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Abstract: Driver’s hands on/off detection is very important in current autonomous vehicles for
safety. Several studies have been conducted to create a precise algorithm. Although many studies
have proposed various approaches, they have some limitations, such as robustness and reliability.
Therefore, we propose a deep learning model that utilizes in-vehicle data. We also established a data
collection system, which collects in-vehicle data that are auto-labeled for efficient and reliable data
acquisition. For a robust system, we devised a confidence logic that prevents outliers’ sway. To
evaluate our model in more detail, we suggested a new metric to explain the events, considering state
transitions. In addition, we conducted an extensive experiment on the new drivers to demonstrate our
model’s generalization ability. We verified that the proposed system achieved a better performance
than in previous studies, by resolving their drawbacks. Our model detected hands on/off transitions
in 0.37 s on average, with an accuracy of 95.7%.

Keywords: hands on/off; autonomous vehicle; deep learning; data collection system; state transition

1. Introduction

Since the late 19th century, autonomous driving has been deeply studied with the
success of deep learning and the improvement of various sensors. The autonomous driving
is the most alluring technology to not only the traditional vehicle makers but also to aris-
ing Information Technology(IT) companies. The Society of Automotive Engineers (SAE)
defined autonomous driving as six levels (zero to five) [1]. Levels zero to two correspond
to the driving assistance, in which the driving responsibility lies with the driver; levels
three to five correspond to autonomous driving, in which the driving responsibility lies
with the system. In December 2021, the Mercedes-Benz group was certified as a level
three autonomous driving system from the German Federal Automobile Transport Ad-
ministration (KBA; Kraftfahrt-Bundesamt) based on the UN-R157 standard, and was the
first international standard to define a level three system [2]. Auto Pilot, one of the most
famous autonomous driving systems of Tesla, corresponds to level two of the SAE levels.
Accordingly, almost all autonomous driving functions all over the world are at level two
now, and the level two function is also known as the Advanced Driver Assistance System
(ADAS). It provides drivers some convenience or prevents accidents in many situations, by
containing the Lane Following Assist (LFA), Highway Driving Assist (HDA), etc. At level
two, all ADAS functions are designed to be used as hands on, but some drivers misuse
them as hand off. For safety, the United Nations created UN regulation 79, whichforces
vehicles to sound an alarm to the drivers when they are “hands off” [3]. The consecutive
warning procedure is as follows. The vehicles will notice the driver’s hands off the wheel
and provide an optical warning with pictorial information after 15 s at the latest. Then, if
the driver does not grip the steering wheel rim after 30 s at the latest, some parts of the
optical information must turn red and the acoustic warning signal should be provided.
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Lastly, at the last 30 s after the acoustic warning has started, the ADAS function must be
automatically deactivated. After deactivation, the vehicle must inform the driver about
it by a new acoustic signal for at least 5 s. Meanwhile, some ADAS functions operate
differently when the driver drives and when the system drives. Therefore, the vehicle
should notice whether the driver wants to drive on his/her own. The driver might feel
uncomfortable if the system intervenes when he/she is driving and it could be dangerous
due to the unwanted maneuver. In addition, following the SAE levels, the driver is not
obliged to monitor the driving situation at level three. However, the driver has to take
control immediately if an emergency occurs. At the same time, the autonomous vehicle has
to give control to the driver as soon as it notices the driver’s intervene intention. Therefore,
the accurate hands on/off detection (HOD) is required for the ADAS control at the current
autonomous driving level.

Early studies mainly utilized the driver’s steering torque applied to the steering wheel
when the driver grips it. Moreillon et al. [4] estimated the torque using the torsion bar
sensor of the electric power steering (EPS) and angle encoder of a motor to consider the
torque solely generated by the driver, except for the torque generated by the road surface.
Schinkel et al. [5] estimated a transfer function between the EPS torque and steering column
and decided the driver intervention on the simulator. Differently from other studies, which
only considering the driver torque, Wang et al. [6] decided the driver intervention in a Lane
Keeping Assist (LKA) situation, in which the driver torque and LKA function’s torque were
combined. Moreillon et al. [7] and Xing et al. [8] predicted the driver’s driving intention
and suggested various goals under several driving scenarios.

Some studies directly measured the driver’s torque by attaching sensors to the steering
wheel rim. Li et al. [9] used a strip-shaped flexible grip sensor to measure driver fatigue.
Muhlbacher-Karrer et al. [10] used inkjet-printed electrodes on a bendable substrate to
detect where the hands touch and capacitance. They modeled a optimal electrode structure
based on the finite element simulation method. Chen et al. [11] utilized nine-axis sensor
readings from a wearable sensor and its bluetooth-paired smartphone. They divided the
steering wheel into a 12 o’clock position and figured out where a hand is placed based on
the static hand location information and dynamic rotation information. However, these
sensor-based systems might not work properly if the driver is wearing gloves.

With the development of camera sensors, computer vision and deep learning, camera
image-based studies have been conducted. Johansson et al. [12] detected the driver’s hand
and steering wheel from camera images using a convolutional neural network (CNN)
and long short term memory (LSTM). The camera is mounted above the driver head;
thus, this system is vulnerable underneath the steering wheel. Hoang et al. [13] and
Rangesh et al. [14] also used camera images to detect whether the driver is holding a steer-
ing wheel. They constructed their network based on the traditional CNN, such as Faster
R-CNN [15]. Yudkin et al. [16] utilized synthetic photo-realistic in-cabin data when few real
data are available. Expanding the research area, some studies are conducted to detected
driver distraction, including hands on/off detection from images [17–19]. Meanwhile,
to overcome the weakness of camera images, such as the low reliability to illuminance
changes, Borghi et al. [20] utilized infrared images instead of RGB ones.

Torque estimation logic is relatively simple and easy to compute but does not guar-
antee precise torque and needs to set a certain threshold. It might also need to newly
set depending on the drivers or vehicle types. Utilizing the attached sensors can help in
detecting more accurately, but it costs. It leads to the increment of expense, and attempts to
use other sensors on the steering wheel, such as bio sensors. In addition, there is a fatal
disadvantage, where the HOD function cannot be used at all until a new sensor is replaced
if a sensor breaks. Camera image-based approaches have advantages of using images and
deep learning. Images have more information than the torque and sensors on the steering
wheel, and deep learning can help more precise modeling. However, it has the same
disadvantages of sensors on the steering wheel, such as high cost, breakdown and inherent
disadvantages of the camera itself. Moreover, labelling the image manually has a high cost,
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and very precise labelling is needed for training a model. One more important aspect is that
the above-mentioned studies evaluated their system on typical metrics such as accuracy,
precision and recall. Considering the actual driving, drivers are holding or not holding the
steering wheel almost all the time, with only a short moment of state transitions. However,
the model’s wrong detections mainly occur when the hands on/off state changes. Therefore,
traditional metrics have limits to explain hands on/off detection events. A new metric,
which describes how accurately and how fast a model detects the state transition, is needed.
Therefore, to overcome all those limitations, we propose a deep learning-based driver’s
hands on/off detection model using in-vehicle data from the controller area network (CAN).
This system is cost-free and less likely to break down, as it does not need any extra sensors.
It is also robust, because in-vehicle data are measurable independent of external conditions.
Moreover, we established a data collection system, which stores time-synced in-vehicle
data and whether a driver is holding the steering wheel. Additionally, we defined a new
metric considering the hands on/off state change for a comprehensive understanding of
driving to evaluate our model. The main contributions of this study are:

• A data collection system that we made can help save significant time and cost to prepare
data for training a deep learning model, and supervised by making data to be collected
with labels. It guarantees high precision and can be utilized to similar tasks with
a few modifications.

• We utilized in-vehicle data instead of any extra sensors. It helps us to reduce develop-
ment costs and to make a system more reliable.

• The proposed new metric, considering the state transition, helps to understand the
model’s performance in a more comprehensive way.

• Our model is validated in that it also works well for the new drivers. It can be used
universally by the new drivers with few drivers’ data.

The rest of this paper is structured as follows. Section 2 gives a description of a data
collection system that we built, dataset and preprocessing methods. Section 3 provides the
description of the model structure of our deep neural network, the confidence logic and the
evaluation metrics. In Section 4, the experimental setup and results are presented. Finally,
the conclusion of our work and directions for future work are presented in Section 5.

2. Dataset

In image-based studies, the researchers of [12–14,16–18] spent significant time labelling
their image data. This requires the high cost of human resources and money, and it is
challenging to precisely label a confusing image, such as right before touching the steering
wheel. It makes it difficult to make use of big data.

2.1. Data Collection System

We established a data collection system using a capacitive sensor in Figure 1 to store
the time-synced in-vehicle data and ground truth. A capacitive sensor measures a tiny
current from a driver’s hand so it can be used as a ground truth for whether a driver’s
hand is on the steering wheel in the in-vehicle data. However, we could not cover the
whole steering wheel with that because it is square-shaped and very small. Therefore,
we added a copper wire and tape to enlarge the contact area. A copper wire and tape
covered a steering wheel, and a copper wire was connected to a capacitive sensor at one
end, as shown in Figure 2a. A wire mainly helps in conveying a current to the capacitive
sensor, and a tape enlarges the contact area. A capacitive sensor is connected to an Arduino
board (Figure 2b) and measures a current as positive (1) or negative (0) for each hands
on/off. The in-vehicle data was measured by CANape application and a VN1630A device
of Vector [21]. Both in-vehicle data and the hands on/off label is recorded in a python
program via serial communication and the win32com library [22]. These data are stored
every 10ms in a time-sync (under 1 ms difference) by comparing their timestamp. This
data collection system is needed only when we collect data for training a model, and every
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vehicle on a road can make use of our HOD model without this system. This system is
very economical because a sensor and a board is cheap, and is powerful because we do not
need a labelling process at all. It can also be used or extended easily for other studies using
in-vehicle data and hands on/off data.

Figure 1. A capacitive sensor.

(a) (b)
Figure 2. Data collection system. (a) The steering wheel covered with copper wire and tape; (b) a ca-
pacitive sensor connected to an Arduino board.

2.2. Data Description

Figure 3 shows where we collected data. We searched for some low-traffic roads
because driving without holding the steering is dangerous. To discern for in-vehicle data
variance between the hands on the steering wheel and from a rough surface, asphalt roads,
bumps, sidewalk-blocked roads and unpaved roads are included. The deep learning model
does nit need to discern between these types of roads, but has to capture the variances of
the hands on/off states according to the road types. Data were mainly collected under
a soft steering scenario with a real vehicle. The speed varies from 30 kph to 90 kph. A single
drive is about a minute and is comprised of 4∼6 consecutive hands on/off changes, on
average. A total of 3 drivers from ages 26 to 30, who have driving experiences of more
than 5 years, participated in the study. About 5 h and 25 min of valid data were collected,
except in low-speed situations (under 5 kph), as shown in Table 1. Data collected under
5 kph were discarded, since we defined the “driving” state as above 5 kph, considering
vehicle dynamics. Since we drove only on the safe roads, the length of a single drive was
not long enough. Therefore, we had to spend much more time driving than the actual total
data length shows (about 5.5 h). However, balancing the data for classification was made
relatively easy by repeating a short road several times.

The input signals of a model is as shown in Table 2. We selected four signals highly
related to the steering, in order to detect the hands on/off. We also wanted a lightweight
model to embed an electronic control unit (ECU); thus, we selected only a few signals. The
output of our model is a probability of the hands on (Table 3). Since we defined 1 as hands
on and 0 as hands off, the output value can be interpreted as a “hands on” probability.
Figure 4 shows an example of input signals. The blue and transparent background means
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the hands on state and hands off state, respectively. These data were collected while driving
around at 43 kph with 5 state transitions.

(a) (b)

(c) (d)

Figure 3. Data collection roads. (a) An asphalt road with a bump (red rectangle); (b) an asphalt road;
(c) an unpaved road; (d) a sidewalk blocked road.

Table 1. Summary of collected data. Total data are about 5 h and 35 min, and were well balanced.

Road Type Label Data Size (Proportion)
Hands on 1 h 20 m (55.91%)

Asphalt
Hands off 1h 3m (44.09%)

Hands on 1 h 48 m (58.96%)
Unpaved/Blocked

Hands off 1 h 15 m (41.04%)

Table 2. Input data of a deep learning model.

Input Data Minimum Value Maximum Value Unit
Steering wheel angle −466.0 486.4 deg

Steering wheel column torque −4.6 6.0 Nm

Steering motor speed −1413.8 1459.4 rpm

Steering motor current command −53.1 46.3 A

Table 3. Output data of a deep learning model.

Output Data Minimum Value Maximum Value Unit
Hands on probability 0 1 -
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Figure 4. An example of collected data. Hands on and hands off state was shown as blue and with
transparent background, respectively. All signals except for vehicle speed were min-max normalized.

2.3. Data Preprocessing

Data were split into a train, validation and test set of a ratio of 0.6, 0.2, and 0.2,
respectively, following common practice. Each dataset keeps the same proportion of roads
and drivers as the total data. A few missing values can be observed as the data frequency
being too fast. Since there are no drastic changes within 10ms, the missing values were
replaced with the previous value. Then, data were resampled to 10 Hz, which is enough to
detect signal changes, and each signal was normalized between 0 and 1 to have the same
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importance between signals. Lastly, the time window of the 100ms stride is applied for the
LSTM input.

3. Proposed System

In this chapter, the proposed system is introduced. The architecture of a model and
a confidence logic for the robust output are discussed. When it comes to the evaluation
metrics, we propose a new HOD metric, considering the state transition.

3.1. Model Architecture

We had two options to implement the hands on/off detection function, machine learn-
ing and deep learning. Although machine learning also demonstrates a good performance
on the binary classification problem, deep learning is advantageous because of its scalability
and generalization. Therefore, we chose the deep learning-based approach. We used a long
short term memory (LSTM) [23] layer to handle the time series data. We also intended
a lightweight network to be advantageous for embedding in the in-vehicle system with the
limited computational resource. Therefore, only one LSTM layer with 64 neurons is used
as an input layer, then, fully connected (FC) layers are followed. The FC layers gradually
lessen the neurons with relu activation, and the output FC layer has one neuron with the
sigmoid activation. The sigmoid activation gives an output between 0 and 1, and it could
be interpreted as a probability. The full architecture is summarized in Table 4 and depicted
as a diagram in Figure 5. B and W mean batch size and window size, respectively. We used
128 as the batch size and 10, 20 and 30 as the window size in the experiments.

Table 4. HOD model structure.

Layer Neuron Activation Function

LSTM 64 Tanh

FC 32 Relu

FC 8 Relu

FC 1 Sigmoid

Figure 5. A diagram of proposed network and data.

The cross entropy was used as a loss function. In Equation (1), y denotes the ground
truth (0 or 1) and p denotes the model’s output probability. The cross entropy function
measures the difference between the true probability distribution and model’s prediction
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distribution and is minimized during training. The Adam optimizer [24] is adopted to
minimize the loss because it performs well in common classification problems.

crossentropy = −(ylog(p) + (1− y)log(1− p)) (1)

3.2. Confidence Logic

The confidence logic is a kind of postprocess applied to the predictions of a network.
The raw predictions of a network are somewhat unstable. Figure 6 shows an example of
the raw prediction by a threshold of 0.5, that is, the probability over 0.5 is hands on and the
other is hands off. Some outliers can be observed around 12 s. It might be a slight loss when
it comes to the entire accuracy, but it can be a crucial error in terms of the state transition and
its maintenance. Therefore, we devised a confidence logic for a robust prediction, as follows.
To avoid a quick state transition by outliers, the recent 3 model’s ouput probabilities (for
0.3 s) are used for a prediction (Equation (2)). Then, the hands on/off state is determined by
comparing a mean of those probabilities to the upper and lower thresholds (Equation (3)).
The upper and lower thresholds are set after the testing of different values and designed to
more quickly detect a transition from hands on to hands off.

Ot =
1
3

2

∑
n=0

ot−n (2)

 hands on i f 0.6 <= Ot
previous state else i f 0.45 <= Ot < 0.6

hands o f f else
(3)

Figure 6. Raw predictions of a network.

Figure 7 shows the confidence logic applied to the result in Figure 6. Outliers around
12 s were adjusted to remain on the correct label. A short delay also occurred when the
state changed because an effect of the current probability was lessened. However, a slower
and but stable detection is more desirable than a quick but fluctuating detection.
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Figure 7. Predictions of a network with a confidence logic.

3.3. Evaluation Metric

We evaluated our model on two metrics: (1) Common classification evaluation metric;
(2) HOD metric. The former means the accuracy, precision, recall, f1 score and area under
the curve (AUC), which are all commonly used to evaluate a classifier. Considering the
HOD problem, however, the model’s output being fast and stable is more important. These
metrics cannot explain this aspect. Therefore, we newly defined that the “HOD metric”
comprises the HOD accuracy and HOD time (Figure 8). A HOD accuracy is calculated
based on when the state changes, and not every data sample is 0.1 s. We calculated this
HOD accuracy according to the “detection time limit”, which is different from the inference
time. Regardless of how fast the model performs its calculation (inference), when the model
is detecting, the transition can vary. If the model detected a transition after 10 s from when
it really occurred, it should not be considered as a right answer. Therefore, we intended
a fair evaluation by setting the detection time limit. If the model detects the transition
within n seconds (detection time limit) and maintains it more than a second, it is regarded
as a right answer. At this moment, the difference between when the actual transition occurs
and when the model detects it is defined as “HOD time”. The HOD time is suggested with
a mean and standard deviation. Both the HOD accuracy and HOD time is as demonstrated
in Equations (4)–(8). ti

hod means the ith time difference between when the actual transition
occurs (ti

gt) and when the model detects (ti
detect) (Equation (5)), and THOD (Equation (6)) is

a set of those time differences.

Figure 8. An example of calculating the HOD metric. The ground truth changes at 10.4 s and our
model detected it at 10.7 s. The time difference between them is HOD time. If it is shorter than the
detection time limit and maintains for at least a second, it is regarded as a correct detection.
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HOD accuracy =
Number o f correct detections on state transition

Total number o f state transitions
(4)

ti
hod = |ti

gt − ti
detect| (5)

THOD = {t1
hod, t2

hod, . . . , tn
hod} (6)

HOD time mean = T =
1
n ∑ THOD (7)

HOD time standard deviation =

√
∑n

i=1
(
ti
hod − T

)2

n
(8)

4. Experiments and Results

In this section, we elaborately discuss the experiments we designed, in order to
evaluate the performance and robustness of the proposed model.

4.1. Implementation Details

Our proposed system was implemented with the Keras 2.7 version, TensorFlow [25]
2.7 version and Python 3.8 version. The training was carried out using the NVIDIA GeForce
RTX 3080 Ti GPU with an Intel i9-12900K CPU and 128GB of RAM on the Ubuntu 20.04
OS. To avoid overfitting, the early stop was adopted, in which the validation loss was
monitored. The training was stopped when the validation loss was not reduced any more
than 20 epochs. The Adam optimizer was used to train the model with a batch size of 128,
with 0.001 of the learning rate.

4.2. Training Results

The training was conducted on a time window size of 10, 20 and 30. This means that
the input data time length is 1, 2, 3 s, respectively, because the data were sampled every
100 ms. Table 5 demonstrates the results on the test set according to each window size.
Our model demonstrates great performance on all time window sizes. The overall best
result was found in 10, although the recall was the highest in size 20. In general, touching
or releasing the steering wheel occurs within 1 s; thus, it can be interpreted that 1 s input
is enough. We also can speculate that our model guarantees a stable performance on all
situations, as both precision and recall are high with little gap. All of the following results
were obtained from an optimal model trained with the time window in size 10.

Table 5. Evaluation results on the test set. End epoch of training means the last epoch at training
stopped by the early stop regularization.

Time Window Size
End Epoch

of Training
Accuracy Precision Recall F1 Score AUC

10 97 0.8657 0.9027 0.8702 0.8862 0.9355

20 70 0.8631 0.8862 0.8826 0.8844 0.9319

30 65 0.8564 0.9008 0.8487 0.874 0.9293

Table 6 shows the HOD performance of our model. The accuracy of detection, mean
and standard deviation of the detection time are calculated considering every hands on/off
transition with various time limits. The accuracy within the time limit of 1 s is 92.34%,
which is higher than the simple accuracy of 86.57% from Table 5. It describes that the
commonly used metrics on the classification cannot explain the HOD events enough. Our
model detected the hands on/off transition quickly with a small deviation, and both HOD
accuracy and HOD time are increased as expected when the detection time limit is increased.
Table 7 shows the results of Table 6 divided into situations of hands off→ on and hands
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on→ off, respectively. Our model detected the hands on→ off change better in terms of
accuracy. The mean time required for the detection was longer in the case of the hands on
→ off, which is an acceptable result, considering that the driver generally exerts more force
when holding the steering wheel. Since it takes longer to determine the situation of the
hands on→ off, the threshold of the hands off in confidence logic (Equation (3)) was set to
0.45, and is slightly higher than 0.4 for a faster detection. However, the standard deviation
of the HOD time is small in both cases; thus, it can be assumed that both cases have a stable
distribution for the detection time. Figure 9 describes the HOD accuracy and the mean
HOD time according to the detection time limit with a 0.1 s interval. After 0.3∼0.4 s, which
is around the mean time, the HOD accuracy was increased drastically. Moreover, the few
increases on the accuracy and mean time after 2 s can be observed.

Table 6. HOD accuracy and time on the test set (time window size = 10). The unit detection time
limit and HOD time is second.

HOD TimeDetection Time

Limit (n)
HOD Accuracy

Mean Standard Deviation

1 0.9234 0.3323 0.1985

2 0.9574 0.3774 0.3058

3 0.9617 0.3873 0.3395

Table 7. HOD accuracy and time considering state transition on the test set (time window size = 10).
The unit of detection time limit and HOD time is second.

HOD Time
State Transition

Detection Time

Limit (n)
HOD Accuracy

Mean Standard Deviation

1 0.9197 0.323 0.1998

2 0.9494 0.3621 0.2963
Hands

Off→ On
3 0.9546 0.3751 0.3439

1 0.9292 0.3466 0.1958

2 0.97 0.4008 0.3184
Hands

On→ Off
3 0.9728 0.4059 0.3319

Figure 9. HOD accuracy and the mean HOD time according to the detection time limit on the test set.

Figure 10 describes the detection time according to the time limit and state transition.
The left figure is a histogram of the total state transition and the right figure shows the
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ratio of each case from the left. The most transitions were detected in 0.3∼0.4 s, which is
close to the mean, and the further from the mean, the less samples were there. In addition,
many transitions were detected as soon as they actually changed. We can assume that
some transitions were easy to detect because the rapid holding or releasing of the steering
wheel creates a rapid change in signals. Moreover, we can notice that the ratio of the hands
off→ on is higher before the mean time, and is lower after the mean time. Grasping the
steering wheel usually introduces more change in signals, and it leads to the relatively
faster detection. Lastly, almost all detections were made within 2 s (Figure 10c). This is
fast enough to sound alarms at the right time to the drivers in compliance with the UN
regulation, as discussed in Section 1.

(a) Detection time limit in 1 s

(b) Detection time limit in 2 s

(c) Detection time limit in 3 s

Figure 10. Detection time histogram according to the detection time limit. Ratio of detection time
was represented on the right figure.

Table 8 compares the accuracy and AUC of previous studies to our method. Early
studies, which utilized the driver’s torque, did not suggest quantitative performances. As
far as we know, moreover, there was no research that evaluated their method similarly to
us (HOD metric). Although our model demonstrates a lower “accuracy”, it demonstrates
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the highest performance when it comes to the “HOD accuracy”. Furthermore, our studies
can explain the HOD event more comprehensively.

Table 8. Comparing the performance of some methods. Ref. [16] suggested AUC for left/right hand,
respectively. All figures were cited from their papers.

Type Method Accuracy AUC HOD Accuracy

Wearable sensor [11] 91.59% - -

[13] 93% - -
Image data

[16] - 0.9369 / 0.9530 -

In-vehicle data ours 86.57% 0.9355 95.74%

4.3. Driver Generalization Results

One more important aspect that a deep learning model must have is a generalization
ability. If a model fails to be generalized, it can be only used under the trained conditions.
Therefore, we evaluated our model’s generalization performance with the new drivers. For
this evaluation, we additionally acquired the data of an hour from two expert drivers who
were not involved in the data collection before training. In addition, by collecting data
including some new roads, we designed the generalization performance for new roads,
which is also examined.

Table 9 shows the results of the two new drivers. For driver A, it demonstrated
a high performance in the window size of 30 as well as in the size of 10. Overall, however,
a window size in 10 demonstrated the best performance. Some metrics, such as accuracy,
demonstrated even better performance than on the test set (Table 5). A clear and important
aspect is that our model worked well for the new drivers. Tables 10 and 11 describes the
HOD performance of our model for the new drivers. When the detection time limit is one
second, the HOD accuracy was about 92.3% on the test set. The HOD accuracy on both
new drivers was very close to that. Moreover, when the detection time limit is longer than
one second, the accuracy for the new drivers was almost the same as the results on the test
set. However, a little more time was needed for the accurate detection for the new drivers.
Meanwhile, hands off→ on changes were detected 0.1∼0.2 s faster than hands on→ off
changes. This difference between the two state changes is slightly longer compared to the
difference between the two state changes of less than 0.05 s on the test set. We surmise that
this comes from the difference between the driving habits of the drivers. Another possible
cause comes from having less variety of data, because we collected new driver data in
one day. Collecting more data for a longer period and from more drivers is planned to be
conducted in a future work.

Table 9. Evaluation results on the new drivers’ data.

Driver Time Window Size Accuracy Precision Recall F1 Score AUC

10 0.8851 0.8983 0.9193 0.9087 0.9358

20 0.8748 0.8931 0.9036 0.8984 0.9324A

30 0.8857 0.9048 0.9123 0.9085 0.9402

10 0.9009 0.9018 0.9271 0.9143 0.9488

20 0.8979 0.9131 0.9051 0.9091 0.9507B

30 0.8857 0.9048 0.9123 0.9085 0.9402
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Table 10. HOD accuracy and time on the new driver data (time window size = 10). The unit of
detection time limit and HOD time is second.

HOD Time
Driver

Detection Time

Limit (n)
HOD Accuracy

Mean Standard Deviation

1 0.9053 0.3131 0.2194

2 0.9586 0.3954 0.3692A

3 0.9645 0.4074 0.3985

1 0.9068 0.312 0.1787

2 0.9472 0.3757 0.3111B

3 0.9596 0.4023 0.3876

Table 11. HOD accuracy and time considering state transition on the new driver data (time window
size = 10). The unit of detection time limit and HOD time is second.

HOD Time
Driver State Transition

Detection Time

Limit (n)
HOD Accuracy

Mean Standard Deviation

1 0.8913 0.2268 0.1798

2 0.9674 0.3242 0.3852
Hands

Off→ On

3 0.9728 0.3358 0.4141

1 0.9221 0.4127 0.2188

2 0.9481 0.4822 0.3285

A

Hands

On→ Off

3 0.9545 0.4946 0.3599

1 0.9153 0.2704 0.1579

2 0.9322 0.2994 0.2453
Hands

Off→ On

3 0.9379 0.3108 0.2854

1 0.8966 0.3638 0.1893

2 0.9655 0.4657 0.3535

B

Hands

On→ Off

3 0.9862 0.5084 0.4573

Figure 11 describes the HOD accuracy and the mean HOD time according to the
detection time limit with 0.1 s interval for the new drivers. Similar to the test set (Figure 9),
there is an drastic increase in the HOD accuracy, of around 0.3 s, and almost the highest
accuracy at 2 s.
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(a) Driver A (b) Driver B
Figure 11. HOD accuracy and the HOD mean time according to the detection time limit on
new drivers.

5. Discussion

We verified that driver’s hands on/off detection is possible with a deep learning
model using in-vehicle data. Our model detected hands on/off transitions in 0.37 s, on
average. Since in-vehicle data are time series data, our model, which contains an LSTM
layer, worked well on this problem. A precise data collection system using a capacitive
sensor and an Arduino board helped the model learn unique characteristics of the hands
on and hands off state. Moreover, a confidence logic helped the model make its output
more robust. Our system can be utilized easily in other studies using in-vehicle data and is
especially effective for supervised learning.

6. Conclusions and Future Work

Hands on/off detection is a crucial task for current autonomous vehicles. Most
previous works had at least one distinct drawback of their own. In this study, we proposed
a deep learning network that utilizes steering data. This approach is almost zero cost and
reliable, since steering data can be measured easily from built-in sensors. For training,
we established a data collection system, which enables auto-labelling when collecting
steering data. A new evaluation metric was introduced and experiments were carried out
to demonstrate the performance and robustness of our model. In addition, we evaluated
our model on the new drivers to ensure the generalization power. We verified that our
architecture can effectively resolve the drawbacks of the previous studies and can achieve
better performance. Considering real driving with other vehicles, the hands on/off can
depend on surrounding events. For this, we also purposely collected new drivers’ data on
new roads, apart from the roads initally used in the experiment (Figure 3). Our model can
handle various real driving situations, as we have observed in Tables 9–11.

Although we demonstrated the generalization ability with the new drivers, we could
not fully explain why the detection time differed between the hands off→ on and hands
on→ off state transitions. This is going to be discussed in our subsequent research. Our
future work also may include various vehicle types, not only the hybrid sedan we used but
also sports utility vehicles, trucks and electric vehicles. Lastly, we intended a lightweight
network for utilizing it on the ECUs of a vehicle. Model compression and embedding after
selecting a target ECU will be conducted.
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