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Abstract: Recently, human–machine interfaces (HMI) that make life convenient have been studied
in many fields. In particular, a hand gesture recognition (HGR) system, which can be implemented
as a wearable system, has the advantage that users can easily and intuitively control the device.
Among the various sensors used in the HGR system, the surface electromyography (sEMG) sensor
is independent of the acquisition environment, easy to wear, and requires a small amount of data.
Focusing on these advantages, previous sEMG-based HGR systems used several sensors or complex
deep-learning algorithms to achieve high classification accuracy. However, systems that use multiple
sensors are bulky, and embedded platforms with complex deep-learning algorithms are difficult to
implement. To overcome these limitations, we propose an HGR system using a binarized neural
network (BNN), a lightweight convolutional neural network (CNN), with one dry-type sEMG sensor,
which is implemented on a field-programmable gate array (FPGA). The proposed HGR system
classifies nine dynamic gestures that can be useful in real life rather than static gestures that can be
classified relatively easily. Raw sEMG data collected from a dynamic gesture are converted into a
spectrogram with information in the time-frequency domain and transferred to the classifier. As a
result, the proposed HGR system achieved 95.4% classification accuracy, with a computation time of
14.1 ms and a power consumption of 91.81 mW.

Keywords: surface electromyography; hand gesture recognition; spectrogram; binarized neural
network; field-programmable gate array

1. Introduction

Human–machine interfaces (HMI), which use advanced methods without traditional
interface equipment such as a keyboard, mouse, and touch screen, are widely developed
in fields such as robotics, augmented reality (AR)/virtual reality (VR), and prosthetic
control [1–3]. Among them, hand gesture recognition (HGR) systems are popular because
they use hand gestures that intuitively represent a user’s intention.

Sensors used in HGR systems can be divided into vision-based and non-vision-based
sensors. The camera, a representative vision-based sensor, relies on the acquisition environ-
ment, uses a large amount of data, and does not easily adapt to frequent location changes
by users. In particular, because of external factors such as background and lighting changes,
very complex detection algorithms are required. In the case of the inertial measurement
unit (IMU), which is a representative non-vision-based sensor, a glove-type sensor is widely
used to detect finger movements [4]. The IMU sensor has the advantage of being able to
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acquire hand movements most intuitively; however, the glove-type sensor can limit activity
when worn.

An electromyography (EMG) sensor, a non-vision-based sensor, measures the EMG
signal—a bio-signal. The EMG signal is measured by amplifying the micro-electric signal
generated by signal transmission between the nerves and muscle fibers when the muscle
contracts and includes intuitive muscle activity information [5]. Methods for acquiring
EMG signals include invasive and non-invasive methods. Invasive EMG (iEMG) is a
method of measurement by inserting a needle into the skin. Surface EMG (sEMG) acquires
data through electrodes attached to the skin. The electrodes used to obtain the sEMG are
divided into wet and dry types. The wet electrode uses a conductive gel to reduce noise
and stably acquire data. However, a conductive gel must be used each time a sensor is
worn, and the life of the electrode is short. Dry-type sensors can conveniently acquire data
by touching the electrode to the skin.

Recently, dry-type sEMG sensors have been widely applied to sEMG-based HGR
systems because of their advantages of being able to obtain information on hand and finger
movement, by attaching them to the forearm or wrist, and only a small amount of data
being required. Some previous studies have shown excellent factors in overall system
development, but studies on suitability for real-life applications are insufficient. From the
user’s point of view, we assume the following constraints to ensure comfort when the HGR
system is applied in real life: (1) It is easy to wear and take off and should not affect daily
life when wearing it. Therefore, it is preferable to use a small number of dry-type sensors.
(2) The computational time between gesture and recognition should not exceed 100 ms so
that the user can recognize it as a real-time system [6]. (3) Wearable systems are usually
battery-based, so power consumption should be low. (4) The HGR system should classify
gestures that can correctly communicate the user’s intentions to the machine (e.g., gestures
that are less likely to be made unconsciously, predefined dynamic gestures). Additionally,
the number of gestures should be appropriate. (5) Finally, the classification accuracy should
be greater than 95%.

The studies [7–20] implemented an sEMG-based HGR system on CPUs and GPUs, tak-
ing advantage of their computational capabilities and versatility. The authors of [8,13,17,18]
achieved more than 95% classification accuracy, but [13] presented the results of classify-
ing relatively few simple static gestures. The studies [8,17,18] used CNN-based complex
classifiers such as ResNet-50, and [17] had an average computation time of 465 ms, which
is unsuitable for real-time systems. In addition, CPU- and GPU-based systems generally
consume a lot of power. To overcome these CPU and GPU limitations, Refs. [4,21–30]
implemented systems on a microcontroller unit (MCU) or field-programmable gate array
(FPGA). However, due to embedded systems’ characteristics, it is difficult to implement
complex algorithms due to limited resources. The studies [4,21–30] used machine learning
algorithms that use simple computational processes. These studies used multiple sensors or
classified fewer and simpler gesture classes to overcome the limitations of machine learning,
which is fast and simple but has a lower performance than deep learning algorithms.

In this paper, we propose an HGR system that acquires sEMG data using only one
wrist-worn dry-type sensor to satisfy the aforementioned constraints of the HGR system.
The sEMG signal obtained from the gesture operation contains information on the gesture
in the time and frequency domains. Therefore, the proposed HGR system converts the
data acquired from the sensor into a spectrogram via short-time Fourier transform (STFT),
transfers it to the classifier, and then classifies the gesture according to the result. The
proposed HGR system is implemented on an FPGA for low power consumption and
utilizes a deep learning algorithm, a binarized neural network (BNN), to classify nine
complex dynamic gestures with data obtained through one sensor. Because a BNN is a
lightweight convolutional neural network (CNN) in which the input of each layer and
the weight of the kernel are binarized into 0 and 1, it can be implemented on an FPGA
with limited resources. The main contribution of this paper can be summarized as follows:
(1) Using only one dry-type sEMG sensor, we classified nine complex dynamic gestures
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with a high accuracy of 95.4%. (2) By implementing the proposed HGR system on an FPGA,
a low power consumption of 91.81 mW, and computational time of 14.1 ms were achieved,
satisfying the real-time system conditions.

The remainder of this paper is organized as follows: Section 2 reviews the background
knowledge of STFT, CNN, and BNN, which are algorithms applied to the proposed HGR
system. Section 3 describes the overview of the proposed HGR system, the gestures
to classify, data acquisition, pre-processing, and network configuration and evaluation.
Section 4 describes the structural design of the proposed HGR system implemented in
hardware. Section 5 presents the hardware implementation results of the proposed HGR
system and the comparison results between the previous sEMG-based HGR system and
the proposed HGR system. Finally, Section 6 presents the conclusions and future research.

2. Background
2.1. Short-Time Fourier Transform

Fast Fourier transform (FFT) is a signal processing technique that converts data in the
time domain into data in the frequency domain. If the FFT result is calculated for the entire
given time-domain data, information about the time domain disappears. The STFT is used
to overcome the limitations of the FFT. In STFT operation, time domain data are segmented
at regular intervals, multiplied by a window function, and then FFT is performed. The
result of the STFT operation of each segment contains frequency information, and because
the frequency information changes along the index of the segment, time information can
also be obtained. Two-dimensional data consisting of information in the time-frequency
domain are expressed as an image called a spectrogram. The STFT equation is expressed
by the following equation, Equation (1):

Y(m, f ) =
∫ ∞

−∞
x(t)ω(t−m)e−j2π f tdt (1)

where x(t) is the input signal, ω is the window function, and m is the window delay time.

2.2. Convolutional Neural Network

Deep learning algorithms, which do not require a separate feature extraction process
and have the advantage of high classification performance, are used in various fields.
Among them, CNN, which extracts features through convolution with the kernel while
maintaining the dimension of the input data, has attracted attention. A CNN consists of
convolution layers and fully connected layers. In the convolution and fully connected
layers, weight convolution or multiplication, bias addition, batch normalization (BN), and
activation function are applied to the input data. In the convolution layers, these processes
are performed using a 2-dimensional matrix, and the input/output data are called feature
maps. In the fully connected layers, these processes are performed using a 1-dimensional
vector, and the input/output data are called nodes. The process of the convolution layer is
shown in Equation (2):

Xn
j = τ

(
BN
((

∑
i∈N,j∈M

Xn−1
i ∗ Kn

ji
)
+ bn

j

))
(2)

where Xn
j , Kn

ji, and bn
j represent the jth feature map output by the nth layer convolution

layer, convolution kernel corresponding to input/output feature map, and bias, respectively.
N and M are the number of input and output feature map channels, respectively. τ, BN, and
∗ are the activation function, batch normalization, and convolution operation, respectively.
Figure 1 shows the process of the convolution layer. k is the size of the convolution kernel.
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Figure 1. Process of the convolution layer.

2.3. Binarized Neural Network

Generally, CNN’s feature maps, nodes, and weights are composed of several bits of
floating-point data. CNN also involves complex computations such as multiplication and
division in convolution and BN. Therefore, CNN requires a significant amount of memory
to store many learned parameters and feature maps, and complex arithmetic circuits are
essential for the calculation process. Thus, it is not easy to implement in hardware with
limited resources. A BNN is a lightweight CNN that overcomes these limitations. The
BNN’s feature maps, nodes, and weights are composed of +1 and −1 instead of multi-bit
floating-point data, and can be expressed as 1-bit data. Therefore, the product of binarized
data can be replaced by the XNOR operation. Because the results of BN are binarized to
+1 or −1 through the activation function, BN and activation function can be replaced by
comparing convolution results with pre-trained thresholds.

3. Proposed HGR System

The proposed HGR system acquires the sEMG signal generated by the user’s gesture
with one sensor, pre-processes it, and then transfers the pre-processed data into a pre-
trained neural network to classify the user’s gesture. An overview of the proposed HGR
system to be implemented in hardware is shown in Figure 2. The user’s sEMG signal was
transferred from the sensor to an analog-to-digital converter (ADC) built into the FPGA
and converted into digital data. The converted data were pre-processed through STFT
and converted into a spectrogram. The absolute values were taken, and classification was
performed by transferring them into the BNN.

Figure 2. Overview of the proposed HGR system.
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3.1. Gestures Definition

Hand gestures can be classified into static and dynamic gestures. Static gestures do
not involve hand movements during data acquisition, whereas dynamic gestures involve
hand movements. We chose to classify dynamic gestures for practical use. Gestures consist
of a rest–motion–rest process and include dynamic movements of fingers and wrist. We
selected nine gestures, as shown in Figure 3.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 3. Hand gesture examples: (a) Gesture 1; (b) Gesture 2; (c) Gesture 3; (d) Gesture 4; (e) Gesture
5; (f) Gesture 6; (g) Gesture 7; (h) Gesture 8; (i) Gesture 9.

Gesture 1 is the motion of folding and unfolding of four fingers, excluding the thumb,
twice. Gesture 2 is the motion of pinching the index finger and thumb together. Gesture 3 is
the motion of folding and unfolding the index and middle fingers. Gesture 4 is the motion
of bending the thumb into the other fingers, with the fingers curled, and then raising the
thumb. Gesture 5 is the motion of folding and unfolding the thumb into the palm with the
other fingers straight. Gesture 6 is the motion of snapping the thumb against the middle
finger. Gesture 7 is the motion of bending the middle and ring fingers into the palm and
slightly turning the wrist outward. Gesture 8 is a 90-degree inward bending of the wrist.
Gesture 9 is an upward flicking motion of the middle finger against the thumb.

3.2. Data Acquisition

The sEMG sensor used in the proposed HGR system was Gravity [31], as shown
in Figure 4. Figure 4a shows two modules of the sensor. The upper part is a module
with electrodes, and the lower part is a module that includes signal-processing circuits,
such as signal amplification. When this module is brought into contact with the desired
body part, the electrical signal generated by that part can be detected. The proposed HGR
system specified the inner wrist for electrode placement. Because most of the sEMG signals
concentrate in the frequency band between 10 and 500 Hz [32], the FPGA sampled the
user’s sEMG signal at 1000 Hz for 2.112 s and converted it into 10-bit digital data.
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(a) (b)

Figure 4. sEMG sensor used in the proposed HGR system: (a) configuration of sensor; (b) front view
of electrode module.

3.3. Pre-Processing

Because the sEMG data acquired during static gestures do not vary significantly in
characteristics over time, it is adequate to extract time-domain features with pre-processing
in terms of speed and implementation complexity. However, to classify complex dynamic
gestures, the pre-processing results must include more information about the gestures.
From this perspective, time-frequency domain analysis can achieve a better system per-
formance than time or frequency domain analysis alone. For example, Ref. [19] showed
that using a spectrogram to classify many dynamic gestures achieves a better classifica-
tion accuracy than using the root mean square (RMS). The spectrogram is a fundamental
component of the time-frequency distribution in the analysis of signals, particularly for
noise and artifact reduction [33]. Therefore, we generated a spectrogram using STFT in
the pre-processing.

The proposed HGR system obtained 2112 raw data points from ADC. The spectrogram
was generated using a 128-point FFT, which corresponds to a window length of 128 ms,
and Hamming window. With an overlap ratio of 50%, a 128 × 32-sized spectrogram was
obtained. The frequency axis length is 128, and the time axis length is 32. Because the
input data are real numbers, the FFT results are symmetrical around the DC. The obtained
sEMG signal has a hum noise of 60 Hz, and this noise appears in addition to frequency
band multiples of 60 Hz. To remove this noise, we removed two to six adjacent frequency
components at DC, 60 Hz, 120 Hz, 180 Hz, 240 Hz, 300 Hz, 360 Hz, 420 Hz, and 480 Hz,
respectively, from the FFT results. Only 32 values were selected through a filtering method
that removes noise-containing frequency components from 64 positive frequency data,
including DC. Consequently, a spectrogram with a size of 32 × 32 was generated. Figure 5
shows the spectrogram after filtering for each gesture.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 5. Spectrograms of nine gestures: (a) Gesture 1; (b) Gesture 2; (c) Gesture 3; (d) Gesture 4;
(e) Gesture 5; (f) Gesture 6; (g) Gesture 7; (h) Gesture 8; (i) Gesture 9.

The spectrogram is an image that represents the power distribution in the time-
frequency domain of a signal. It consists of the absolute values of STFT results, which are
complex numbers. Because the proposed HGR system was implemented in hardware, it
was necessary to determine a method for calculating the absolute value. The square and
root operations of Equation (3) require complex circuits to be implemented in hardware.

|x| =
√
<(x)2 +=(x)2 (3)

In the proposed HGR system, the system was simplified using Equation (4), which is a
much simpler absolute value calculation method, although it results in an error compared
to the result of Equation (3).

|x| = |<(x)|+ |=(x)| (4)

The size of the calculation result of Equation (4) is one to two times larger than the theoretical
value. However, there is little difference in performance from implementation using
Equation (3), and the hardware complexity is much lower. Table 1 presents the performance
comparison results of the two methods.

Table 1. Accuracy according to the absolute value calculation method and logic elements usage of
absolute value calculation unit.

Implementation Method Accuracy (%) Logic Elements

Equation (3) 95.6 662
Equation (4) 95.4 61

3.4. Performance Evaluation with Network

Experiments were conducted in a software environment to evaluate the network per-
formance. Prior to the experiments, sEMG raw data were acquired to obtain a spectrogram
dataset to be used in the experiment. The sEMG signal may exhibit slightly different
characteristics even with the same gesture, depending on the user, the sweat on the skin
where the sensor is attached, the position of the sensor, and the degree of fatigue of the user.
Therefore, for accurate experimental results, we collected sEMG data from four people,
acquired three times a day for 13 days. Thus, we obtained unbiased data for several factors
that could change the sEMG signal characteristics.
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Before constructing the BNN, the CNN, which is the basis of the BNN, was selected
through various experiments. Approximately 14,400 experimental data points were used,
with approximately 1600 per gesture. A total of 11,600 data points, approximately 80% of
the total data, were used as the training data. The remaining 2800 data points were used
as the test data. Experiments were conducted by changing the number of layers, number
of filters, and number of nodes. The adaptive moment estimation (Adam) optimizer and
cross-entropy function were used during training. The epoch was set to 200, the batch size
was 128, and the learning rate was set to 0.01, 0.005, 0.0005, 0.00005, and 0.000005 for each
epoch of 0, 40, 80, 120, and 160, respectively.

Table 2 lists the performance of each network. All tested networks include a max
pooling layer in the convolution layer, except for the first convolution layer, and all convo-
lution layers include zero padding. In general, there is a trade-off between the accuracy
and complexity of CNN. Therefore, Network 1 with reasonable complexity and accuracy
was chosen for the BNN experiment. The memory usage of the weights in the selected
network is 6,317.184 KB when storing each value as full-precision floating-point data.

Table 2. Accuracy of CNNs by number of filters and nodes.

Network
#filters #nodes

Accuracy (%)
C11 C12 C13 C14 C15 F21 F22 F23 F24

1 16 32 64 128 256 256 512 9 – 97.4
2 16 32 64 128 – 256 512 9 – 96.3
3 16 32 64 128 256 512 512 9 – 96.3
4 16 32 64 128 256 256 512 512 9 97.8
5 16 32 64 128 256 512 1024 9 – 96.6
6 16 32 64 128 256 256 256 1024 9 96.7
7 16 32 64 128 256 256 256 512 9 97.1

1 Convolution layer; 2 fully connected layer.

Experiments were conducted to design a BNN with excellent performance. Among
the evaluated networks, five networks with high accuracy were tested as BNN. The results
are summarized in Table 3. Parameters include weights and thresholds.

Table 3. Accuracy and parameters of BNNs based on CNNs with excellent performance.

Network
#filters #nodes Accuracy

(%) Parameters
C11 C12 C13 C14 C15 F21 F22 F23 F24

1 16 32 64 128 256 256 512 9 - 95.4 790,912
4 16 32 64 128 256 256 512 512 9 95.5 1,053,568
5 16 32 64 128 256 512 1024 9 - 94.9 1,451,648
6 16 32 64 128 256 256 256 1024 9 94.8 992,896
7 16 32 64 128 256 256 256 512 9 95.0 856,704

1 Convolution layer; 2 fully connected layer.

Finally, a BNN with a structure using five convolution layers and three fully connected
layers was selected as shown in Figure 6. All layers of the network contain thresholding
and binarization, which are batch normalization and activation functions. The weights of
the selected network use 98.706 KB of memory, which is a 98.4% reduction compared with
the memory usage of the CNN network.
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Figure 6. Architecture of BNN.

4. Hardware Architecture Design

The proposed HGR system consists of an ADC unit, STFT unit (STU), BNN unit (NNU),
two memory units to be used as buffers, and a data bus that manages communication
between the operation units and buffers, as shown in Figure 7. The proposed HGR system
utilizes an ADC unit built into an FPGA. Memory1 (M1) and Memory2 (M2) are used by the
STU and NNU in a ping-pong scheme. The ADC unit stores sEMG signals in M1 according
to a sampling period of 1000 Hz. Every time a certain number of raw data are accumulated,
pre-processing is performed, and the spectrogram is completed at the end of 32 STFTs. The
NNU uses the spectrogram as an input and outputs nine final node values. For example, if
the fifth value among the nine output values is the largest, the input data are classified into
the fifth class. In other words, the class is determined using a simple algorithm that finds
the index of the node with the highest value among the results of NNU.

Find Max Index
ADC

ADC Controller

System FSM

Data Bus

Memory2 (M2)Memory1 (M1)

STU

iStart

sEMG

data

Gesture

Index

data path

control path

NNU

(128 × 1024) (128 × 1024)

Figure 7. Block diagram of the proposed HGR system.

4.1. STFT Unit

A block diagram of the STU is shown in Figure 8. In Figure 8, the data bus between the
STU and the memory is omitted. For each STFT, memories and STU exchange appropriate
data through the Ping-Pong Buffer Controller. The ADC raw data are multiplied by the
Hamming window, then transferred to a single butterfly (BF), and the stage 1 operation
is performed and stored in M2. Then, based on the result of stage 1 stored in M2, the
stage 2 operation is performed, and the result is stored in M1. In this way, M1 and M2



Sensors 2023, 23, 1436 10 of 16

are used alternately, an operation up to stage 7 is performed, and the final result of the
STFT is stored in M1. After STFT is performed 32 times, NNU starts classification using the
completed spectrogram.

Single BF
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Clip

Round

Figure 8. Block diagram of the STFT unit.

4.2. BNN Unit

A block diagram of the NNU is shown in Figure 9. In Figure 9, the data bus between
the NNU and the memory is omitted. When the STU finishes generating the spectrogram,
the iStart signal, which is a start signal to the NNU, is transferred to the finite state machine
(FSM). The FSM generates a state that controls the NNU operation. The FSM outputs
the CONV state of the convolution layer, POOL state of the max pooling layer, and FCL
state of the fully connected layer. In the CONV state, the memory controller fetches the
appropriate input feature maps, weights, and thresholds. The XNOR operation results
of the feature map and weight are accumulated through the Pop Counter. The result is
accumulated through the Accumulator up to the size of the kernel. Then, in the Binarization
and Concatenation, the accumulated value is compared with the threshold, and 1-bit data
binarized by the number of output channels are concatenated and stored in memory. The
input and output feature maps are stored in M1 and M2 in the ping-pong scheme through
the Ping-Pong Buffer Controller. In the POOL state, the size of the feature map is reduced
through max-pooling. Because all the pixel data of the feature map are binarized 1-bit
data, the process of finding the maximum value is simplified to an OR operation. The FCL
state performs the same process as the CONV state. However, the difference is that in the
CONV state, the feature map is a 2-dimensional matrix, and in the FCL state, the nodes are
a 1-dimensional vector. That is, in the CONV and FCL states, the operations of generating
the address and enabling the signal of the memory controller are different, whereas the
other operations are the same.
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5. Hardware Implementation Results

The proposed HGR system was designed using the Verilog hardware description lan-
guage (HDL) and implemented on an Intel-Altera MAX 10 10M50DAF484C7G FPGA [34].
The proposed HGR system operated at a clock frequency of 50 MHz. It consumed 1.83 mW
of dynamic power and 89.98 mW of static power. Table 4 shows the number of logic
elements, registers, and digital signal processors (DSPs) used in the STU and NNU, and the
other circuits, such as ADC, ADC controller, and filtering.

Table 4. Implementation results of the proposed HGR system.

Unit Logic Elements Registers DSPs

STU 960 234 36
NNU 1938 374 10

Others 679 263 -

Total 3577 871 46

Table 5 shows the memory usage of the proposed HGR system. M1 and M2 require a
width of 128 for an XNOR parallel operation and a depth of 1024 to store a spectrogram of
32 × 32. In the STU, the Hamming window requires a width of 8 and a depth of 128 for a
128-point FFT. The twiddle factors require a width of 10 and a depth of 64. In addition, in
the NNU, a depth of 6170 is required to store 789,648 1-bit data with a width of 128, and a
width of the thresholds is experimentally selected as 14.
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Table 5. Memory usage of the proposed HGR system.

Memory Width Depths Memory Usage (bits)

M1 128 1024 131,072
M2 128 1024 131,072

Hamming window 8 128 1024
Twiddle factors 10 64 640

Weights 128 6170 789,760
Thresholds 14 1264 17,696

Total - - 1,071,264

Table 6 shows the number of clock cycles used during one test at the STU and NNU
and the computation time for a 50 MHz clock frequency. Because the sEMG signals have
a time interval of 1 ms and one STFT operation uses a time of approximately 21 µs for
a 50 MHz clock, more than one STFT operation is possible between two sEMG signals.
Therefore, 32 STFTs to generate a spectrogram can be performed while all 2,112 sEMG
signals are acquired. As a result, the inference process by NNU for one gesture takes
14.1 ms after the sEMG signal acquisition is finished.

Table 6. Computation cycles and time for the proposed HGR system.

Unit Computation Cycles Computation Time (µs)
(@ 50 MHz Clock Frequency)

STU 1053 21.06
NNU 704,930 14,098.6

Figure 10a shows an example of wearing a sensor, and Figure 10b shows the actual
experimental environment on the FPGA platform, with the classification result displayed
on the monitor. In the experiment, an accuracy of approximately 98% was recorded in
100 trials on the FPGA platform, and real-time operation was confirmed.

(a) (b)

Figure 10. Experimental environment: (a) example of sensor being worn; (b) experimental environ-
ment with display.

As mentioned above, the previous sEMG-based HGR systems have been implemented
on various platforms, including CPU, GPU, MCU, and FPGA. However, CPU- and GPU-
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based systems typically consume several watts to tens of watts, making them difficult
to integrate into wearable devices. Therefore, a comparison between the proposed HGR
system and the sEMG-based HGR systems implemented with the MCU and FPGA is
presented in Table 7. In general, as the number of gestures to be classified increases, the
classification process becomes more complex and the computation time increases. Therefore,
this study presents the computation time divided by the number of classes. We intensively
analyzed the papers presented in Table 7 on the conditions of the HGR system that can be
applied to real life, as mentioned in the introduction.

Table 7. Comparison results between the proposed HGR system and the previous sEMG-based HGR
systems implemented on MCU and FPGA.

Ref. Platform

Sensor Classification Implementation Results

Type Wearing
Position #Sensors #Classes Gesture

Type Classifier Accuracy
(%)

Computation
Time

Computation
Time/#Class

Power
(mW)

[21] ARM wet forearm 4 4 static SVM 1 83.9 2.2 ms 625 µs n/a
[22] RISC-V wet forearm 8 11 static HDC 2 85 36 µs 3.27 µs 10.4

[23] ARM wet
forearm,

wrist 8 7 static SVM 1 89.2 1 ms 0.14 ms 86

[24] ARM dry forearm 2 5
static,

dynamic SVM 1 92 10 ms 2 ms n/a

[25] ARM wet forearm 4 10
static,

dynamic ANN 3 94 0.2 ms 20 µs 100.6

[26] ARM wet wrist 4 5
static,

dynamic SVM 1 94 250 ms 50 ms 5.1

[27] ARM wet forearm 8 6 n/a LDA 4 94.14 n/a n/a 122.4
[4] FPGA dry forearm 16 12 static GBDT 5 90.7 n/a n/a n/a
[28] FPGA dry forearm 8 9 static KNN 6 93.4 n/a n/a n/a

[29] FPGA
dry with

gel forearm 64 13 static HDC 2 97.12 236.32 µs 2.02 µs 141.2

[30] FPGA
dry with

interface 7 forearm 8 5 static SVM 1 98 322 µs 64.3 µs 3,100

Proposed FPGA dry wrist 1 9 dynamic BNN 95.4 14.1 ms 1.57 ms 91.81

1 Support vector machine, 2 Hyperdimensional computing, 3 Artificial neural network, 4 Linear discrimination
analysis, 5 Gradient boosting decision tree, 6 K-nearest neighbors, 7 Dry-type sensors with adhesive skin interface.

As seen from Table 7, except for the proposed HGR system, all studies used two to
64 sensors. The studies [21–23,25–27] used wet-type sensors. Among them, that of [26],
where the wearing location is the wrist, consumes very little power; however, the classifi-
cation gestures (Rest, Open, Grasp, Pronation, and Supination) are very simple, and the
computation time exceeds 100 ms. Study [24] shows a fast computation time using the
fewest sensors except for the proposed HGR system, but as in [26], classification gestures
(Hand closing, Hand opening, Wrist flexion, Wrist extension, and Double wrist flexion)
are very simple and the classification accuracy is lower than the proposed HGR system.
The studies [29,30] had a higher classification accuracy and faster computation time than
the proposed HGR system. However, Ref. [29] used sensors with a single drop of con-
ductive gel for 64 dry electrodes. The study [30] used a two-slot adhesive skin interface
for each sensor, and classified five very simple static gestures (Hand close, Thumb close,
Thumb-index, Middle-ring, and Middle-ring-little). In addition, both systems implemented
in the FPGA consume more power than the proposed HGR system. Both [4,28] had low
classification accuracy, and used many sensors. The proposed HGR system classified nine
dynamic gestures with a high classification accuracy of over 95% using a single dry-type
sEMG sensor. The computation time of the proposed HGR system was slower than that
of some previous studies because of the deep learning algorithm, which is more complex
than machine learning. However, it satisfies the 100 ms criterion, which is a condition of
the real-time system presented in [6], and achieved a classification accuracy of more than
95% and low power consumption of 91.81 mW.
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6. Conclusions

In this study, we propose an HGR system that classifies nine dynamic gestures based
on a dry-type sEMG sensor and a BNN suitable for hardware design. To achieve high
classification accuracy with only one sEMG sensor, a spectrogram including time-frequency
domain information was generated by STFT in pre-processing and classified with a deep
learning algorithm. To overcome the limitations of deep learning algorithms with high
complexity and a long computation time, BNN, which is a lightweight CNN, was used.
Owing to its lightening, it was successfully implemented in low-cost FPGA. The FPGA
design enabled the design of a fast computation time and low power consumption, and
ultimately, it was able to satisfy the conditions of the HGR system to be applied in real
life. Some previous studies are superior to the proposed HGR system in terms of the
classification accuracy, computation time, and power consumption. However, the proposed
HGR system is very useful for classifying nine dynamic gestures using only one sensor,
with a classification accuracy of 95.4%.

The limitation of this study is that there is still room for development in terms of
computation time and power consumption. In future work, we plan to implement an
sEMG-based HGR system in very large-scale integrated (VLSI) with faster computation
time, and less power consumption.
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