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Abstract: A little explored area of human activity recognition (HAR) is in people operating in relation
to extreme environments, e.g., mountaineers. In these contexts, the ability to accurately identify
activities, alongside other data streams, has the potential to prevent death and serious negative
health events to the operators. This study aimed to address this user group and investigate factors
associated with the placement, number, and combination of accelerometer sensors. Eight participants
(age = 25.0 ± 7 years) wore 17 accelerometers simultaneously during lab-based simulated moun-
taineering activities, under a range of equipment and loading conditions. Initially, a selection of
machine learning techniques was tested. Secondly, a comprehensive analysis of all possible com-
binations of the 17 accelerometers was performed to identify the optimum number of sensors, and
their respective body locations. Finally, the impact of activity-specific equipment on the classifier
accuracy was explored. The results demonstrated that the support vector machine (SVM) provided
the most accurate classifications of the five machine learning algorithms tested. It was found that
two sensors provided the optimum balance between complexity, performance, and user compliance.
Sensors located on the hip and right tibia produced the most accurate classification of the simulated
activities (96.29%). A significant effect associated with the use of mountaineering boots and a 12 kg
rucksack was established.

Keywords: accelerometer; inertial measurement unit; human activity recognition; wearables;
machine learning; extreme environments

1. Introduction
In extreme environments, such as remote high mountains, emergency response is

often limited, and therefore, identifying negative health trends is a critical issue. There are
a vast range of reasons why humans ascend to altitude and expose themselves to this harsh
environment. One common purpose includes recreation in the form of mountaineering and
trekking. To support these recreational users, multiple professionals are often also required,
and consequently there is a huge leisure and tourism industry employing mountain guides
and porters/Sherpas. There are also native inhabitants of mountain regions, with over
81 million people estimated to live higher than 2500 m above sea level [1]. Mountains are
inherently dangerous places, with extreme environmental conditions such as high wind
speeds, low barometric pressure, and low temperatures. Alongside famous incidents, such
as the 1996 Mount Everest expedition where eight climbers died when a storm trapped
them on the mountain, numerous health events lead to abandoned objectives and medical
evacuations. Helicopter medical evacuation rates to a single hospital in Nepal amounted to
905 per 100,000 mountaineers in 2017 [2]. Studies have also shown incidence rates of acute
mountain sickness, (a common form of illness associated with high altitude) exceeding 40%
when ascending above 2500 m [3]. This condition alone therefore has the potential to affect
millions of people annually.

To mitigate the risk posed to these groups their health must be monitored. In order to
truly understand the health of an individual, first the activities of the individual must be
fully identified. This preliminary study is part of a wider initiative aimed at developing an
innovative solution to health monitoring in extreme environments.
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2. Related Work
Physical activity in the presented mountaineering context can be better described

as movement between static postures such as sitting or standing, or a dynamic motion
such as walking or climbing [4]. The need to quantify and better understand physical
activity is applicable to a wide range of fields, including healthcare, physical training, and
sports [5–7].

Multiple methods exist to quantify physical activity, ranging from simple approaches
through to fully automated artificial intelligence methodologies. Each method has its
own relative strengths and weaknesses. Likewise, the nature of the environment within
which the activity monitoring takes place will also have a substantial influence on the
selection of an effective method. The existing literature has demonstrated a clear need to
understand more than just a binary state of either active or sedentary behaviour, and in
light of this, the field of activity recognition and human activity recognition (HAR) has been
established [8]. A little explored application of HAR is that of people operating in extreme
environments, and the respective need to understand what activities they are completing.
Whilst traditional monitoring methods such as simple observation have been shown to
be effective in controlled environments, such as during sports training sessions, it is not
possible to have observers following participants in dynamic hazardous environments; as
such, there is a need for automated monitoring systems.

The two most popular automated activity recognition systems can be classified as
either vision-based, or sensor-based. Vision-based systems require the use of cameras
and direct line of sight to record data, whereas sensor-based systems require sensors to
be affixed to the user. Vision-based systems are not suitable for deployment in extreme
environments due to their inherent limitations. With the ongoing development in sensor
miniaturisation and the associated reduction in power consumption, wearable sensors have
gained popularity as a possible solution within these environments [9].

A frequently utilised wearable sensor is an accelerometer, which measure acceleration.
Accelerometers have been demonstrated to be effective at identifying a wide range of hu-
man activities [10]. Accelerometers are often included in a range of systems reported in the
literature [11], and are used in the identification of physical activity, energy estimation [12],
and fall identification [13]. Accelerometers are well suited to extreme environments due to
their relatively small size, in addition to being battery powered and operating wirelessly.

The need to optimise the accuracy and performance of HAR systems is well estab-
lished. A large body of the work within the sensor-based HAR field focuses on feature
extraction [14,15] and the development and implementation of classification models [16] to
improve recognition accuracy. Whilst these aspects are unarguably essential to improve the
performance of HAR systems, they often overlook some of the elements which are most
influential in real-world applications.

Notably, one of the more significant challenges is the question of how to improve
recognition accuracy with the optimisation of the number and location of sensor nodes [17].
This has been widely studied in relation to activities of daily living [18,19], but has not been
explored in relation to activities within an extreme environment. Practical limitations exist
on the number of sensors a user will tolerate [20], and the effect they have on the ability
of the user to complete their task unencumbered. A compromise must therefore be made
between the level of information the system requires and any detrimental effect on the user.
Further consideration must also be placed on the errors attributable to incorrect positioning,
environmental conditions, and sensor variability [21]. These errors can either be amplified
or diminished by different system configurations. Therefore, there is an immediate need to
establish if the optimal number of sensors, and their respective configurations, as estab-
lished in research related to normative environments remains the optimal configurations
when deployed into an extreme environment.

A second factor which plays a pivotal role in HAR performance is the training data
used in the development of deployable models. It is well understood that activity specific-
training data are required to provide accurate activity detection in a supervised machine
learning system. Training a system with data pertaining to activities of daily living and
expecting it to perform well at detecting specific sporting activities is not feasible. Therefore,
systems are trained with representative data of the activities intended to be classified.
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However, these training data often do not consider the clothing or equipment which will
be utilised by the end user. The influence this may have on the overall classifier accuracy is
not well established and the nuances of individual use cases such as mountaineering are
unexplored. This gap in the existing knowledge base prevents the predictable deployment
of current models into extreme environments.

Mountaineers are required to use specialised equipment to protect them from climatic
conditions present at high altitude as well as items which aid movement in these environ-
ments. Mountaineering participants are required to always carry resources and equipment
with them whilst conducting the activities, this is often accomplished using a rucksack
containing their provisions. Further, mountaineering boots which possess a very stiff stoles
and accommodate a metal crampon are required to provide traction whilst on snow and
ice. The effect this equipment will have on classifier accuracy is unknown and requires
further analysis to understand the implications which this may have on HAR systems.

It is important to consider the context of the proposed HAR application when propos-
ing an effective system. Once a negative health event has been detected, a response is
required. Multiple challenges exist surrounding communication in mountaineering envi-
ronments. Traditional monitoring systems rely on mobile phone network communication
between the user and central command, whereby information and data are passed and a
decision is made at the command structure [22]. Mobile phone technology (3G, 4G, 5G)
and other conventional communication modalities are often unsuitable for use in extreme
environments due to a lack of infrastructure and environmental limitations [23], therefore
complex satellite communication systems are often the only effective option. These systems
can be expensive and difficult to integrate with monitoring platforms. A novel system was
proposed by Galli et al. [24] where they demonstrated the feasibility of a satellite Internet of
things (IOT) approach to send monitoring data from an individual to a command structure.
Due to the unreliability of two-way communication, a design approach where all processing
was done at the edge-device level and contextualised information was passed back to the
control structure was established. As such, when considering the optimisation of HAR for
mountaineers, resource usage and computational demands must be minimised wherever
possible to allow for deployment on limited edge devices.

The purpose of this study was to answer: (I) What is the most accurate classifier for
mountaineering specific activities? (II) What is the optimal sensor combination and number,
and where should the accelerometers be positioned? (III) What effect does activity-specific
equipment have on classifier accuracy?

This pioneering work is the first time HAR has been explored specifically for moun-
taineers, as well as utilising more extensive sensor locations and configurations to provide
a comprehensive evaluation. Further, user-worn equipment is included as a parameter in
the analysis of HAR classifiers for the first time. In the following manuscript and coming
results, a greater understanding is gained, filling in the gaps between the theoretical knowl-
edge of HAR approaches developed within a laboratory environment and the real-world
application of these approaches to a specific user group with unique considerations and re-
quirements. The results obtained allow for the predictable deployment of an effective HAR
system into the mountain environment, whereby further optimisation can occur. Addition-
ally, the findings have far-reaching implications beyond the niche of the mountaineering
case study presented here.

3. Materials and Methods
3.1. Participants and Ethics

Eight subjects were recruited to participate in this study, comprising of seven male
subjects and one female subject. Subject demographics are summarised in Table 1. Subjects
ranged in age from 19–32 years, with a mean age of 25 years. All subjects were students
at Loughborough University with previous mountaineering experience. Prior to partici-
pating in the trial, all subjects completed a medical screening questionnaire to ensure their
suitability to partake in the testing. The study was approved by Loughborough University
Ethics Approvals (Human Participants) Sub-Committee (R19-P175).
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Table 1. Participant demographics.

Mean ± SD (n = 8) Minimum Maximum

Age (years) 25.0 ± 4.3 19.0 32.0
Body Mass Index (kg m−2) 23.7 ± 3.9 17.6 28.6

3.1.1. Instrumentation and Equipment
The Perception Neuron inertial motion capture (Mo-Cap) (Noitom International Inc.,

Miami, FL, USA) was selected for use as it allowed for 17 simultaneous accelerometers to be
positioned at various anatomical positions around the body. The suit was configured in the
18-neuron configuration, and was worn by all subjects in the trial. In the 18-neuron config-
uration, 17 inertial measurement units (IMUs), measuring 12.5 mm × 13.1 mm × 4.3 mm,
and containing a 3-axis accelerometer (±16 g), a 3-axis gyroscope (±2000 dps), and a 3-axis
magnetometer per unit, are utilised. Only the accelerometer data stream was used in this
trial, with the body positions of the sensor locations shown in Figure 1a and detailed in
Table 2. The sensors form an integrated part of the proprietary suit and, therefore, the
suit was fitted in accordance with the manufacturer’s instructions. Data were sampled at
a frequency of 120 Hz. This frequency was chosen as it covered most of the established
everyday activity range of approximately 20 Hz, whilst allowing for unknown ranges in
the mountaineering specific activities. Additionally, ample bandwidth was captured which
allowed us to downsample postcapture if required. Similarly, the accelerometer range was
deemed suitable to capture the established normal range of bodily acceleration amplitudes
of ±12 g [18]. Data were aggregated in the suits hub and transmitted wirelessly to a PC
running the suits’ proprietary software application (Axis Neuron, Noitom International Inc.,
Miami, FL, USA). The data were then exported from the proprietary software application
and imported into MATLAB (Matlab, MathWorks, Natick, MA, USA) for analysis.

(a) (b)
Figure 1. (a) Approximation of accelerometer placements from the Perception Neuron inertial motion
capture (Mo-Cap) suit (Node 17: C7 vertebrae not shown). (b) Example of mountaineering rucksack
(Mountain Hardwear, Direttissima 46) and B3 rated boots (LaSportiva, Nepal Evo GTX).
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Table 2. Perception Neuron anatomical IMU positions.

Sensor Node Anatomical Position

1 Occiput
2 and 3 Acromia (L & R)
4 and 5 Centre of humerus (L & R)
6 and 7 Distal ulna (L & R)
8 and 9 Dorsum of hand (L & R)
10 Hips
11 and 12 Midshaft lateral femur (L & R)
13 and 14 Proximal tibia (L & R)
15 and 16 Dorsum of foot (L & R)
17 C7 vertebra

3.1.2. Experimental Protocol
The subjects were asked to complete seven whole-body activities which included

walking on flat ground, walking up an incline slope, walking down a decline slope, walking
up stairs, walking down stairs, sit on a 30 cm high block from standing, and stand from
sitting on a 30 cm high block. The trial consisted of two parts corresponding to equipment
states, defined as either “unequipped” or “equipped”. Initially, the participants completed
each activity whilst wearing standard gym clothes (t-shirt, shorts, and trainers); this
equipment state was designated “unequipped”. Next, the participants completed the
same 7 activities whilst wearing mountaineering boots (B2 or B3 rating) and a 12 kg
mountaineering rucksack. This was designated as the “equipped” state. The same rucksack
was used for each trial, with the participants permitted to adjust the straps on the rucksack
to their preference. Each participant completed each activity for three discrete repetitions
for each equipment state. Data were then manually labelled postcapture by a human
observer. Example equipment is shown in Figure 1b.

3.2. Feature Extraction
The raw acceleration data were collected for each activity and labelled accordingly.

The acceleration signals comprised both a body acceleration component and a gravita-
tional acceleration component. As utilised in previous studies, a fourth-order Butterworth
high-pass filter with a cut-off frequency of 0.25 Hz was used to remove the gravitational
component and isolate the body acceleration component of the acceleration signal [25–27].
In addition to the three orthogonal axes, the three axes were combined to produce the
signal magnitude vector (SMV) (Equation (1)).

SMV =
√

ax + ay + az, (1)

The three individual axis and SMV acceleration signals were partitioned into 1 s (120
samples), 50 percent overlapping windows. A 50 percent overlap was chosen as it has been
shown to produce effective results in previous studies [28,29]. Table 3 presents the number
of instances per class. In total, 2701 windows were represented across the 7 activities, and
2 equipment states were investigated.

Table 3. Number of windows per activity.

Activity
No. of Windows

Unequipped State Equipped State

Walking on flat ground 205 227
Walking up incline 238 248
Walking down incline 253 266
Walking up stairs 226 269
Walking down stairs 214 263
Stand from seated 66 66
Sit from standing 69 91
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Multiple descriptive features were then extracted from the collated windowed dataset;
an overview of the extracted features is shown in Table 4.

Table 4. Extracted features.

Feature No. Feature Feature Description

1–4 Mean value
Mean value of x-, y-, z-, and signal magnitude vector
(SMV)-windowed values

5–8 Variance Variance of x-, y-, z-, and SMV-windowed values

9–12 Standard deviation
Standard deviation of x-, y-, z-, and SMV-windowed
values

13–16 Maximum Maximum value of x-, y-, z-, and SMV-windowed values
17–20 Minimum Minimum value of x-, y-, z-, and SMV-windowed values

21–24 Mean absolute deviation
Mean absolute deviation of x-, y-, z-, and SMV-
windowed values

25–28 Range Range of the x-, y-, z-, and SMV-windowed values

29–32 Root mean square
Root mean square of x-, y-, z-, and SMV-windowed
values

33–36 Skewness Skewness of x-, y-, z-, and SMV-windowed values
37–40 Kurtosis Kurtosis of x-, y-, z-, and SMV-windowed values
41 Spectral energy Energy of SMV-windowed values

The features as summarised in Table 4 were calculated for all three axes and the
combined SMV. The equations for calculating features 33–41 are shown in Table 5:

Table 5. Calculation of extracted features.

Feature Equation

Skewness Skew =

1
N

N

∑
i=1

(wi − µ)3

(
1
N

N

∑
i=1

(wi − µ)2
)3 (2)

Kurtosis Kurw =

1
N

N

∑
i=1

(wi − µ)4

(
1
N

N

∑
i=1

(wi − µ)2
)2 (3)

Spectral energy
Energyx =

|n|

∑
i=1
|xi|2

|n| (4)

xi denotes the Fast Fourier transform (FFT) components of the window.
wi denotes either the ax-, ay-, az-, or SMV-windowed values, with N observations contained within the window.

3.3. Classification Models
The application of classification models to solve activity recognition problems is a

maturing field, with no universally accepted optimal algorithm for the detection of physical
activities. Additionally, there is no precedent within the literature specifically relating
to mountaineers and their specific use case. Each classification algorithm has its own
relative advantages and disadvantages more thoroughly explored by Nweke et al. [30] and
Lima et al. [16]. As such, 5 commonly used machine learning algorithms were selected
and evaluated for accuracy. The algorithms evaluated comprised ensemble bagged trees
(EBT), support vector machine (SVM), decision trees (DT), weighted k-nearest neighbours
(k-NN1), and k-nearest neighbours (k-NN2). The configurations of the classification models



Sensors 2023, 23, 1416 7 of 18

are shown in Table 6. Each classification algorithm was assessed using a 10-fold cross-
validation with 10 iterations for all single, two-, and three-sensor combinations using
MATLAB R2020a Statistics and Machine Learning Toolbox Ver. 11.7 (Matlab, MathWorks,
Natick, MA, USA). Further analyses of sensor combinations and locations were completed
using a 25% holdout cross-validation methodology.

Table 6. Classification model configuration.

Classification Model Configuration

Support vector machine (SVM)

A cubic kernel function and automatic box constraint and ker-
nel scale defined by Matlab’s inbuilt heuristic procedure which
utilises a subsampling methodology was used. A multiclass
method which reduced the multiclass configuration into a se-
ries of binary classification subproblems using a “one-vs.-one”
approach was also utilised.

Ensemble bagged trees (EBT)
Utilised Breimans’s “random forest” algorithm. A maximum
number of 1429 splits was established, and the number of learn-
ers was set to 30.

Decision tree (DT)
Maximum number of splits set at 100; Gini’s diversity index was
used to define the split criterion.

k-nearest neighbours (k-NN1)

Medium distinctions between classes, using a Euclidean distance
weighting. A squared inverse weighting function was imple-

mented where (weight =
1

distance2 ). The number of neighbours
was set to 10.

k-nearest neighbours (k-NN2)
Fine distinctions between classes with no Euclidean distance
weighting were applied. The number of neighbours was set to 1.

4. Results
4.1. Classification Model Performance

Single-sensor performance was considered in this initial analysis to determine which
classifier provided the most accurate activity detection. Data from both equipment states
were evaluated: unequipped and equipped. Figure 2 and Table 7 present the average
percentage of correctly classified instances from all sensor locations.

As shown in Table 7, the SVM achieved the highest accuracy for both equipment states
in the single-sensor configuration, unequipped (87.51%) and equipped (85.23%). There was
a significantly different individual classifier accuracy for the single-sensor configuration
in the unequipped state (F(4, 64) = 66.803, p < 0.001). Post hoc testing revealed that the
decision tree was the only significant result, performing worse than all other classifiers
at 73.06% (p < 0.001). Again, there was a significantly different individual classifier
accuracy for the equipped state (F(1.806, 28.888) = 108.785, p < 0.001) (Greenhouse–
Gessier corrected). The DT was the only significant result (68.61%, p < 0.001), where the
DT classifier achieved significantly less accuracy than the SVM (84.78%). EBT (83.97%,
p = 1.00), k-NN1 (83.97%, p = 1.00), and k-NN2 (84.28%, p = 100) all performed worse
than the SVM but were not statistically significant.
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Figure 2. Box plot presenting the classifier accuracy of all 7 activities, for each equipment state, as
calculated by each machine learning algorithm for all sensor locations (17 sensor nodes). Note the
vertical axis does not start from zero to aid readability.

Table 7. Percentage of correctly classified instances of all 7 activities for each equipment state as
calculated by each machine learning algorithm. Results present the mean classifier accuracy of
all sensor locations (17 sensor nodes), classification produced through 10-fold 10-iteration cross-
validation. * denotes significant difference in percentage classified.

Classifier

SVM EBT DT k-NN1 k-NN2
State

Accuracy
(%)

Accuracy
(%) (p-Value) Accuracy

(%) (p-Value) Accuracy
(%) (p-Value) Accuracy

(%) (p-Value)

Unequipped 87.51 87.01 (1.000) 73.16 (<0.001) * 86.82 (1.000) 86.22 (1.000)
Equipped 84.78 83.97 (0.272) 68.61 (<0.001) * 83.97 (0.787) 84.28 (1.000)

4.2. Effect of Equipment
As shown in Table 8, similar results were observed for natively trained data sets

where the equipment loading status remained constant throughout the training and evalu-
ation phases. The mean classifier accuracy values were 83.36% (unequipped) and 81.15%
(equipped). When the model was trained with data from the unequipped state and then
tested with data from the equipped state, the classifier accuracy fell significantly across all
classifiers (mean classifier accuracy of 51.79%).
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Table 8. Mean percentage of correctly classified instances for each classification algorithm. (a) Model trained and tested with unequipped state data; (b) model
trained with unequipped state data, tested with equipped state data; (c) model trained and tested with equipped state data.

Sensor Location

Classifier

EB
T

(%
co

rr
ec

t)

SV
M

(%
co

rr
ec

t)

D
T

(%
co

rr
ec

t)

k-
N

N
1

(%
co

rr
ec

t)

k-
N

N
2

(%
co

rr
ec

t)

Head 82.28 84.25 68.11 86.61 85.43

Spine 85.04 88.19 76.38 86.22 90.16

Right shoulder 86.22 90.55 74.80 90.16 85.83

Left shoulder 88.98 92.13 74.80 89.37 85.43

Right humerus 87.80 85.43 67.32 85.43 87.01

Left humerus 86.61 90.55 66.54 85.43 86.61

Right forearm 82.68 81.50 63.78 86.22 85.83

Left forearm 87.40 81.89 60.24 82.68 84.25

Right hand 80.71 80.71 66.93 84.65 77.95

Left hand 79.92 79.13 68.11 77.95 82.68

Hips 89.37 91.34 74.41 85.43 80.31

Right thigh 90.55 90.16 80.71 90.55 86.22

Left thigh 83.46 88.58 79.13 84.65 82.68

Right tibia 92.13 88.98 78.35 87.40 91.34

Left tibia 92.52 88.19 77.17 91.34 90.16

Right foot 91.73 92.91 87.80 92.52 92.52

Left foot 91.73 93.31 79.13 89.37 91.34

a

Sensor Location

Classifier
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T

(%
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rr
ec

t)

SV
M

(%
co

rr
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t)

D
T

(%
co
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ec

t)

k-
N

N
1
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rr
ec

t)

k-
N

N
2

(%
co

rr
ec

t)

Head 49.33 53.34 44.14 49.96 45.55

Spine 52.08 59.01 44.14 51.77 50.67

Right shoulder 55.15 64.28 50.90 57.91 55.00

Left shoulder 46.03 50.04 35.56 45.87 42.49

Right humerus 58.69 64.91 45.71 54.84 56.57

Left humerus 51.77 53.66 43.43 51.69 48.94

Right forearm 40.91 42.88 32.18 42.64 39.34

Left forearm 42.88 46.66 38.55 39.34 36.51

Right hand 42.80 45.55 35.80 38.79 39.65

Left hand 38.71 43.04 30.13 39.10 42.01

Hips 41.15 47.68 35.56 43.98 43.12

Right thigh 58.22 59.32 51.46 57.75 55.70

Left thigh 62.39 65.07 50.43 68.61 65.07

Right tibia 81.12 80.09 62.55 76.55 74.51

Left tibia 69.94 81.59 61.84 76.63 73.80

Right foot 63.41 69.16 53.66 65.22 62.86

Left foot 57.20 61.13 52.48 57.36 55.94

b

Sensor Location

Classifier

EB
T

(%
co

rr
ec

t)

SV
M

(%
co

rr
ec

t)

D
T

(%
co

rr
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t)
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N
1

(%
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rr
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t)

k-
N

N
2

(%
co

rr
ec

t)

Head 82.52 84.97 65.73 82.87 82.17

Spine 84.97 86.01 65.03 82.52 82.52

Right shoulder 82.52 83.57 64.69 80.42 82.87

Left shoulder 82.52 81.82 60.14 86.71 82.87

Right humerus 82.87 82.87 65.73 87.76 84.62

Left humerus 84.62 84.62 60.84 81.82 80.77

Right forearm 80.07 75.87 59.44 77.27 79.02

Left forearm 79.37 81.82 58.74 80.77 82.87

Right hand 79.37 80.07 61.89 79.02 79.37

Left hand 77.62 74.83 61.89 76.22 75.17

Hips 86.01 89.16 72.03 87.06 86.71

Right thigh 82.52 83.57 72.73 86.71 83.57

Left thigh 82.52 83.92 72.73 83.22 88.11

Right tibia 88.81 92.31 77.97 90.56 91.96

Left tibia 89.16 89.86 80.77 87.41 87.76

Right foot 90.91 93.36 81.12 89.86 93.36

Left foot 91.26 92.66 84.97 87.41 89.16

c
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4.3. Sensor Combinations
All possible sensor combinations (131,071) were analysed using the equipped state

dataset and the SVM classifier; results are shown in Figure 3 and Table 9.

Figure 3. Box plot presenting the SVM classifier accuracy for each sensor configuration, single to
17-sensor combinations. Note the vertical axis does not start from zero to aid readability.

Table 9. Classifier (SVM) accuracy for each number of sensor combinations.

95% Confidence Int.

Sensor Combination N Mean
(%)

Std.Dev
(%)

Lower
Bound

(%)

Upper
Bound

(%)
Min (%) Max (%)

One sensor 17 84.78 5.39 82.01 87.55 74.83 93.36
Two sensors 136 93.27 1.96 92.94 93.61 85.80 96.29
Three sensors 680 95.37 1.22 95.28 95.46 89.09 97.76
Four sensors 2380 96.37 0.81 96.34 96.40 91.19 98.11
Five sensors 6188 96.93 0.62 96.91 96.94 93.43 98.39
Six sensors 12,376 96.36 1.20 96.34 96.38 89.92 99.99
Seven sensors 19,448 96.66 1.12 96.65 96.68 90.48 99.99
Eight sensors 24,310 96.88 1.06 96.87 96.90 90.76 99.99
Nine sensors 24,310 97.05 1.01 97.04 97.06 91.88 99.72
Ten sensors 19,448 97.20 0.96 97.18 97.21 91.88 99.99
Eleven sensors 12,376 97.29 0.96 97.27 97.30 92.16 99.99
Twelve sensors 6188 97.39 0.90 97.37 97.42 92.72 99.99
Thirteen sensors 2380 97.49 0.88 97.45 97.52 93.00 99.72
Fourteen sensors 680 97.61 0.85 97.55 97.68 94.40 99.44
Fifteen sensors 136 97.62 0.79 97.49 97.75 95.24 99.16
Sixteen sensors 17 97.51 0.96 97.02 98.01 94.96 98.88
Seventeen sensors 1 98.60 0.00 98.60 98.60 98.60 98.60
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A Kruskal–Wallis H test was used to establish if there were differences in activity
classifier accuracy for different combinations of sensor locations, ranging from a single
sensor to 17-sensor combinations. Dissimilar distributions of classifier accuracy were noted
via visual inspection of a box plot. It was established that the distributions of classifier
accuracy were significantly different between groups, X2(16) = 11, 140.864, p < 0.001.

Post hoc testing comprised of pairwise comparisons using Dunn’s procedure, with a
Bonferroni adjustment for multiple comparisons, was performed. Adjusted p-values are
presented, and the displayed values are the mean ranks. There was no significant difference
between one sensor (56.56) and two sensors (3449.54) (p > 0.05), one sensor and three
sensors (20, 528.07) (p > 0.05), and one sensor and 17 sensors (125,337.50) (p > 0.5). All
remaining comparisons of one sensor, and four to sixteen sensors, produced significant
differences (p < 0.005).

4.4. Optimal Sensor Location
Table 10 shows the ten highest and the lowest ranked sensors or sensor combinations

for the equipped state dataset, using the SVM classifier.

Table 10. One to ten (and worst) ranked sensors for SVM classifier (equipped state); (a) single sensor,
(b) two-sensor combination.

(a)

Rank Sensors Accuracy (%)

1 Right foot 93.36
2 Left foot 92.66
3 Right tibia 92.31
4 Left tibia 89.86
5 Hips 89.16
6 Spine 86.10
7 Head 84.97
8 Left humerus 84.62
9 Left thigh 83.92
10 Right shoulder 83.75

17 Left hand 74.83

(b)

1 Hips and right tibia 96.29
2 Right humerus and left foot 95.87
3 Right shoulder and right foot 95.87
5 Spine and right foot 95.73
5 Hips and right foot 95.73
6 Left thigh and left foot 95.73
7 Right humerus and right tibia 95.66
8 Right humerus and right foot 95.59
9 Right tibia and left foot 95.52
10 Head and hips 95.45

136 Left forearm and left hand 85.80

5. Discussion
5.1. Classifier Performance Analysis

Extensive literature exists on the general optimisation of activity recognition classifiers,
such as model tuning [31], and feature selection [10], so this was not the main focus of this
paper. Rather, attention was placed on the less-well-explored factors which can affect overall
classifier performance. As far as the authors are aware, there is no literature surrounding the
selection of classification models for a mountaineering setting. Therefore, an evaluation of
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previously used classifiers was completed on the single-sensor configuration, to determine
which classifier performed best at identifying mountaineering-specific activity.

The results demonstrated that the SVM achieved the highest accuracy over the seven
tested activities. Due to this highest overall accuracy, the SVM was chosen for the further
analysis of other factors associated with activity recognition conducted within this study.
Given that the other classifiers achieved similar results, it could be reasonably argued
that they could have been used in place of the SVM, as the small difference noted would
likely not have a significant impact in real-world applications. The only classifier which
performed with consistently significantly lower accuracy was the decision tree, and as such,
it would not be recommended to use this classifier in this application.

We selected existing signal processing and classification techniques which are well-
known and well-understood within the scientific literature to remove the uncertainty which
could be associated with a new method. The chosen protocol approach of utilising a reliable
method made it possible to perform a more concise analysis of the unique study aims,
contributing to the existing state-of-the-art research. The following sections each provide a
previously unexplored insight into HAR systems for mountaineers.

5.2. Number of Sensors
The optimal number of sensors has been explored previously, with studies examining

the effect of multiple sensors for everyday activities [18,32]. However, this is the first time
that data from 17 individual sensors have been captured simultaneously, a far greater
number than in previous studies. Whilst the implications of using such a large sensor set
would make the system impractical for real world deployment, it allows a greater level of
analysis to be conducted on subsets of sensors, from which, optimised deployable systems
can be devised. Moreover, this study is the first to consider the effects of the equipment
required by the intended end user. Therefore, the results gained are more applicable to the
deployment of systems into extreme environments than the existing literature relating to
HAR for everyday activities.

The results from the study showed that there was a large increase (+8.49%) in mean
classifier accuracy from one sensor (84.78%) to two sensors (93.27%), followed by only small
increases for each additional sensor, (3 sensors (+2.1%), 4 sensors (+1.0%) and 5 sensors
(+0.56%), with a reduction then noted with 6, 7, and 8 sensors, and then a further small
incremental increase with each sensor addition up to maximum percentage accuracy at 17
sensors (98.60%). These results suggest that the classifier accuracy is improved through the
addition of more sensors. However, classifier performance alone is not the only absolute
determining factor when designing a wearable system. With the addition of more sensors,
there is added complexity and a greater requirement for computational resources. For
laboratory-based settings, the use of a high-powered PC poses little difficulty. However,
when deployed on an edge device in an extreme environment, additional factors such as
limited computational power and a reduction of battery efficiency in cold weather must
also be considered. Therefore, computational resource requirement must be minimised. As
such, further work is needed to optimise the system and reduce the feature set as much as
possible without losing accuracy.

To gain optimal compliance with wearable systems, the burden on the wearer must be
reduced wherever possible. If separate devices are to be used, they must be individually
managed, including power and charging, synchronisation, and physical attachment of the
sensor to the person. In a laboratory-based research study, this is little more than an added
complexity that can be easily overcome. Yet, when applied to an extreme environment,
these issues can become a lot more problematic.

For use in an extreme environment, it is prudent to keep a system as simple as possible
and thereby reduce the possible failure modes. From the results gained, it was shown
that a mean target classifier accuracy of >95% was achievable with three sensors (95.37%).
However, this target can also be achieved by two sensors where the maximum accuracy
was shown to be 96.29%. This was achieved when the selection of a sensor pair and their
respective locations were optimised. It was, therefore, deemed that there were diminishing
gains when more than two sensors were used and the balance between performance,
usability, resource cost, and complexity, became unfavourable.
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5.3. Location of Sensors
As shown in Table 10, the location of the accelerometers can have a direct influence

on the classifier accuracy. When single sensor locations were ranked in isolation, the feet
provided the highest classifier performance across the full range of activities, followed
by the lower legs, hips, and spine. The classification accuracy was below 85% for all
remaining sensors.

However, different activities involve the motion of different body segments and, as
such, the positioning of the sensor can directly influence performance. For example, during
the stand-to-sit activity, very little motion will be noted in the foot and, therefore, the
predictive accuracy of the classifier to differentiate if the person is standing or sitting based
on this data stream is low. Alternatively, during walking, the amount of movement in the
foot is high and, therefore, is more likely to produce a higher classifier accuracy.

The situation becomes more complex when trying to differentiate between similar
activities, such as walking on flat ground and walking up an incline. In general, the
sensors attached to the lower legs and feet (89.16–93.36%) provided the best data for
activity recognition over the seven activities, with the hands and lower arms (74.83–81.82%)
performing the worst. This could be attributed to the nature of the activities performed,
and the fact that they did not require consistent use of the upper body to complete the
activity. Rather, the upper body was more susceptible to individual variations not directly
related to the task, such as the amount of swing in the arms whilst walking, or the use
of the arms as support during the transition from standing to seated or vice versa. Via
observation, it was noted that not all participants used their hands to guide themselves
when transitioning between sitting and standing states. For the participants which did
utilise their upper body for assistance, there was a large variation in the use of a single
hand, or two hands, and the amount of support required. As a result, in complex activities
such as these, rather than relying on a single sensor, multiple sensors can be combined
to give a deeper understanding of the movement, thus improving classification accuracy.
Therefore, all possible combinations of two sensors (136 permutations) and single sensors
(17 permutations) were considered in this stage of the analysis. The highest accuracy with
two sensors was achieved with the hip and right tibia sensors (96.29%). A further 24 pairs
achieved a greater than 95% accuracy, the top 10 pairs are shown in Table 10.

Overall classifier performance is not the only factor requiring consideration when
choosing a sensor location; rather, the usability and environmental constraints must also be
considered. For this particular use case the ability to withstand extremely cold temperatures,
exposure to water, and impact resistance must all be considered.

5.4. Equipment State
A widely overlooked aspect of activity recognition is the effect application specific

equipment has on the overall classification accuracy. Previous studies often looked to
validate a classifier for a specific purpose, with little attention paid to extrinsic elements
which could change the results of the classifier. It is not known what effect a change in
equipment, such as clothing or additional loading, would have on the classifier. A key
contribution of this study was to directly address this uncertainty.

Similar results were gained from both training the classifiers without equipment (mean
classifier accuracy 83.36%) and with equipment (mean classifier accuracy 81.15%). Results
were consistent over all five classifiers for one sensor, two-, and three-sensor combinations.
Generally, classifier accuracy was approximately 1% higher for the unequipped state over
the equipped state. The decision tree was an outlier with a larger approximate 4% difference
being noted. The largest differences occurred when the classifier was trained without
equipment, and then the same activity protocol was completed in the same environment,
with only a change of footwear and the addition of a 12 kg rucksack, with the classifier
then used to test this dataset. Results were approximately 30% worse on average, with
individual sensor locations achieving as low as 30.13% accuracy.

This large variation in classifier accuracy presents significant challenges when design-
ing an activity recognition system for deployment in hostile and extreme environments,
especially where additional clothing in the form of personal protective equipment (PPE)
and additional loading (weight of equipment, rucksack, etc.) are common. To improve the
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system performance, variations in task completion due to these additional loadings must
first be understood.

Previous studies have shown that changes in posture such as trunk angle, gait pattern,
and stride length [33,34] are observed when carrying additional loads. This is caused
by the larger forces which the body must generate through the muscles to propel and
control a larger mass [35]. Further compounding these changes, the second additional
loading element explored within this study was the use of mountaineering boots. Typically,
mountain boots are heavier than everyday footwear, and are notably restrictive of the ankle
joint, effectively immobilising it. All these factors work together to influence the gait cycle
of the user. Previous studies have shown that single leg support times increase, and double
leg support times decrease, with the use of mountaineering boots [31]. This change in gait
cycle causes resultant changes in the acceleration profile, as seen by the accelerometers
and, as such, the classification algorithm pattern recognition leading to a reduced accuracy.
Different sensor locations have varying susceptibility to this change, with more generalised
changes noted across all sensors. Additionally, specific sensors may be altered by human
factors not related to locomotion, but to participant behaviour. Anecdotally, it is common
for people wearing a rucksack for long periods of time to rest their hands upon the rucksack
shoulder straps. This change in behaviour cannot be attributed to a specific activity and
may not exist in all instances. This demonstrates human variability which poses a particular
challenge when trying to automate analysis, and effective inspection of these factors is
required to better understand sensor location selection and sensor configurations. By using
multiple sensors distributed about the body, the influence of individual body segments on
the overall activity classification can be reduced. Within the range of activities explored in
this study, the arms played little role in the completion of the activities, and by choosing
sensors placed elsewhere, the classifier accuracy could be improved.

Additionally, the use of equipment is a factor which requires consideration when
choosing sensor locations for specific applications. The accuracy of the classifier was shown
to be significantly worse for the shoulder sensors when equipment was used. The accuracy
of the SVM classifier with the left shoulder node as the input was 10.31% less accurate
and the right shoulder 6.98% less accurate. This reduction could have been caused by
the interference of the rucksack with the fixed mountings of the shoulder sensors on the
MOCAP suit. However, the effect of this conflict is expected to be minimal as it was possible
to position the sensors in the correct location and orientation after the rucksack was put
on. There was also no contact between the rucksack straps and the sensor units present.
In other applications, this may not be as easy to overcome, and alternatives may need to
be found.

Whilst body-worn locations were evaluated within this study, it is important to recog-
nise the aim of the system is to detect a specific activity. Therefore, the sensor does not
need to be exclusively body-worn with skin contact. Activity detection may be able to be
achieved through monitoring of an external piece of equipment, for example, rucksack or
helmet motion. This potential approach would require further research and is beyond the
scope of this paper.

5.5. Significance
There are multiple implications when considering the use of classification algorithms

where external, activity-specific equipment is likely to be used. In respect of training data, a
lack of generalisation has been established. A significant reduction in classifier performance
is present when equipment is used with a classifier not trained with it. The use of trained
large-scale models deployed on commercial devices, even with representative activities,
will not achieve adequate performance if additional equipment or loading is utilised. It
has, therefore, been established that all models need to be trained with data using the same
equipment that will be used in the intended setting. As far as the authors are aware, this is
the first study to explore the specific effect of specialised equipment and loading conditions
on activity recognition classifier accuracy during simulated mountaineering activities.

The unique findings presented here relating to the effect of equipment and loading
are applicable to a large range of fields beyond the case study of mountaineers. They
will be equally applicable to other users in extreme environments, or any application
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which requires specific clothing or equipment to be used. This far-reaching user base
includes first responders, exposed workers, and military personnel. It also raises doubts
around the reliability of activity classification in more general use cases, such as activity
measurement in rehabilitation. The use of orthoses, prostheses, and aids such as crutches
may have a similar negative effect on activity recognition classifier accuracy. This could
have substantial implications on the clinical validity of such devices and metrics gained
in these situations. The accuracy of activity recognition embedded within widely used
consumer devices associated with sport, recreation, and activities of daily living is also
brought into question.

5.6. Limitations
When considering these results, a number of limitations must be taken into account.

During the design of the study, it was envisaged that a larger number of participants would
be recruited into the trial to boost its statistical power. However, due to the COVID-19 pan-
demic, this was not possible, and in line with these constraints, the number of participants
was reduced to eight. All participants were relatively young and healthy with good levels
of general fitness. This small sample size reduces the confidence in generalising the results
found to the wider population, especially older, less healthy individuals. Therefore, future
work should aim to recruit a larger number of participants, and a more balanced gender
distribution.

Due to the nature of the proprietary Mo-Cap suit, there were inherent limitations to
the sensor placements. Namely, the intertwined structure of the sensors distributed about
the suit meant the sensors were restricted to the locations the manufacturer selected during
the suit’s design. As all the sensors were affixed to the suit, movement could cause the
elastic fabric to be pulled and create movement artefacts elicited at one or more sensors.
Further experiments should aim to use independent sensors which are not affected by the
movement of other items of clothing or equipment.

The intention of the paper was to draw attention to the widely overlooked aspects
of human activity detection, most specifically the use of activity-specific equipment and
its effect on activity classification. As such, a relatively simple identification method was
adopted to illustrate these effects without the unnecessary complication of more complex
approaches. Indeed, for future research and deployment into extreme environments,
further work is required in optimising the classification methods to improve real-world
classification performance. The paper presented contributed to the theoretical foundation
required for this future work to be completed.

The classification algorithms within this study utilised only accelerometer data. How-
ever, it has been shown that a greater accuracy can be gained by using sensor fusion
approaches, including common sensors such as gyroscopes and magnetometers. Despite
these data streams being collated during testing, they were not utilised in the analysis. The
aim in this application was to reduce complexity wherever possible, due to the challenges
presented in extreme environments. By using a single sensor, power usage is reduced
at the sensor level, and a reduction in computational resources at the processing-node
level is achieved. Magnetometers are vulnerable to magnetic interference, which is often
present due to certain magnetic rock formations existing in mountainous environments.
Similarly, the cold temperatures often experienced in mountainous regions can cause a drift
in gyroscopes which requires calibration and compensation.

Lastly, the data used within this study were captured under controlled laboratory
conditions, with direct supervision of the activities by the researchers. Factors outside of the
laboratory, such as uneven ground and the traction effects of slippery surfaces such as gravel
and snow also require consideration. Therefore, the efficacy of using simulated equipped
state data from laboratory settings in real-world applications is yet to be determined and
requires further testing for validation.

6. Conclusions
Accelerometers have been widely used in the field of activity detection within norma-

tive environments. However, less attention has been paid to complex applications such
as mountaineers operating within extreme environments. In these contexts, the ability to
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accurately identify activities has the potential to prevent death and serious negative health
events to the operators. This study aimed to be the first to investigate factors associated
with the application of human activity recognition to simulated mountaineering activities,
whilst wearing appropriate equipment, thus filling the gaps between theoretical HAR
approaches developed within a laboratory environment and the real-world application
with user-group-specific considerations, limitations, and requirements.

The first aim of the study was to select which machine learning classifier performed the
best at classifying mountaineering-related activities. The accuracy of activity classification
based on data recorded simultaneously from 17 body worn accelerometers was tested. The
results demonstrated that the SVM provided the most accurate classifications of the five
machine learning algorithms tested. The EBT, kNN1, and kNN2 performed marginally
worse, and the DT produced significantly poor results.

The second aim of the study was to identify the optimum number of sensors and their
respective body locations to achieve the most accurate activity detection. A comprehensive
analysis of all possible combinations of the 17 accelerometers was performed. It was found
that two sensors provided the best balance between complexity, performance, and user
compliance. The inclusion of additional sensors only achieved marginal improvements
with impractical implications. Sensors located on the hip and right tibia produced the most
accurate classification of the tested simulated mountaineering activities. Data could also be
used from the hips, paired with the left tibia, with negligible difference.

Finally, the third aim of the study was to explore the effect that activity-specific
equipment had on the classifier accuracy. A significant effect associated with the use of
mountaineering boots and a 12 kg rucksack was established and, therefore, the need to train
any machine learning classifier with representative equipment being utilised was noted.
The use of standard trained models, even if representative of the activities, are unlikely to
reach desirable levels of accuracy if additional equipment is being worn by the user. This
has implications reaching far beyond the niche of the mountaineering case study presented
here, with the potential to effect HAR classifier design and training in any situation where
additional equipment or loading is present.

The results gained from the exploration of HAR for mountaineers is worthy of further
attention. The development of HAR approaches beyond the traditional methods presented
here will be expressed in future work, whereby we will expand on these findings by con-
ducting further testing outside of the sterile laboratory in real-world extreme environments.
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