data but not when applied only to the testing data.

In an experiment conducted to examine the effect of the window function, four differ-
ent filtering patterns were tested and compared in terms of recognition accuracy. Accuracy
was highest when the filter was created with a Gaussian window and lowest when a ran-
dom filter was applied, suggesting that emphasizing important frequency when creating
filter results in higher accuracy. In addition, although this study proposes a method of
emphasizing important frequencies for each activity, it is thought that the accuracy of recog-
nition may be further improved by emphasizing or weakening the frequencies according
to their importance.

An experiment was conducted to verify the robustness of the proposed method in
different domains. The results showed that the proposed method performed better than
an ensemble learning method in three out of four datasets (HASC, PAMAP2, and HHAR),
demonstrating its robustness in different domains.

In this study, we used VGG16 in the phase of finding important frequencies and would
like to experiment to see if the important frequencies change depending on the structure
of the model. Additionally, the most important frequency of each activity is emphasized
to improve the estimation accuracy of activity recognition. In addition to emphasizing
the most important frequencies, we believe that the recognition accuracy can be further
improved by emphasizing or de-emphasizing the frequencies according to their importance.
We would like to create a frequency band enhancement filter other than the one used in this
study and verify the change in accuracy. In addition, since the range of values applied to the
amplitude spectrum in this study was between 0.5 and 1, we would like to investigate how
the accuracy changes when the values are varied. We would also like to further improve
the accuracy by using deep learning to create the frequency filter itself. As described above,
we believe that the recognition accuracy can be improved over the current accuracy by
changing the method of creating the frequency band enhancement filter.
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