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Abstract: The expression abundance of transcripts in nondiseased breast tissue varies among indi-
viduals. The association study of genotypes and imaging phenotypes may help us to understand
this individual variation. Since existing reports mainly focus on tumors or lesion areas, the het-
erogeneity of pathological image features and their correlations with RNA expression profiles for
nondiseased tissue are not clear. The aim of this study is to discover the association between the
nucleus features and the transcriptome-wide RNAs. We analyzed both microscopic histology images
and RNA-sequencing data of 456 breast tissues from the Genotype-Tissue Expression (GTEx) project
and constructed an automatic computational framework. We classified all samples into four clusters
based on their nucleus morphological features and discovered feature-specific gene sets. The bio-
logical pathway analysis was performed on each gene set. The proposed framework evaluates the
morphological characteristics of the cell nucleus quantitatively and identifies the associated genes.
We found image features that capture population variation in breast tissue associated with RNA
expressions, suggesting that the variation in expression pattern affects population variation in the
morphological traits of breast tissue. This study provides a comprehensive transcriptome-wide view
of imaging-feature-specific RNA expression for healthy breast tissue. Such a framework could also
be used for understanding the connection between RNA expression and morphology in other tissues
and organs. Pathway analysis indicated that the gene sets we identified were involved in specific
biological processes, such as immune processes.

Keywords: nondiseased breast tissue; imaging genomics; pathological image features; bioinformatics;
gene expression

1. Introduction

The nucleus is the regulatory center of cell inheritance and metabolism, and it contains
almost all cellular genomes. Gene expression is the most basic level in genetics, at which a
genotype generates a phenotype. The morphological interpretation of histological images
of tissue samples is essential for characterizing complex histology imaging phenotypes.
Previous studies have focused on the association between the nuclear phenotype and gene
expression among serious diseases, e.g., breast cancer [1–5]. However, the gene expression
pattern associated with the morphological variation among healthy individuals is not
very clear. Gene expression complements information that is difficult to detect by visual
inspection alone, and a wealth of gene expression information has been used to understand
and describe differences between tissues [6]. Quantitative analysis to discover gene sets
associated with nuclear morphological characteristics of healthy breast cells will enable the
discovery of intrinsic drivers of differences in healthy breast tissues.

The microscopic Image or whole-slide imaging (WSI) assessment has become the most
commonly used tool in clinical diagnosis and prognosis worldwide. However, the manual
assessment of clinical images is subjected to artificial error, pathologist variability, and
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low efficiency [7]. Accurate segmentation requires pathologist knowledge, and one WSI
contains up to hundreds of thousands of nuclei; it is laborious to label all nuclei, let alone
calculate the features for every nucleus. It is therefore sensible to deal with such tasks by
using a computer vision algorithm [8,9] which can address special work on labeling nuclei
and computing a large number of nucleus features.

Many studies have been constructed using the computer vision technique in cancer
diagnosis, lesion detection, etc. [10–12], in order to provide fast, accurate, and automatic
solutions for pathologists. Specifically, there are traditional digital image processing-based
algorithms [13,14] and learning-base algorithms [15–17]; besides, several open-source
software, like QuPath [18], ImageJ [19], etc., have integrated some nuclei segmentation
algorithms. The majority of earlier approaches on tissue or nuclei segmentation are achieved
by supervised pixel-wise classification based on color and texture features [20–23], although
a few unsupervised methods have been proposed [24,25].

There are three main tissue types in the histopathological images of the breast: glan-
dular, connective, and adipose tissue. There are obvious differences between the nuclei of
these tissues, but such vast differences will conceal the meaningful differences between
individuals. Based on the above reasons, tissue segmentation was added to our nuclei
segmentation process. The nuclei segmentation process includes the following steps: im-
age normalization, extraction of stain channels, glandular tissue segmentation, nuclei
segmentation, declumping, and features calculation [26].

The extracted nuclei were quantified by four common features: size, intensity, shape,
and distance, consistent with previous studies [27,28]. More importantly, such features
are commonly used in surgical pathological diagnosis and therefore have applications for
humans. Similar to disease classification, healthy tissues can be divided into several groups
according to their nuclear features.

To complement the histological images, global patterns of gene expression could
demonstrate individual variations on the molecular level. Gene expression has been used
to characterize cellular differences between tissue, disease phenotypes, and molecular sub-
types [29–31]. The current association studies have mainly focused on finding connections
between gene expression levels and disease phenotypes [32–34], while the population
variation in healthy tissue associated with genetic variants has also been reported [35].
Although the GTEx consortium had comprehensively studied gene expression and gene
regulation in healthy tissues [35], there is no joint analysis of image features and gene
expression. In this study, we are more interested in extracting nucleus features derived
from H&E-stained images of healthy breast tissue and identifying genes associated with
the imaging features. We performed pathway analysis on the gene sets we found, and the
results indicated that the gene sets we found were involved in immune processes related to
leukocytes, cell killing, and T cells, and in the activation of serine-type endopeptidase and
serine-type peptidase.

This paper is structured as follows. First, we introduce the basic theory and method-
ology for both imaging and genomic analysis, as well as a brief description of the study
cohort. Next, we apply our framework to the GTEx dataset with histological images and
gene expression levels on paired samples. We demonstrate the population variation in
histological images of healthy breast tissue and discover specific genes that correlate with
image features. Finally, we present biological pathways using feature-specific gene sets
showing the biological significance of these genotype-phenotype associations.

2. Materials and Methods
2.1. Study Cohort

The high-resolution whole-slide images (WSIs) and the RNA-seq data were down-
loaded from the GTEx Portal. The RNA-Seq (GTEx Analysis V8) sample libraries had been
prepared using the Illumina TruSeq Kit and paired-end sequencing was performed on
the Illumina HiSeq2000. The gene read counts standardized by Transcripts Per Million
(TPM) were downloaded for this study. The images of breast-mammary tissue in the GTEx
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database were sampled from the central breast subareolar region of the right breast, 1–2 cm
under the skin surface of the nipple region. We also downloaded the sample annotation
file, which documented which organization the sample came from. Breast-mammary
tissue samples with both histopathology images and gene expression were screened out
by sample ID matching and annotation file. All data sources can be found in the “Data
Availability Statement”.

A total of 54,592 genes and 456 WSIs from 456 samples were used for this research as
the study cohort. A more detailed description of data collection and preparation is referred
to the original study [36].

2.2. Image Data Processiong

The WSIs were in SVS format with a resolution of 0.5 µm/pixel. Errors caused by the
heterogeneity of nuclei in different tissue were inevitably introduced when we analyzed
all the nuclei of the entire SVS. Therefore, only glandular tissue was considered in this
study. Glandular tissue segmentation was performed on the lower-resolution (16 µm/pixel)
images.

Every pixel in the R, G, and B channels were characterized by three local-robust
statistics [37,38]: Median; Med(x); Inter-Quartile Range, (IQR(x)); and Median Absolute
Deviation (Med(x)) [39]. Here, we define the feature vector for every pixel f (x) as:

f (x) = ( fR, fG, fB)
T ∈ R9, (1)

fR = (Med(x), IQR(x), MAD(x)) ∈ R3, (2)

The fR, fG, fB is the feature vector that calculates on channels R, G, and B, respectively.
The 9-dimensions vectors f(x) represented one pixel, then passed to the k-means algorithm.
Glandular tissue areas were entered into the nuclei segmentation pipeline while glandular
tissue mask images were scaled to the original size.

The nuclei were only extracted from glandular tissue. WSIs and corresponding glandu-
lar tissue mask images were cropped into 4096 × 4096-pixel tiles. The color and brightness
of the 4096 × 4096 images were first normalized by histogram equalization in the L channel
of the CIELAB color space. Then, the color unmixing technique [40] was applied for the
hematoxylin component extraction to highlight the chromatin material and for subsequent
nuclei segmentation. Next, the Otsu method with the Otsu ratio threshold equal to 1 was
performed for finding the initial locations of the nuclei contours. The initial contours
were optimized to be smoother and more accurate by level-set-based contour evolution
algorithms [41]. There were some regions in which multiple nuclei clumped without clear
separation. In such cases, the mean-shift algorithm was applied to separate the chunk into
individual nucleui [42].

Once the nuclei in the WSI were segmented, a rich set of imaging features describing
the extracted nuclei was calculated. These features summarized the size, intensity, and
geometric shape characteristics of each detected nucleus, and some of them are essential for
downstream combination analysis. Implementations of these features were part of the ITK
toolkit [43]. It is neither feasible nor consistent to list the features of all nuclei for follow-up
analysis. Instead, we used a list of aggregating statistics—mean value, standard deviation,
and median value—to summarize them for each WSI.

In addition to each individual nucleus, the spatial distribution of nuclei in the tissue
was also found crucial in some pattern recognition tasks [44]. After we acquired the spatial
centroids of detected nuclei, we generated Voronoi diagrams, Delaunay triangulation, and
minimum spanning trees from these locations. Then, neighboring nuclei counts within a
given radius were calculated to quantify the spatial arrangement of nuclei. The final feature
values were aggregated with the local feature values of the entire WSI. All features used in
this study are listed in Supplementary Table S1.
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2.3. Unsupervised Analysis of Breast Images Using Nucleus Features

A deep clustering procedure [45,46] was used in this study, which contains a multilayer
perceptron (MLP) network module for extracting the representative features and a k-means
module for clustering samples [47]; the details are shown in Figure 1.

1 
 

 
 
 

 

Figure 1. Pipeline of the image processing. Two parts are consisted in our method: representative
features are extracted by multilayer perceptron, and the clustering is performed by k-means. The
nucleus features were firstly used to produce the pseudo label by k-means for training the MLP Net-
work, and the representative features were used to produce the pseudo label again. The framework
iterated 50 epochs until convergence.

To determine the appropriate number of clusters, we applied the k-means clustering
algorithm with k = 1, 2, . . . , 14 and calculated the sum of the squared errors (SSE). As
shown in Supplementary Figure S1, the change in slope of the SSE curve is lowering when
k > 4, so we chose k = 4, at the elbow of the curve. We also validated the k-means clustering
results with k = 3, 4, 5 by UMAP (Supplementary Figure S2). The UMAP plot indicates
well separation in the four clusters but not in the three or five clusters.

There are 3 hidden layers in the MLP network for features extraction, in which the
number of output units is 100, 100, and 50, respectively, and each output was activated by
Rectified Linear Unit (ReLu) function. The final activation output went through a linear
classifier by softmax, and the cross-entropy was used as the loss function. In each iteration,
the MLP network was trained in 500 epochs by the Adam optimization algorithm. In this
study, the input data of the MLP network and the final activation output for clustering
were normalized with the target mean and standard deviation of 0.0 and 1.0, respectively.
The iterative process continues 50 times for convergence.

2.4. Identification of Feature-Specific Genes

The analyzed dataset was filtered (retaining only genes with an estimated expression
TPM > 0 in more than 10% of samples) before doing statistical analysis. The differential
expression analysis algorithm, originally described in [48], underwent a minor adaptation
to fit our four clusters. Genes we found were over-expressed in a single cluster, while
their expression was not statistically different among the remaining clusters. While the
traditional algorithm such as DEseq2 [49] only considers the comparison between one
group and the others, comparing one cluster against the rest does not guarantee that the
selected genes are only specific to one cluster.

Two statistics were calculated for hypothetical testing: a robust t statistic (T1) and a
chi-square statistic (T2) for each gene, and the cluster-specific genes were screened out by
T1 and T2. T1 was used to determine if a gene over-expresses in a special subtype compared
to the others, and T2 was used to determine if there is no significant difference among the
others. To find the genes that meet the conditions described above, the T1 must be large
enough to guarantee that there is a significant difference of the expression in one cluster
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compared to the others, and the T2 must be small to ensure that there is no significant
difference in the expression among the other clusters.

To obtain statistical significance, we computed p-values from T1 and T2, then ac-
counted for multiple tests using the false discovery rate (FDR) [50]. In this study, we set the
thresholds of T1-based FDR < 0.01 and T2-based FDR > 0.1.

3. Results
3.1. Image-Genetic Joint Analysis Pipeline

The whole joint pipeline for the image-and-gene analysis could be described as follows:
In the pre-processing of the WSI, we obtained a multiscale stack of images including the
low-resolution one used to extract the glandular region. Then, we extracted the nuclei and
calculated the statistics of the nuclei’s morphological characteristics. Finally, we performed
the joint analysis of nucleus characteristics and RNA-expression to find the gene sets that
are associated with specific nucleus features. The pipeline of the image-feature-specific
genes discovery analysis is demonstrated in Figure 2.

1 
 

 
 
 

 

Figure 2. Pipeline of the association analysis between image-based features and RNA-expression
profiles of healthy breast tissue. A total of 456 H&E images and the corresponding RNA-seq data
from the GTEx database were included in the analysis. Sixty-five intensity and texture features of
nuclei in glandular tissue were computed and then classified into four clusters. We discovered 1447
genes specific to single clusters, and the top 5 genes of each cluster are shown in the output panel.
The circles in the boxplot represent outliers in the data.

3.2. Glandular Tissue Segmentation

The inherent differences of nucleus features in different tissues have a huge impact
on cluster analysis, e.g., nuclei from areas of adipose tissue are small and elongated, so
true biological differences between individuals will overwhelmed by such effects. Also, the
nucleus features in glandular tissue are most likely associated with breast diseases.

Each image had been segmented into background, adipose tissue, glandular tissue,
and connective tissue. To confirm which cluster represents the glandular tissue, we picked
one standard image (where the glandular tissue is segmented precisely with pathologist
verification) and used centroid of the glandular tissue cluster as the reference. For each
image, the cluster whose centroid is closest to the reference was considered to be glandular
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tissue. The standard image and the corresponding mask image are shown in Figure 3.
The top half of Figure 3 is the WSI in a resolution of 16 µm/pixel (A) and 1 µm/pixel (C),
whereas the bottom half part of Figure 3 indicates the binary mask for the glandular region
in the WSI. 

2 

 

 

Figure 3. One example of glandular tissue segmentation. (A) The standard image at its lowest
resolution to show the global view. (B) The corresponding global mask image in which the white
part represents the glandular tissue. (C,D) The corresponding zoomed-in version.

Following the method in Section 2.2, the glandular regions were segmented at low
resolution. After that, the segmentation mask was resized to the original resolution for
guiding the nucleus segmentation.

3.3. Nuclei Segmentation

The performance of the proposed nucleus segmentation method had been compared to
two state-of-the-art nucleus segmentation programs, i.e., a UNet-based approach [51] and
QuPath (version 0.3.2) [18]. Due to the lack of nucleus annotations in GTEx histopathology
images, algorithm comparisons were performed on a collection of images from MICCAI,
Kaggle, and ISBI challenges [52–55]. A total of 96 images with ground truth labels were
split into training, validation, and test sets, with 82, 4, and 3 images, respectively. Dice
Similarity Coefficient (DSC), Intersection over Union (IoU) and Hausdorff Distance (HD)
were calculated to evaluate the performance of the algorithms. As shown in Table 1, our
proposed method outperforms other compared methods, i.e., DSC is 10% better than
QuPath and 2% better than UNet, IoU is 18% better than QuPath and 3% better than UNet,
and Average HD is 53% better than QuPath and 0.7% better than UNet. Figure 4 shows two
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examples of three nucleus segmentations for both challenge data and GTEx mammary data.
The UNet and QuPath show various degrees of clumping, while the proposed algorithm
explicitly declumped the chunk into individual nuclei.

Table 1. The performance of nucleus segmentation methods. The proposed method outperforms the
other methods.

DSC
(mean ± std)

IoU
(mean ± std)

Average HD
(mean ± std)

QuPath 0.7002 ± 0.0904 0.5451 ± 0.1006 2.8108 ± 2.0811
UNet 0.7592 ± 0.0983 0.6204 ± 0.1187 1.3044 ± 0.7208

Proposed 0.7797 ± 0.0525 0.6416 ± 0.0691 1.2942 ± 0.6634

 

2 

 

 

Figure 4. Two example results of three nucleus segmentation methods for (A) challenge data and (B)
GTEx data. Contour colors: red (ground truth), green (algorithm).

3.4. Classification of Image Features

Since GTEx samples are from healthy donors, there is no pathological classification
associated with them. To discover the stratification of nuclear features, we use a deep
clustering method to divide all samples into four clusters according to all nuclear features,
as described in Section 2.3. Furthermore, the heat map shown in Figure 5 describes the
features of each cluster. Each row represents one sample, and each column represents
one feature. The numerical values in Figure 5 were z-scores normalized to mean = 0 and
variance = 1. Here we list the characteristics of each cluster:

• Cluster 1: All nuclear features are close to the sample mean.
• Cluster 2: The nuclei in this cluster are large, irregular, long, and dark, with the most

uneven color distribution. The distance between the nuclei is small.
• Cluster 3: The nuclei in this cluster are small and round, with uniform color distribu-

tion. The distances among the nuclei are large.
• Cluster 4: The nuclei in this cluster appear to be quite dark.
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3 

 

 

Figure 5. Heat map of clustering results for nucleus features. Each row represents a sample and each
column represents a nucleus feature. Feature scores in this heat map were normalized.

Figure 6 shows images of two samples from each cluster.

 

3 

 

 
Figure 6. Illustration of images sampled from those with the most extreme image features in each
cluster. Correspondingly, the top five feature-specific genes that are most highly expressed in each
cluster are also shown.
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3.5. Discovery of Feature-Specific Genes

The classification of GTEx samples in Section 3.3 was used for the identification of
feature-specific genes where expressions are significantly higher in one particular cluster
than the others. Figure 6 shows two examples of nuclei and the top five specific genes for
each cluster.

As an example of feature-specific genes, Figure 7 shows the boxplot of gene-level
mRNA expressions of SCTR, a top-ranking gene specific to Cluster 2. It is highly expressed
in Cluster 2 and lowly expressed in the rest of the clusters. The cluster-specific genes were
selected following two criteria: T1 less than 0.01 and T2 greater than 0.1, which ensures that
the expression of cluster-specific genes are higher in one specific cluster than the others,
while there is no significant difference in the others [56]. A total of 141, 359, 740, and 207
genes were considered as the feature-specific genes for each cluster, respectively. After
being ranked by an ascending order of T1, the top 25 feature-specific genes are shown in
Supplementary Table S4, and all genes are shown in the CSV table in our Supplementary
Material. The expression of the first gene in each cluster is displayed in Supplementary
Figure S3. Figure 8 is the color map of the top 15 genes in each group, in which each row
represents one gene and each column represents one sample. In Figure 8, there are four
red blocks, which indicates that the expression of the feature-specific gene is higher in one
specific cluster than the others. In specific, Clusters 2, 3, and 4 are explicit, while the first
block is not. 

4 

Figure 7. The gene-level expression distribution of the SCTR gene across four clusters, where the
value of the ordinate is log2(TPM+1). The circles in the boxplot represent outliers in the data.
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5 

 
PP 

 

Figure 8. Color-map of the top 15 feature-specific genes from each cluster. Each row represents a
gene, and each column represents a sample. Red and green indicate a gene’s mRNA expression
level above and below its median expression level across all samples, respectively. The genes in each
cluster were ordered by p-value from bottom to top.

SCTR, the top gene in Cluster 2, is a protein-encoding gene that encodes the G protein-
coupled receptor that binds the secretin. Cluster 2 is the cluster with the most distinctive
characteristics. The dysregulation of SCTR had been reported, which relates to a few cancers.
Onori et al. [57] had reported that the secretin inhibits the cholangiocarcinoma growth via
dysregulation of the cAMP-dependent signaling mechanisms of the secretin receptor, and
the modulation of SCTR expression might behave as a tool to treat cholangiocarcinoma. Li
et al. [58] had reported that hypermethylation at the CpG island of SCRT is the diagnostic
biomarker of colorectal cancer and its precursor lesions. Concerning the effect of SCRT
on breast tissue, Kang et al. [59] had reported that SCTR suppresses the proliferation of
normal breast cells, while the downregulation by promoter methylation stimulates the
proliferation and migration of cancer cells. IGF2BP2 (Insulin-Like Growth Factor 2 MRNA
Binding Protein 2), the Cluster 2-specific gene, is a protein-encoding gene, which encodes
the protein binding the 5’ UTR of insulin-like growth factor 2 (IGF2) mRNA and regulating
its translation. IGF2BP2 also relates to several cancers, including liver, pancreatic, breast,
and so on. McMullen et al. [60] had reported that IGF2BP2 is significantly upregulated in
metaplastic carcinoma of the breast. Kim et al. [61] had reported that insulin-like growth
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factor 2 mRNA binding protein 2 and 3 are upregulating in triple-negative breast cancer
and cooperating to promote the migration and invasion of cancer cells.

CA3-AS1 (CA3 Antisense RNA 1), the top-rank gene of Cluster 3, is a long non-
coding RNA (lncRNA). Cluster 3 is a cluster with opposite characteristics to Cluster 2.
Zhang et al. [62,63] had reported that the overexpression of CA3-AS1 which locates in the
cytoplasm can suppress the proliferation and invasion of colorectal cancer cells by binding
to miR-93.

3.6. Pathway Enrichment Analysis

We performed pathway enrichment analysis on a subset of signature-specific genes
for each cluster. The analysis based on the Reactome [64] database was carried out on
the website “https://reactome.org/ (accessed on 14 December 2022)”, and the analysis
based on the KEGG [65] and Gene Ontology (GO) [66] databases was performed using the
enrichKEGG and enrichGO functions of the R package clusterProfiler v3.18.1 (p-value was
adjusted by the Benjaminiand Hochberg method).

The significant pathways with p-values less than 0.05 for each cluster in each database,
as well as relative statistics, are listed in Supplementary Table S5. For instance, the most
significant pathway related to Cluster 2 in GO (adjusted p-value = 2.32× 10−2) and in KEGG
(adjusted p-value = 1.54 × 10−4) analysis is “neutrophil degranulation” (GO:0043312), and
“Staphylococcus aureus infection” (hsa05150). The KEGG and GO analysis results of Cluster
2 are summarized in Figure 9; the results of the other three clusters are summarized in
Supplementary Figures S4–S6. The most significant pathway related to Cluster 2 (Entities
p-value = 8.20 × 10−4) in Reactome analysis is “Neutrophil degranulation.” Neutrophil
is the most abundant leukocyte and it plays a very important role in the nonspecific
immune system. Neutrophil-like populations are recognized as having an important role
in cancer development [67], Moreover, neutrophil granule proteins may mediate tumor
cell metastasis to different tissues and develop into different cell types [68]. We also used
the top 25 feature-specific genes in each cluster to carry out the pathway analysis by the
Reactome database. The significant pathways with p-values less than 0.05 for each cluster
and relative statistics are listed in Supplementary Table S6.

 

5 

 
PP 

 Figure 9. Visualization of enrichment analysis. (A) Bar graph of significant pathways in KEGG
analysis. (B) Bar graph of significant pathways in GO analysis.

4. Discussion

In this study, we proposed a joint analysis framework for paired histopathological
images and gene expressions of healthy breast tissue. This analytical framework quan-
titatively computed the morphological features of the nuclei and divided samples into
four well-characterized clusters based on nuclear features. Finally, we identified a set of
feature-specific genes that are associated with healthy breast tissue growth and breast
disease development, including the proliferation of normal breast cells, the development

https://reactome.org/
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of breast lesions, and the metastasis and proliferation of cancer cells. We have provided a
comprehensive view of the transcriptomic landscape of molecular feature-specific RNA
expression of breast tissue.

The proposed analytical model is able to identify phenotypic differences across healthy
breast tissues based on the sizes and color depths of nuclei. Compared to the healthy tissue,
diseased tissue has a high degree of heterogeneity caused by disease type, disease grade,
and so on. Such multiple factors would jointly affect the phenotypic characteristics of
diseased tissue. To avoid the manifold influence from disease and tissue-type, our study is
focused on the healthy glandular tissues of the breast. This ensures differences between
individuals would not be disturbed by redundant factors.

In order to verify the biological significance of four feature-specific gene sets, we
performed pathway analysis. For example, the specific genes of Cluster 2 are closely
related to immune regulation: “neutrophil degranulation” (GO:0043312), “neutrophil
activation involved in immune response” (GO:0002283), “B-cell receptor signaling pathway”
(hsa04662) and “chemokine receptors bind chemokines.” The neutrophil-to-lymphocyte
ratio plays an important role in breast cancer prognosis [69]. Chemokines, chemokine
rectors, and neutrophil granule proteins are involved in tumor metastasis [68,70].

Some of the genes in the discovery gene sets are associated with breast cancer; fur-
ther explorations could be made based on the identified feature-specific biomarkers. For
instance, two feature-specific genes of Cluster 3 (UBE2C and NDC80) are also in the set of
PAM50 [71]. UBE2C (Ubiquitin Conjugating Enzyme E2C) is a Protein Coding gene that en-
codes a member of the E2 ubiquitin-conjugating enzyme family. Its high expression relates
to the poor prognosis in high-risk breast cancer [72]. It is also a direct target of miR196-a,
which promotes cell proliferation in breast cancer [73]. NDC80 is a protein Coding gene
that encodes the NDC80 kinetochore complex components (NUF2). It may be involved
in preneoplastic processes, as it is detected in benign breast tumors [74]. Xu et al. [75]
had reported that NUF2 is overexpressed in breast cancer and significantly connected to
multiple pathological features and prognosis of breast cancer. MDM2 from Cluster 4 is a
cancer-related gene that encodes a nucleus-localized E3 ubiquitin ligase; such protein can
promote tumor formation by targeting tumor suppressor proteins, e.g., p53, for proteasomal
degradation. The study of Opoku et al. [76] shows that MDM2 might be associated with
aggressive biological behavior in breast cancer. It could be a biomarker implying the poor
Overall Survival (OS) and Progression-Free Survival (PFS) in luminal breast cancer [77].

Although we intuitively describe the concrete features of the nucleus, some abstract
features could be lost. These features may describe the images in more detail. In future
study, we will combine abstract features such as deep features [78] to further supplement
image descriptions, explore genes related to these features, and conduct joint analysis with
our findings.

All of our results suggest that the gene-expression profiles not only characterize the
molecular subtypes of diseases, but also provide an explanation of imaging phenotypes.
This study reveals a link between genotype at the nanometer scale and nuclear phenotype
at the micrometer scale in healthy breast tissue. We found a stratification of nuclear
phenotypes and associated gene sets in healthy tissues, while accounting for heterogeneity
in diseased tissue and differences across tissue types. These findings provide novel view
and biomarkers of healthy breast tissue.

5. Conclusions

In this study, we developed a computational framework for paired histological images
and RNA expressions to identify feature-specific genes that are associated with nucleus
morphology. The framework had been applied on 456 paired samples from GTEx with
both histological images and RNA-seq data. The analysis shows strong evidence in support
of the unsupervised deep learning approach to extract histological image features and
the quasi-Poisson based method to identify feature-specific genes. The proposed analysis
unveils the individual variation and helps to understand how regulation of gene expression
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in tissue related to tissue morphology. Ongoing studies include extending the proposed
pipeline to more tissue types in the GTEx dataset.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s23031432/s1, Supplementary file: Figure S1: SSE plot and SSE
Difference plot for k-means; Figure S2: UMAP plot for k-means with k = 3, 4, 5; Figure S3: Boxplot
for expression of the first gene in each cluster; Figure S4: The KEGG analysis results of Cluster 1;
Figure S5: The KEGG and GO analysis results of Cluster 3; Figure S6: The KEGG and GO analysis
results of Cluster 4; Table S1: A table of explanations of image features.; Table S2: A table of top
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