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Abstract: One advantage of a resistive sensor array (RSA) with shared rows (M) and shared columns
(N) is the reduced number of wires from M × N + 1 to M + N which can greatly lessen the complexity
and burden on wearable electronic systems. However, the drawback is the crosstalk current effect
between adjacent elements, which will lead to high measurement error. Although several solutions
have been reported, they mainly focus on RSAs with high resistance (≥100 Ω). There is a lack of
research that addresses RSAs with resistor values below 100 Ω. Here, we introduce a new circuit
design named the dynamic zero current method (DZCM) to further decrease the measurement error.
From the low value RSA test with ideal resistors, the DZCM exhibits lower error than the zero
potential method (ZPM). In the case of the error variation ratio of amplifier offset voltage, the DZCM
has a 4%/mV (row) to 7%/mV (column) ratio, while the ZPM has an almost 25%/mV (row) to
45%/mV (column) ratio and it increases with array size.

Keywords: dynamical zero current; input offset voltage; low value resistive sensor array; measurement
error; parasitic resistance; zero potential method

1. Introduction

Eutectic gallium indium (EGaIn), an alloy consisting of 75% gallium and 25% indium,
is a low viscosity liquid metal at room temperature and has good electrical conductivity [1].
These unique characteristics of EGaIn make it an ideal active component to be embedded
in soft sensors. Upon deformation of the sensor microstructure, which is pre-filled with
EGaIn, the strain and pressure [2–4] exerted can be deduced easily from the measured
varying capacitance and resistance.

By encapsulating EGaIn liquid metal with soft elastomers, our group has previously
designed and fabricated EGaIn based microfluidic pressure sensors [5–7] with relatively low
baseline resistance of 10 Ω (no load) which can go up to 200 Ω depending on the loading
applied to it. Several examples employing such soft sensors have been demonstrated
for healthcare and wearable electronics applications. Many of the current health sensing
studies focus on the self-monitoring of personal health data. One such example is the
tracking of plantar pressure of individuals with diabetes with diabetic foot ulcers via a
flexible pressure sensitive insole embedded with soft sensors.

These sensors are stretchable, conformable and sensitive to mechanical loading and
have great potential to be used as building blocks of electronic skins. Undoubtedly, a single
sensor is not sufficient to replicate the function of human skin which has closely packed
mechanoreceptors with very small receptive fields. To achieve high spatial resolution, a
large number of small individual sensors are needed. These sensors are required to be
merged firmly to form a compact resistive sensor array (RSA). An RSA enables a high
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density sensing element network to be configured with minimal wire linkage and thereby
confers the least possible burden to the electrical system. One major concern of this RSA
architecture is the crosstalk current effect resulting from adjacent unmeasured sensors that
give rise to additional measurement error.

Figure 1 shows a 3 × 3 RSA. To calculate the resistance of the target resistor ‘R22
′, we

need to assess the current flowing through it and the voltage difference across the element,
denoted as ‘I22

′ and ‘U22
′ accordingly. ‘U22

′ also equals the voltage difference between the
row and column wire ‘Vrow2–Vcol2

′. On the other hand, ‘I22
′ cannot be measured directly.

‘Icol2
′ in the column wire is not equivalent to ‘I22

′ as ‘Icol2
′ includes crosstalk currents

from the adjacent unmeasured resistors. The dashed arrow lines in Figure 1 illustrate
one example of these crosstalk currents. Consequently, the actual value of ‘R22

′ cannot be
calculated easily from ‘Icol2

′ and ‘U22
′.
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Figure 1. Crosstalk currents induced in the resistor array.

A number of RSA readout systems have been proposed to eliminate the crosstalk
current effect. These approaches include the inserting diode method (IDM) [8,9], inserting
transistor method (ITM) [10–13], passive integrator method (PIM) [14–16], resistance matrix
approach (RMA) [17], improved RMA [18,19], incidence matrix approach (IMA) [20], volt-
age feedback method (VFM) [21–30] and zero potential method (ZPM) [29,31–40]. However,
these systems only cater for RSA designs with high resistance. Electronic networks with
low resistance below 100 Ω are often left unaddressed as shown in Figure 2.

The lack in research progress on low resistance networks is partially attributed to
the large crosstalk current effect and parasitic effect in the printed circuit board (PCB).
In addition, the majority of the mechanical sensors and actuators in the market use high
resistance transducers, due to the construction materials, fabrication techniques and sensing
mechanisms involved.

Several methods, including the ZPM, VFM and IDM, have been developed to alleviate
the crosstalk current effect. Based on a detailed comparative analysis [24], Liu concluded
that the ZPM has the best performance, compared to the VFM and IDM. A detailed
description of the ZPM is in Appendix A.

Following this introductory section, Section 2 describes a new dynamic zero current
method (DZCM) to minimize the measurement error of low value RSAs. Section 3 presents
the experiments and discussion. Section 4 provides conclusions.
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Figure 2. The range of resistance values addressed in different publications [14–17,19,21,24,25,27–
30,33,34,36].

2. Dynamical Zero Current Method

In the discussion in Appendix A, we point out that the ZPM suffers from parasitic
effects. The crosstalk current effect is deteriorated due to two reasons:

1. Parasitic resistance from connection wires and PCB wires contributes a large crosstalk
current effect.

2. Offset voltage of row and column driving amplifiers induces a crosstalk current effect.

These two issues are difficult to eradicate, as they are caused by the intrinsic feature of
these electrical components.

To fix the abovementioned problems, we proposed the DZCM. The DZCM is originated
from the ZPM which drives both ends of the adjacent unmeasured resistors to zero potential.
Thus, almost no current flows through these adjacent unmeasured resistors. Then, the
crosstalk current path will be cut off. In the ZPM, because of the row/column parasitic
resistance and row/column amplifier offset voltage, the zero current is not really zero. This
amount of current is negligible in a large value RSA, but not so in the case of a low value
RSA. This non-zero current must be minimized to reduce the measurement error in the low
value RSAs. Based on the fundamental circuit topology of the ZPM, the proposed DZCM
includes a feedback network to automatically enforce zero current through each row of the
adjacent unmeasured resistors. This feedback feature is also able to flexibly adjust the node
potential of the array resistors to match the varying row/column parasitic resistance and
amplifier offset voltage in the readout system.

The DZCM circuit design for a 4 × 4 array is shown in Figure 3. Rsen is the current
sensing resistor, which converts current to voltage. A feedback instrument amplifier (FBIA)
magnifies the voltage across Rsen. SW1 are the switches with a closed (ON) state for rows
containing measuring resistors and SW are the switches with an open (OFF) state for the
adjacent unmeasured rows. All amplifiers in Figure 3 are non-ideal.
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Figure 3. The circuit design of DZCM for a 4 × 4 array.

To explain the characteristics of the ZPM and DZCM more clearly, we simplify the
network to just one unmeasured resistor Rum to demonstrate the parasitic effect of this
single resistor. Figure 4 shows the circuit of this simplified models, all amplifiers in Figure 4
are ideal.
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We can derive the current of Rum as:

Ium−ZPM = (Vos1 −Vos2)/
(

Rum + Rpar
)

(1a)

Ium−DZCM = Isen =
Vos1 −Vos2

Rsen

(
1 + A f

)
+ Rum + Rpar

(1b)

Ium−ZPM and Ium−DZCM are the currents of the unmeasured resistor for the ZPM and
DZCM, respectively. They are expressed in Equations (1a) and (1b) accordingly. Vos1 and
Vos2 are the offset voltages of row and column driving amplifiers, Rpar is the parasitic
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resistance of row and column wires, Rsen is the resistance of the current sensing resistor, A f
is the gain of FBIA r and Isen is the current of sensing resistor.

From Equation (1a) for the ZPM and Equation (1a,b) for the DZCM, we can clearly see
that Ium−DZCM computed from Equation (1b) is smaller than Ium−ZPM in Equation (1a) due
to the presence of the Rsen

(
1 + A f

)
term in the denominator.

We assume A f = 1000, Rsen = 1.0 Ω, Rum = 10.0 Ω, Rpar = 1.0 Ω, Ra = Rb = 1.0 kΩ
Vos1 = 1.00 mV and Vos2 = −1.00 mV. We can then easily evaluate Ium−ZPM and Ium−DZCM
from Equation (1). Ium−ZPM = 0.18 mA is based on Equation (1a) for the ZPM and
Ium−DZCM = 0.0019 mA is based on Equation (1b) for the DZCM. Resulting from Vos1, Vos2
and Rpar, the negative feedback in the DZCM decreases its parasitic effect current down to
1% of the parasitic effect current in the ZPM circuit. To put it simply, the DZCM can greatly
minimize the measurement error in the low value RSA.

We further simplify the 4 × 4 array to a 2 × 2 array to quantify the crosstalk current
effect in the DZCM, as shown in Figure 5. The reduced array network also includes a
parasitic effect originated from Vos1, Vos2 and Rpar. Based on the above discussion and
Equation (1a) and Equation (1b), the currents of the adjacent unmeasured resistors R21
and R22 in the DZCM are only 1% of those in the ZPM. Thus, in the DZCM, the crosstalk
current effect from R21 and R22 is minimal and negligible. Compared with Figure A3, R21
and R22 are shaded in Figure 5 and can be ignored in the Equation (2) formula derivation.
The circuit diagram of Kirchhoff’s law, as shown in Figure 6, is used to analyze the DZCM
network from Figure 5.

Va = Vos21 + I f 1Rpar = Vos21 + I11Rpar (2a)

Vb = Vos11 + Vin − IbRpar = Vos11 + Vin − (I11 + I12)Rpar (2b)

Vd = I f 2Rpar + Vos22 = I12Rpar + Vos22 (2c)

Vb −Va = I11R11 (2d)

Vb −Vd = I12R12 (2e)
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In order to simplify calculation, we hypothesize that R11 = Rx, R12 = Rum and
10·Rpar < Rum ≈ Rx. After substituting (2a, 2b, 2c) with (2d, 2e), we obtain Equation (3).

I11
(

Rx + 2Rpar
)
+ I12Rpar = Vos11 + Vin −Vos21 (3a)

I11Rpar + I12
(

Rum + 2Rpar
)
= Vos11 + Vin −Vos22 (3b)

Equation (3) is a non-homogeneous linear equation R·I = V and after several solving
steps in Appendix B, we have:

I f 1 = I11 = −
(Vi1 −Vos22)Rpar + (Vos21 −Vi1)

(
Rum + 2Rpar

)(
Rx + 2Rpar

)(
Rum + 2Rpar

)
− Rpar2 (4)

As Rpar � Rum ≈ Rx, we can simplify Equation (4) as:

I f 1 =
Vos11 + Vin

Rx
− Vos21

Rx
(5)

If we assume Rpar � Rum ≈ Rx, Equation (A8) can be written as Equation (6):

I f 1 =
Vin + Vos11

Rx
− Vos12(2Rum + Rx)

RumRx
− Vos21(Rum + Rx)

RumRx
(6)

It is clear to see the Equation (5) is similar to Equation (6), but Equation (5) does not
have the term Vos12(2Rum+Rx)

RumRx
, which exists in Equation (6). This makes Equation (5) have a

lower error resulting from Vos12.
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3. Experiments for DZCM/ZPM and Discussion

Various experiments have been designed to evaluate the performances of the ZPM
and DZCM under optimum circumstances. The experimental setup is shown in Table 1.

Table 1. Experiments setup for DZCM with selected combinations.

EXP A
(Rpar = 0 Ω, vOS = 0 mV)

EXP B
(Rpar = 0 Ω, vOS = 0 mV,

SAR = 2 × 2)

EXP C
(vOS = 0 mV)

EXP D
(Rpar = 0 Ω)

Rx (Ω) Rum (Ω) SAR Rx (Ω) Rum (Ω) Rx = Rum
(Ω)

RparCol
RparRow

(Ω)
SAR

Rx = Rum
(Ω) SAR

vOS
(mV)

1 to 10,
step = 1.
10 to 20,
step = 1.
20 to 100,
step = 10.

100 to 200,
step = 10.

1
200

2 × 2
4 × 4
8 × 8

1 to 10,
step = 1.
10 to 20,
step = 1.
20 to 100,
step = 10.

100 to 200,
step = 10.

1
5

10
50

100
200

1
50
200

0, 0.5
1,1.5
2, 2.5
3, 3.5

6 × 6
12 × 12

1
50

200

6 × 6
12 × 12

0
±1.0
±2.0
±3.0

The measurement result from a multimeter of an ideal single resistor is represented
as Rid. Meanwhile, the output amplifier’s voltage of array resistors is measured as Vout by
a multimeter. Using Equation (A1), we can obtain the resistance value of the resistor of
interest, Rx. The measurement percentage error between them is evaluated as follows:

e% =
Rid − Rx

Rid
× 100 (7)

Experiment (EXP) A analyzes the effect of Rx on e% in arrays of various sizes when
the unmeasured array resistors Rum are fixed at their lower and upper limits (i.e., 1 Ω and
200 Ω, respectively) and Rpar and vos are set to zero.

EXP B analyzes the effect of unmeasured array resistors Rum on e% in the simplest
2 × 2 array, as Rx increases and Rpar and vos are zero.

EXP C analyzes the effect of parasitic resistance of column and row (RparCol and
RparRow) on e% when the unmeasured array resistors Rum and Rx are fixed at 1Ω (Vin =
10 mV), 50 Ω (Vin = 100 mV), 200 Ω (Vin = 1000 mV) and offset voltage vos is zero. The
reason for increasing Vin with increasing Rum and Rx is to avoid the crosstalk current effect,
which will surpass the signal current of Rx if Vin is fixed to 10 mV and Rx increases to 50 Ω
or 200 Ω. The array size is set to 6 × 6 and 12 × 12.

EXP D analyzes the effect of vos on e% when the unmeasured array resistors Rum and
Rx are fixed at 1 Ω (Vin = 10 mV), 50 Ω (Vin = 100 mV), 200 Ω (Vin = 1000 mV) and Rpar is
set to zero. The array size is set to 6 × 6 and 12 × 12.

3.1. Experimental Result for DZCM with Ideal Resistors

EXP A:
As shown in Figure 7a, with Rum = 200 Ω,

i. the measurement errors of the DZCM and ZPM are found to be comparable when
Rx falls within the range of 1 Ω to 10 Ω. There is no significant improvement on
the system performance by the additional feedback network of the DZCM in this Rx
range.

ii. As Rx goes beyond 10 Ω to 200 Ω, the e% of the DZCM is noticeably larger than
that of the ZPM in all array sizes due to the underlying crosstalk current effect. The
crosstalk current in the DZCM feedback network amounts to 25 µA, while the offset
voltage of the feedback amplifier ‘AD623′ is 25 µV and the resistance value of the
sensing resistor is 1 Ω. This gives rise to an undesired crosstalk current in Rx, as, if
Vin = 10 mV and Rx = 200 Ω, we will have IRx = 10 mV/200 Ω = 50 µA. Meanwhile,
the offset voltage of the ZPM is intentionally and manually compensated to zero to
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minimize the crosstalk current down to zero. We used an adjustable resistor to form a
reference voltage divider and connect it to the positive node of row/column amplifiers,
shown as Vos1 and Vos2, as displayed in Figure 4a. The result shows that the ZPM
outperforms the DZCM within this range of Rx, i.e., 10 Ω to 200 Ω, with notably
smaller measurement error. Nonetheless, this crosstalk current effect in the DZCM
can be further suppressed by increasing Vin or Rsen in the feedback network.
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Figure 7. The effect of Rx on measurement error of different SAR when (a) Rum = 200 Ω and
(b) Rum = 1 Ω in DZCM and ZPM (EXP A).

In the case of Rum = 1 Ω (Figure 7b),

i. e% of the DZCM is smaller than that of the ZPM within the Rx range of 1 Ω to 10 Ω,
showing the advantage of the DZCM feedback network in bringing down the crosstalk
current.

ii. As Rx increases from 10 Ω to 200 Ω, measurement error changes from zero to a
significant negative value. This unfavorable event also occurs in ZPM circuitry.
Moreover, this event occurred in reference [29] Figures 4–7 reference [39] Figure 8,
reference [21] Figure 9, reference [36] Figure 5, reference [34] Figure 5, reference [30]
Figure 9. We name this event the singular values effect (SVE), as it occurs when the
measured resistor is tremendously different from the adjacent unmeasured resistors.
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Figure 8. Simplified 2 × 2 array circuit example to demonstrate singular values effect in DZCM.
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Figure 9. The effect of Rx on measurement error of different Rum when SAR = 2× 2 in DZCM and
ZPM (EXP B).

A simple 2 × 2 array (see Figure 8) is illustrated to explain the SVE. Based on Figure 8,
in the extreme case of Rx = R11 = 200 Ω, current flowing through R11 decreases, denoted
by I11 = Vin/Rx = 10 mV/200 Ω = 50 µA. Meanwhile, for the adjacent resistor on
the same row, R12 = 1 Ω. The current through R12, represented by I12, is equivalent to
Vin/Rum = 10 mV/1 Ω = 10 mA. Our measurement shows that the parasitic resistances
resulting from the cable linking the sensor to PCB are Rpar = 0.01 Ω and the voltage at
column 2 is VCol2 = 10 mA× 0.01 Ω = 0.1 mV, and the voltage at column 1 is VCol1 ≈ 0 mV.
Due to this potential difference between VCol1 and VCol2, there will be a crosstalk current
through R22 and R21, I22−21 = 0.1 mV/2Ω = 50 uA. As I22−21 are in the same order as I11,
the measurement error can add up to 100%.

Figure 7 also shows the improvement of the DZCM in reducing measurement error in
the range of 1 Ω < Rx < 10 Ω and Rum = 1 Ω. That is to say, in low resistance RSA, the
DZCM is capable of decreasing the measurement error.

EXP B:
As shown in Figure 9, the e% of the DZCM is smaller or similar to the ZPM in the

range of 1 Ω < Rx < 10 Ω. This measurement error in the DZCM becomes larger than the
ZPM as Rx increases to the range of 10 Ω < Rx < 200 Ω, the increment has been explained
in EXP A above as SVE.

EXP C:
As shown in Figure 10a,c,e, when RparRow (the parasitic resistor of row wires) changes

from 0 Ω to 3.5 Ω and Rum = Rx = 1 Ω, 50 Ω, 200 Ω, the Rx error of the ZPM is the same
as in the DZCM.
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Figure 10. The effect of Rpar on measurement error of different SAR = 6 × 6, 12 × 12 when
Rx = Rum = 1 Ω, 50 Ω, 200 Ω. (a,c,e) Effect of RparRow and (b,d,f) effect of RparCol in DZCM
and ZPM (EXP C).
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When RparCol (the parasitic resistor of column wires) changes from 0 Ω to 3.5 Ω,
Rum = Rx = 1 Ω, 50 Ω, 200 Ω, as demonstrated in Figure 10b,d,f, the Rx error of the ZPM
is higher than that of the DZCM. The larger array size results in a greater error difference
between the ZPM and DZCM. This error difference increases as RparCol goes up. This is due
to the presence of the negative feedback network in the DZCM that effectively reduces the
parasitic effect of Rpar in the low resistance domain.

EXP D:
To analyze the system performance with regard to offset voltage, error variation is

preferred over absolute error. Absolute error, as discussed in EXP A, can be nulled by
manual operation. On the other hand, the fluctuation of e% is non-zero, as vosC (offset
voltage of column amplifiers) and vosR (offset voltage of row amplifiers) change. This
inconstancy of measurement error often results in temperature drift and process variation
of amplifier chips.

Offset voltages exist across the rows and columns in RSA. In the experiment to examine
the effect of vosC, vosR is kept constant at zero and vosC changes from −3 mV to 3 mV in
steps of 1 mV. Similarly, for the second study to evaluate the influence of vosR, vosC is fixed
to zero and vosR is varied from −3 mV to 3 mV in steps of 1 mV.

The offset voltages vosR and vosC are applied to the positive inputs of all row and
column amplifiers, labeled as vos1 and vos2, respectively (see Figure 4a,b).

Error variation is defined as the difference in measurement error associated with
experimental conditions.

As seen in Figure 11a–e, when vosC and vosR change from −3 mV to +3 mV with 1 mV
steps, the DZCM (the curve with solid dots) has lower Rx error variation than the ZPM
(the curves with open dots) in all array sizes. This reveals that the DZCM is capable of
eliminating the adverse effects arising from vosR and vosC of row/column amplifiers. Such
improvements can be proven in Equation (5) and Equation (1b), respectively. The DZCM
Equation (5) has one less item than ZPM Equation (6). That is because, from Equation
(5), the presence of A f in the DZCM feedback network helps to reduce the effect of offset
voltage on the error measurement.

As seen in Figure 11f, when vosR changes from −3 mV to +3 mV with 1 mV steps, the
DZCM has larger Rx error variation than the ZPM in all array sizes. This reveals that the
DZCM is not suitable for high value RSA. However, the error gaps between the DZCM
and ZPM decrease with array size increases. This implies the DZCM will have better
performance when the high value RSA has a larger array size.

Table 2 shows these performances.

Table 2. Rx error variation by vosR, vosC with SAR = 6× 6, 12× 12.

Rx=Rum(Ω) Array Size Error Variation Ratio of vosR(%/mV) Error Variation Ratio of vosC(%/mV)

DZCM ZPM DZCM ZPM

1
6 × 6 1.83 9.82 12.16 29.55

12 × 12 4.18 25.37 7.32 45.45

50
6 × 6 3.59 3.93 3.08 5.30

12 × 12 4.66 8.34 3.57 10.05

200
6 × 6 0.63 0.43 0.58 0.66

12 × 12 1.06 0.92 0.77 1.13

3.2. DZCM and ZPM Application on Liquid Metal EGaIn Based Flexible RSA

A liquid metal EGaIn based wearable 4 × 4 RSA was fabricated [5,7], as displayed in
Figure 12.
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Figure 11. The effect of (a,c,e) vosC and (b,d,f) vosR on measurement error of different SAR =

6× 6, 12× 12 when Rx = Rum = 1 Ω, 50 Ω, 200 Ω (EXP D).
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Figure 12. EGaIn based 4 × 4 flexible RSA (a) on flat surface and (b) on bending surface.

SHIMADZU EZ-SX was used in the mechanical testing to apply 0 N to 2 N loading
onto the RSA. A KEITHLEY DMM 6500 digital multimeter was used to measure the
single resistor values and the output voltage of DZCM/ZPM circuits. Figure 13 shows the
experimental setup.
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Figure 13. Force sensor test bench.

We firstly indented a single independent sensor and measured its resistance directly.
This sensor was then connected to a number of other sensors to form a 4 × 4 flexible RSA
with DZCM and ZPM readouts. Subsequently, a force was applied onto this particular
sensor. Output voltages of the DZCM and ZPM were recorded. These voltage values were
converted to resistance by Equation (1).

We tested the single sensor and flexible RSA on flat and curved surfaces. The curved
surface was shaped by a thumb sized semi-cylinder as shown in Figure 14.
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In total, we conducted six experiments to assess the performance of the DZCM and its
improvement on the actual EGaIn based RSA. The experimental layouts were:

i. Single sensor on a flat surface;
ii. single sensor on a curved surface;
iii. RSA with ZPM on a flat surface;
iv. RSA with ZPM on a curved surface;
v. RSA with DZCM on a flat surface;
vi. RSA with DZCM on a curved surface.

We continuously indented the sensor for about 5 h. Figure 15 shows the 5 h measure-
ment results of the above experiments.
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Figure 15. Five hours of measurement results.

As shown in Figure 15, experiments (i) and (ii) tested only one independent sensor.
Both experiments have resistance values that decrease with time and eventually stabilize at
6 Ω on a flat surface and 5 Ω on a curved surface. This is the characteristic of EGaIn based
flexible sensors [5]. Experiments (iii) and (iv) tested the RSA with a ZPM readout. The
resistance values decreased with time and stabilized at 12 Ω on the flat surface and 30 Ω
on the curved surface. Experiments (v) and (vi) tested the RSA with a DZCM readout. The
resistance values acquired were the most stable, amounting to 9 Ω on the flat surface and
10 Ω on the curved surface.

From Figure 15, we can conclude two benefits from the DZCM design:
The DZCM has less measurement error than the ZPM on both flat and curved surfaces,

especially when the array has low resistor value.
Measurement data from DZCM readout were more stable than that of the ZPM in

about 4 h.

3.3. Discussion

It is a challenge to create low value RSAs for low power applications due to the lack
of a compatible and stable readout design. Due to the low resistance value and the huge
number of resistors involved in an RSA, driving voltage has to be minimized to achieve low
power consumption, then the signal level is low. Thus, the noise of the parasitic resistance
coming from the connection wires and the input offset voltage of the amplifiers will increase
the measurement error greatly. Finally, it leads to a low signal to noise ratio (SNR).
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To achieve low power consumption in the RSA, we used: ±2.5 V supply power and
10 mV driving voltage.

To decrease the parasitic wire resistance, we used:

i. Copper wires of 3.6 mm/35 mm/70 µm (width/length/thickness) to connect the
resistors to form an RSA on the PCB.

ii. SMA coaxial connector/cable to link RSA PCB to the readout PCB.
iii. Copper wires of 0.15 mm/75 mm/70 µm (width/length/thickness) to connect the

SMA connectors and amplifiers on the PCB in the EXP.

To decrease the input offset voltage of amplifiers, we used: OPA4388 with 0.25 µV
offset voltage.

As demonstrated in Figures 10 and 11, the DZCM is able to decrease measurement
error arising from the parasitic resistance of wires and the input offset voltage of amplifiers.
These characteristics of the DZCM, as explained below, are very important to realize steady
and reliable wearable applications.

i. The larger physical dimensions of an electrical connection lead to lower parasitic
resistance. Nevertheless, the use of bulky connecting wires and connectors in wearable
systems is not feasible as they defeat the purpose of making an accessory, which is
supposed to be comfortable and easy to wear. The DZCM helps to solve this issue as
it has higher tolerance for parasitic resistance. In other words, it enables thinner wires
and smaller connectors to be used in the wearable.

ii. The input offset voltage of the amplifier varies with the ambient temperature. Conse-
quently, the measurement result is greatly influenced by the operating environment.
The input offset voltage also varies in mass production; thus, the measurement result
changes with different product batches. By applying the DZCM, that is less sensitive
to the fluctuation of the input offset voltage, these issues can be easily resolved.

The low driving voltage required in the DZCM is another advantage which enables
low power consumption. This enhances the wearable’s performance.

The DZCM is cost effective and most likely to be useful in RSA with large array size
and high resistance values as well. We did not examine the proposed circuitry in high
value RSAs. The crosstalk and parasitic effects have to be quantified to prove its usability.
Nonetheless, simulation data in the literature [41] show this tendency.

Lastly, the proposed DZCM design is still in its early stage of development. The
measurement error from crosstalk and parasitic resistance is still significant in the readout
system. The singular values effect of the DZCM, such as that shown in Figure 8, also
requires further improvement.

4. Conclusions

We have discussed the ZPM and established its simplified models to derive the
respective output voltage equations. Subsequently, we introduced a new circuit design,
called the DZCM, and established a simplified model to deduce its output voltage equations.
We also analyzed its measurement performance with different array sizes, input offset
voltages of driving amplifier, unmeasured resistance values, parasitic resistance values and
resistance value of the resistor of interest. The results show that the DZCM has lower e%
than the ZPM. In terms of error variation ratio from amplifier offset voltage, the DZCM
has a 4%/mV (row) to 7%/mV (column) ratio, while ZPM has an almost 25%/mV (row) to
45%/mV (column) ratio which increases with array size.

In short, the DZCM is very useful for low value RSAs used in wearable applications.
This new circuitry helps to reduce measurement error in the readout system and bring
down the material cost for mass production.

5. Patents

One Patent Pending: A circuit to measure low resistor value resistive sensor array
with dynamical zero current function (10202204307R).
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Appendix A

One ZPM structure is shown in Figure A1. There are one row driving amplifier (rAMP)
in each row and one column driving amplifier (cAMP) in each column. Resistor R1i (i = 1,
2, 3, 4) is connected to two amplifiers on each of its nodes. The resistor is driven to Vin by
rAMP1 and grounded by cAMPi. Vouti is generated by cAMPi which drives one node of
R1i to ground.
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Figure A1. Circuit based on the ZPM. 
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Figure A1. Circuit based on the ZPM.

Two nodes of the other adjacent unmeasured resistors Rum (R21 to R44) are grounded
through their connected rAMP and cAMP. The example is R31 in Figure A1, and these
resistors have zero potential difference, thus there will be no current flow through Rum.
Then, the crosstalk current flowing through Rum will be cut off. The ideal Rxi measurement
value can be computed from Equation (A1).

R1i =
Vin
I f

= − Vin
Vouti

× R f (A1)



Sensors 2023, 23, 1406 17 of 21

R1i is the measured resistor, Vin is the input voltage to drive the measured resistor, I f
is the current of the feedback resistor R f of the column amplifier, Vouti is the output voltage
of the column amplifier.

In the case of an actual hardware system, the parasitic effect must be taken into consid-
eration. The ON state switch resistor (RON) and the amplifier offset voltage (Vos1, Vos2) are
included in the calculation. To include the parasitic effect and explain the characteristics of
the ZPM, we simplify the network to just one resistor Rx. The revised circuit is shown in
Figure A2.
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Figure A2. Circuit designs that include parasitic effects in the cases of ZPM.

The measurable resistance in Equation (A1) is modified and the new equations are
depicted in Equation (A2):

Rx = −
(

Vin + VOS1 −VOS2

Vout
× R f

)
(A2)

Figure A3 shows an example of a 2× 2 RSA, taking into account both the crosstalk and
parasitic effect. In order to include non-ideal factors (row and column parasitic resistance
Rpar and amplifier offset voltage VOS) in this model, we use the ZPM for the analysis below.
Non-ideal factors are illustrated as Rpar and VOS in the circuit model.
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To calculate the intrinsic crosstalk current effect, we first extract the array network and
apply Kirchhoff’s law, as shown in Figure A4 and Equation (A3).

Va = Vos21 + I f 1·Rpar = Vos21 + (I21 + I11)·Rpar (A3a)

Vb = Vos11 + Vin − Ib·Rpar = Vos11 + Vin − (I12 + I11)·Rpar (A3b)

Vc = Vos12 − Ic·Rpar = Vos12 − (I21 + I22)·Rpar (A3c)

Vd = Vos22 + I f 2·Rpar = Vos22 + (I12 + I22)·Rpar (A3d)
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Vb −Va = I11·R11 (A3e)

Vc −Va = I21·R21 (A3f)

Vb −Vd = I12·R12 (A3g)

Vc −Vd = I22·R22 (A3h)
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𝑅𝑝𝑎𝑟 0 𝑅𝑢𝑚 + 2𝑅𝑝𝑎𝑟 𝑅𝑝𝑎𝑟

𝑅𝑝𝑎𝑟
0

𝑅𝑢𝑚 + 2𝑅𝑝𝑎𝑟
−𝑅𝑝𝑎𝑟

0
𝑅𝑝𝑎𝑟

−𝑅𝑝𝑎𝑟
𝑅𝑢𝑚 + 2𝑅𝑝𝑎𝑟

|
|

𝑉𝑜𝑠11 − 𝑉𝑜𝑠21 + 𝑉𝑖𝑛
𝑉𝑜𝑠12 − 𝑉𝑜𝑠21

𝑉𝑜𝑠11 − 𝑉𝑜𝑠22 + 𝑉𝑖𝑛
𝑉𝑜𝑠12 − 𝑉𝑜𝑠22

)
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We define 𝑅𝑢𝑚 + 2𝑅𝑝𝑎𝑟 = 𝑅𝑢2
′  and 𝑅𝑥 + 2𝑅𝑝𝑎𝑟 = 𝑅𝑥2

′ , then we have: 

(

 

𝑅𝑥2+
𝑅𝑝𝑎𝑟
𝑅𝑝𝑎𝑟

𝑅𝑝𝑎𝑟
0
𝑅𝑢2+

0 −𝑅𝑝𝑎𝑟

𝑅𝑝𝑎𝑟
𝑅𝑢2+
   0
𝑅𝑝𝑎𝑟

  0
𝑅𝑝𝑎𝑟
−𝑅𝑝𝑎𝑟
𝑅𝑢2+

||

𝑉𝑜𝑠11 − 𝑉𝑜𝑠21 + 𝑉𝑖𝑛
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We hypothesize R11 = Rx and R12 = R21 = R22 = Rum and 10·Rpar < R ≈ Rx. After
substituting (A3a, A3b, A3c, A3d) with (A3e, A3f, A3g, A3h), we obtain Equation (A4).

I11·
(

Rx + 2Rpar
)
+ I12Rpar + I21Rpar = Vos11 −Vos21 + Vin (A4a)

I11Rpar + I21·
(

Rum + 2Rpar
)
+ I22Rpar = Vos12 −Vos21 (A4b)

I11Rpar + I12·Rum − I22Rpar = Vos11 −Vos22 + Vin (A4c)

− I12Rpar + I21Rpar + I22·Rum = Vos12 −Vos22 (A4d)

Equation (A4) is a non-homogeneous linear equation R·I = V and can be written as
Equation (A5).


Rx + 2Rpar Rpar Rpar 0

Rpar 0 Rum + 2Rpar Rpar
Rpar

0
Rum + 2Rpar
−Rpar

0
Rpar

−Rpar
Rum + 2Rpar

∣∣∣∣∣∣∣∣
Vos11 −Vos21 + Vin

Vos12 −Vos21
Vos11 −Vos22 + Vin

Vos12 −Vos22

 (A5)

We define Rum + 2Rpar = R’
u2 and Rx + 2Rpar = R’

x2, then we have:
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Rx2+
Rpar
Rpar

Rpar
0

Ru2+
0 −Rpar

Rpar
Ru2+

0
Rpar

0
Rpar
−Rpar
Ru2+

∣∣∣∣∣∣∣∣
Vos11 −Vos21 + Vin

Vos12 −Vos21
Vos11 −Vos22 + Vin

Vos12 −Vos22

 (A6)

After rearranging the linear equation, we have:


1 0 0 0
0 1 0 0
0
0

0
0

1 0
0 1

∣∣∣∣∣∣∣∣
[(Vos12−Vos21)(RumRx−R′u2R′x2)+R′u2(Vos11−Vos21+Vin)Rpar]

Rpar RumRx

[(Vos12−Vos22)(R2
umRx−Rx R′2u2)+Rx Rpar(Vos11+Vos21+Vin)R′u2]

Rpar R2
umRx

−
[
(Vos11 −Vos22 + Vin)Rpar − (Vos12 −Vos21)(R′x2)

]
/RumRx

−
[
(Vos11 + Vos21 + Vin)Rpar + (Vos12 −Vos21)(R′u2)

]
/R2

um

 (A7)

From (A3-1), we have I f 1 = I21 + I11. Deriving from (A7) row 1 (I11) and row 3 (I21),
and after simplifying, we have:

I f 1 =

(
R
′
u2

)
(Vin + Vos11)−Vos12

(
R
′
u2 + Rum + Rx

)
−Vos21(Rum + Rx) + Vos22Rpar

RumRx
(A8)

We can now evaluate I f 1 from Equation (A8) by assuming Rpar, Vos11, Vos12, Vos21 and
Vos22 are all equal to zero (ideal case). Equation (A8) is then modified as I f 1 = Vin

Rx
and it

matches with Equation (A1).

Appendix B

Equation (3) is a non-homogeneous linear equation R·I = V and can be written as
Equation (A9a). (

Rx + 2Rpar Rpar
Rpar Rum + 2Rpar

∣∣∣∣Vos11 + Vin −Vos21
Vos11 + Vin −Vos22

)
(A9a)

After defining Rum + 2Rpar = R
′
u2 and Rx + 2Rpar = R

′
x2 and Vos11 + Vin = Vi1, we

have: (
R
′
x2 Rpar

Rpar R
′
u2

∣∣∣∣∣Vi1 −Vos21
Vi1 −Vos22

)
(A9b)

Rearranging row 1, we have:(
0 1

Rpar Ru2+

∣∣∣∣∣
(Vi1−Vos22)Rx2++Vos21Rpar

Rx2+Ru2+−Rpar2

Vi1 −Vos22

)
(A9c)

Rearranging row 2, we have:1 0
0 1

∣∣∣∣∣∣∣
− (Vi1−Vos22)Rpar+(Vos21−Vi1)R

′
u2

R′u2R′x2−Rpar2

(Vi1−Vos22)R
′
x2+Vos21Rpar

R′u2R′x2−Rpar2

 (A9d)

From Equation (2a), we have I f 1 = I11. From Equation (A9d) row 1 (I11), we have:

I f 1 = I11 = −
(Vi1 −Vos22)Rpar + (Vos21 −Vi1)R

′
u2

R′x2R′u2 − Rpar2
(A9e)



Sensors 2023, 23, 1406 20 of 21

References
1. Dickey, M.D. Stretchable and Soft Electronics using Liquid Metals. Adv. Mater. 2017, 29, 1606425. [CrossRef] [PubMed]
2. Cheng, S.; Wu, Z. A Microfluidic, Reversibly Stretchable, Large-Area Wireless Strain Sensor. Adv. Funct. Mater. 2011, 21, 2282–2290.

[CrossRef]
3. Roberts, P.; Damian, D.D.; Shan, W.; Lu, T.; Majidi, C. Soft-matter capacitive sensor for measuring shear and pressure deformation.

In Proceedings of 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; pp.
3529–3534. [CrossRef]

4. Vogt, D.M.; Park, Y.-L.; Wood, R.J. Design and Characterization of a Soft Multi-Axis Force Sensor Using Embedded Microfluidic
Channels. IEEE Sens. J. 2013, 13, 4056–4064. [CrossRef]

5. Yeo, J.C.; Yu, J.; Koh, Z.M.; Wang, Z.; Lim, C.T. Wearable tactile sensor based on flexible microfluidics. Lab Chip 2016, 16, 3244–3250.
[CrossRef] [PubMed]

6. Yeo, J.C.; Kenry; Yu, J.; Loh, K.P.; Wang, Z.; Lim, C.T. Triple-State Liquid-Based Microfluidic Tactile Sensor with High Flexibility,
Durability, and Sensitivity. ACS Sens. 2016, 1, 543–551. [CrossRef]

7. Yu, L.; Yeo, J.C.; Soon, R.H.; Yeo, T.; Lee, H.H.; Lim, C.T. Highly Stretchable, Weavable, and Washable Piezoresistive Microfiber
Sensors. ACS Appl. Mater. Interfaces 2018, 10, 12773–12780. [CrossRef]

8. Snyder, W.E.; Clair, J.S. Conductive Elastomers as Sensor for Industrial Parts Handling Equipment. IEEE Trans. Instrum. Meas.
1978, 27, 94–99. [CrossRef]

9. Prutchi, D.; Arcan, M. Dynamic contact stress analysis using a compliant sensor array. Measurement 1993, 11, 197–210. [CrossRef]
10. Tanaka, A.; Matsumoto, S.; Tsukamoto, N.; Itoh, S.; Chiba, K.; Endoh, T.; Nakazato, A.; Okuyama, K.; Kumazawa, Y.; Hijikawa,

M.; et al. Infrared focal plane array incorporating silicon IC process compatible bolometer. IEEE Trans. Electron Devices 1996, 43,
1844–1850. [CrossRef]

11. Takei, K.; Takahashi, T.; Ho, J.C.; Ko, H.; Gillies, A.G.; Leu, P.W.; Fearing, R.S.; Javey, A. Nanowire active-matrix circuitry for
low-voltage macroscale artificial skin. Nat. Mater. 2010, 9, 821–826. [CrossRef]

12. Wang, C.; Hwang, D.; Yu, Z.; Takei, K.; Park, J.; Chen, T.; Ma, B.; Javey, A. User-interactive electronic skin for instantaneous
pressure visualization. Nat. Mater. 2013, 12, 899–904. [CrossRef] [PubMed]

13. Kane, B.J.; Cutkosky, M.R.; Kovacs, G.T.A. A traction stress sensor array for use in high-resolution robotic tactile imaging. J.
Microelectromechanical Syst. 2000, 9, 425–434. [CrossRef]

14. Vidal-Verdú, F.; Oballe-Peinado, Ó.; Sánchez-Durán, J.A.; Castellanos-Ramos, J.; Navas-González, R. Three realizations and
comparison of hardware for piezoresistive tactile sensors. Sensors 2011, 11, 3249–3266. [CrossRef]

15. Oballe-Peinado, Ó.; Vidal-Verdú, F.; Sánchez-Durán, J.A.; Castellanos-Ramos, J.; Hidalgo-López, J.A. Accuracy and resolution
analysis of a direct resistive sensor array to FPGA interface. Sensors 2016, 16, 181. [CrossRef] [PubMed]

16. Oballe-Peinado, Ó.; Vidal-Verdú, F.; Sánchez-Durán, J.A.; Castellanos-Ramos, J.; Hidalgo-López, J.A. Improved circuits with
capacitive feedback for readout resistive sensor arrays. Sensors 2016, 16, 149. [CrossRef]

17. Shu, L.; Tao, X.; Feng, D.D. A new approach for readout of resistive sensor arrays for wearable electronic applications. IEEE Sens.
J. 2014, 15, 442–452. [CrossRef]

18. Hidalgo-Lopez, J.A.; Romero-Sánchez, J.; Fernández-Ramos, R. New approaches for increasing accuracy in readout of resistive
sensor arrays. IEEE Sens. J. 2017, 17, 2154–2164. [CrossRef]

19. López, J.A.H.; Oballe-Peinado, Ó.; Sánchez-Durán, J.A. A proposal to eliminate the impact of crosstalk on resistive sensor array
readouts. IEEE Sens. J. 2020, 20, 13461–13470. [CrossRef]

20. Lorussi, F.; Rocchia, W.; Scilingo, E.P.; Tognetti, A.; De Rossi, D. Wearable, redundant fabric-based sensor arrays for reconstruction
of body segment posture. IEEE Sens. J. 2004, 4, 807–818. [CrossRef]

21. Tise, B. A compact high resolution piezoresistive digital tactile sensor. In Proceedings of the 1988 IEEE International Conference
on Robotics and Automation, Philadelphia, PA, USA, 24–29 April 1988; pp. 760–764. [CrossRef]

22. Speeter, T.H. Flexible, piezoresitive touch sensing array. In Proceedings of the Optics, Illumination, and Image Sensing for
Machine Vision III, Boston, MA, USA, 7–11 November 1988; pp. 31–43.

23. Speeter, T.H. A tactile sensing system for robotic manipulation. Int. J. Robot. Res. 1990, 9, 25–36. [CrossRef]
24. Liu, H.; Zhang, Y.-F.; Liu, Y.-W.; Jin, M.-H. Measurement errors in the scanning of resistive sensor arrays. Sens. Actuators A Phys.

2010, 163, 198–204. [CrossRef]
25. D’Alessio, T. Measurement errors in the scanning of piezoresistive sensors arrays. Sens. Actuators A Phys. 1999, 72, 71–76.

[CrossRef]
26. Jianfeng, W.; Lei, W.; Jianqing, L.; Zhongzhou, Y. A small size device using temperature sensor array. Chin. J. Sens. Actuators 2011,

24, 1649–1652.
27. Wu, J.; Wang, L.; Li, J. Design and crosstalk error analysis of the circuit for the 2-D networked resistive sensor array. IEEE Sens. J.

2014, 15, 1020–1026. [CrossRef]
28. Wu, J.; Wang, L.; Li, J.; Song, A. A novel crosstalk suppression method of the 2-D networked resistive sensor array. Sensors 2014,

14, 12816–12827. [CrossRef] [PubMed]
29. Wu, J.; He, S.; Li, J.; Song, A. Cable crosstalk suppression with two-wire voltage feedback method for resistive sensor array.

Sensors 2016, 16, 253. [CrossRef] [PubMed]

http://doi.org/10.1002/adma.201606425
http://www.ncbi.nlm.nih.gov/pubmed/28417536
http://doi.org/10.1002/adfm.201002508
http://doi.org/10.1109/ICRA.2013.6631071
http://doi.org/10.1109/JSEN.2013.2272320
http://doi.org/10.1039/C6LC00579A
http://www.ncbi.nlm.nih.gov/pubmed/27438370
http://doi.org/10.1021/acssensors.6b00115
http://doi.org/10.1021/acsami.7b19823
http://doi.org/10.1109/TIM.1978.4314628
http://doi.org/10.1016/0263-2241(93)90039-K
http://doi.org/10.1109/16.543017
http://doi.org/10.1038/nmat2835
http://doi.org/10.1038/nmat3711
http://www.ncbi.nlm.nih.gov/pubmed/23872732
http://doi.org/10.1109/84.896763
http://doi.org/10.3390/s110303249
http://doi.org/10.3390/s16020181
http://www.ncbi.nlm.nih.gov/pubmed/26840321
http://doi.org/10.3390/s16020149
http://doi.org/10.1109/jsen.2014.2333518
http://doi.org/10.1109/JSEN.2017.2662803
http://doi.org/10.1109/JSEN.2020.3005227
http://doi.org/10.1109/jsen.2004.837498
http://doi.org/10.1109/ROBOT.1988.12150
http://doi.org/10.1177/027836499000900603
http://doi.org/10.1016/j.sna.2010.08.004
http://doi.org/10.1016/S0924-4247(98)00204-0
http://doi.org/10.1109/JSEN.2014.2359967
http://doi.org/10.3390/s140712816
http://www.ncbi.nlm.nih.gov/pubmed/25046011
http://doi.org/10.3390/s16020253
http://www.ncbi.nlm.nih.gov/pubmed/26907279


Sensors 2023, 23, 1406 21 of 21

30. Wu, J.; Wang, L.; Li, J. General voltage feedback circuit model in the two-dimensional networked resistive sensor array. J. Sens.
2015, 2015, 913828. [CrossRef]

31. Lazzarini, R.; Magni, R.; Dario, P. A tactile array sensor layered in an artificial skin. In Proceedings of the 1995 IEEE/RSJ
International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots, Pittsburgh, PA,
USA, 5–9 August 1995; pp. 114–119. [CrossRef]

32. Saxena, R.S.; Bhan, R.K.; Saini, N.K.; Muralidharan, R. Virtual ground technique for crosstalk suppression in networked resistive
sensors. IEEE Sens. J. 2010, 11, 432–433. [CrossRef]

33. Yarahmadi, R.; Safarpour, A.; Lotfi, R. An improved-accuracy approach for readout of large-array resistive sensors. IEEE Sens. J.
2015, 16, 210–215. [CrossRef]

34. Wu, J.; Wang, L. Cable crosstalk suppression in resistive sensor array with 2-wire S-NSDE-EP method. J. Sens. 2016, 2016, 8051945.
[CrossRef]

35. Kim, J.-S.; Kwon, D.-Y.; Choi, B.-D. High-accuracy, compact scanning method and circuit for resistive sensor arrays. Sensors 2016,
16, 155. [CrossRef] [PubMed]

36. Wu, J.; Wang, Y.; Li, J.; Song, A. A novel two-wire fast readout approach for suppressing cable crosstalk in a tactile resistive sensor
array. Sensors 2016, 16, 720. [CrossRef] [PubMed]

37. Wu, J.; Li, J. Approximate model of zero potential circuits for the 2-D networked resistive sensor array. IEEE Sens. J. 2016, 16,
3084–3090. [CrossRef]

38. Manapongpun, P.; Bunnjaweht, D. An Enhanced Measurement Circuit for Piezoresistive Pressure Sensor Array. In Proceedings of
the 2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information
Technology (ECTI-CON), Phuket, Thailand, 24–27 June 2020; pp. 105–108. [CrossRef]

39. Warnakulasuriya, A.S.; Dinushka, N.Y.; Dias, A.A.C.; Ariyarathna, H.P.A.R.; Ramraj, C.; Jayasinghe, S.; Silva, A.C.D. A Readout
Circuit Based on Zero Potential Crosstalk Suppression for a Large Piezoresistive Sensor Array: Case Study Based on a Resistor
Model. IEEE Sens. J. 2021, 21, 16770–16779. [CrossRef]

40. Hu, Z.; Tan, W.; Kanoun, O. High Accuracy and Simultaneous Scanning AC Measurement Approach for Two-Dimensional
Resistive Sensor Arrays. IEEE Sens. J. 2019, 19, 4623–4628. [CrossRef]

41. Wu, J.-F.; Li, J.-Q.; Song, A.-G. Readout circuit based on double voltage feedback loops in the two-dimensional resistive sensor
array: Design, modelling and simulation evaluation. IET Sci. Meas. Technol. 2017, 11, 288–296. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1155/2015/913828
http://doi.org/10.1109/IROS.1995.525871
http://doi.org/10.1109/JSEN.2010.2060186
http://doi.org/10.1109/JSEN.2015.2477494
http://doi.org/10.1155/2016/8051945
http://doi.org/10.3390/s16020155
http://www.ncbi.nlm.nih.gov/pubmed/26821029
http://doi.org/10.3390/s16050720
http://www.ncbi.nlm.nih.gov/pubmed/27213373
http://doi.org/10.1109/JSEN.2016.2530692
http://doi.org/10.1109/ECTI-CON49241.2020.9158072
http://doi.org/10.1109/JSEN.2021.3078613
http://doi.org/10.1109/JSEN.2019.2899135
http://doi.org/10.1049/iet-smt.2016.0293

	Introduction 
	Dynamical Zero Current Method 
	Experiments for DZCM/ZPM and Discussion 
	Experimental Result for DZCM with Ideal Resistors 
	DZCM and ZPM Application on Liquid Metal EGaIn Based Flexible RSA 
	Discussion 

	Conclusions 
	Patents 
	Appendix A
	Appendix B
	References

