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Abstract: Over the past few years, with the rapid increase in the number of natural disasters, the need
to provide smart emergency wireless communication services has become crucial. Unmanned aerial
Vehicles (UAVs) have gained much attention as promising candidates due to their unprecedented
capabilities and broad flexibility. In this paper, we investigate a UAV-based emergency wireless
communication network for a post-disaster area. Our optimization problem aims to optimize the
UAV’s flight trajectory to maximize the number of visited ground users during the flight period. Then,
a dual cost-aware multi-armed bandit algorithm is adopted to tackle this problem under the limited
available energy for both the UAV and ground users. Simulation results show that the proposed
algorithm could solve the optimization problem and maximize the achievable throughput under
these energy constraints.

Keywords: unmanned aerial vehicle; trajectory optimization; reinforcement learning; multi-armed
bandit; cost subsidy; post-disaster

1. Introduction

Across the globe, large-scale natural disasters are known for their severe casualties
damage to property. Besides thousands of deaths and injuries resulting from various types
of natural disasters around the world, there has been additional increase in material losses
of about 100–150% [1]. The first few hours after a catastrophe are regarded as the “golden
hours” of relief because rescue workers have a high probability of evacuating people from
the damaged region during this period. Keep in mind that the wireless infrastructure in
the disaster area might not be functional or even might be ravaged after the disaster. What
makes the situation even more complicated is the paralysis of the power transmission lines
after the disaster. The most powerful earthquake ever recorded in Japan, with a magnitude
of 9.1, triggered a tsunami on the northeastern shore in March 2011. In the region of the
catastrophe, around 6000 base stations (BSs) were wrecked, and the remaining BSs were
highly overloaded with tremendous amounts of voice and data traffic. As a result of the
high call block rate, communication services were suspended for roughly four days [2]. As
a result, it is critical to develop an emergency wireless network that is completely indepen-
dent of the conventional broadband network as soon as possible in order to preserve those
valuable human lives. Unmanned aerial vehicles (UAVs) are well-known for their distinct
characteristics, such as flexible deployment and rapid reaction. Thus, they can be deployed
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as temporary mobile BSs to establish this type of temporary emergency wireless network [3].
UAVs are now employed for a variety of emergency wireless communication applications,
such as disaster management, surveillance, early warnings, post-disaster fusion centers,
damage assessment, and supply-aid drop, in addition to temporary emergency wireless
networks [4].

Notwithstanding the advantages of utilizing UAVs for establishing emergency wireless
communication networks in a post-disaster area, there are a number of issues that need
to be neutralized. In this tough environment induced by a natural disaster, the UAV must
first design and optimize its flying route. This necessitates a quick online optimization
procedure to accommodate the dramatic shift in the geographical field [5]. Secondly, the
available energy for victims is ephemeral due to the limited battery capacity of their UEs
and the destruction of the power supply infrastructure as a result of the natural disaster [6].
Thirdly, the UAV’s operating duration is restricted by the onboard battery’s capacity. The
UAV should return to its base for recharging before it is completely depleted [7]. Therefore,
while constructing an emergency wireless communication network, all of these concerns
should be addressed. In addition, since this is a crucial mission, the UAV must assist as
many people as possible in the disaster zone before its battery dies. Consequently, it is vital
to seek out a robust mathematical tool capable of tackling such novel challenges.

Machine learning (ML) algorithms, and more precisely, reinforcement learning (RL)
algorithms, are leveraged to tackle these kinds of optimization problems. Since RL algo-
rithms are capable of achieving superb results in terms of efficiency and generalization,
and due to their ability to deal with optimization problems with conflicting parameters,
researchers have been inspired to utilize them in dealing with real-time issues in the field
of wireless communications networks [8]. In this context, modern UAVs are equipped
with wireless communications, ML, and image processing techniques. These techniques
can support a UAV’s trajectory optimization while avoiding obstacles and dealing with
a limited battery capacity, which leads to serving more spots and enhancing the whole
mission’s energy efficiency. Recently, “follow me” drones have boomed in market value [9].
These drones are capable of filming a moving person with intelligent target-tracking and
obstacle-avoidance algorithms, resulting in fabulous camera footage. Furthermore, novel
UAV-related applications such as area surveillance, disaster relief, and traffic control are
just a few applications that can be intelligently developed for future cities [10].

Multi-armed bandit (MAB) algorithms are considered one of the RL algorithms which
are preferred in dealing with online optimization problems [11]. MAB algorithms can be
defined as a set of arms, i.e., actions, of a bandit machine. At any given moment, pulling an
arm leads to an instantaneous reward that is sampled from a certain distribution. A player
wants to maximize his accumulated reward over the playing period by choosing an arm
to pull during each moment of playing. Nevertheless, this player has no idea about the
instantaneous reward behind each arm, since it will be revealed when the player decides to
choose it. Therefore, some amount of the reward could be missed out due to this hidden
setting. This loss is denoted by the term regret [12,13]. Thus, a player should develop a
strategy to choose the arm that leads to the highest reward. On the other hand, this strategy
should keep an eye on balancing between playing with the previously discovered arms
that have high rewards or playing with the still-undiscovered ones that might have higher
rewards. This is a common MAB dilemma, and it is called the exploration–exploitation
trade-off [14,15]. Aiming to bolster disaster resilience, this paper describes a method of
leveraging the latest advances in MAB algorithms and UAV wireless communications
networks to improve the functionality of emergency wireless communication services for
post-disaster response and assessment.

1.1. Prior Works and Motivations

One of the main benefits of deploying UAVs in emergency wireless communication
networks is their capability of gathering extensive data from scattered ground devices,
such as ground BSs, ground users, and even ground sensors [16]. The paper just cited gives
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a broad overview of different techniques but does not dive deeply in a specific direction.
Furthermore, a UAV can operate as a flying edge server or a BS to support various traffic
offloading scenarios [17], but it has a limited size of state action space. Due to its mobility,
the planning and optimization of the UAV’s trajectory and radio resource management
of its wireless network are crucial issues. Researchers conducted many investigations
on this topic during the past few years [18]. The UAV’s speed and the location of its
waypoints were used in [19] to design an optimal trajectory. However, the discussion was
limited to cases where UAVs are used as relay stations in ad hoc networks. Minimizing
the total energy consumption was studied in [20] using UAV speed control and a UAV
data-scheduling-based heuristic algorithm, but it can be considered a theoretical approach
only due to its large approximation factors. The authors of [21] considered UAVs with
small cell capabilities to work as UAV-BSs. Particularly, the UAV movement, charging, and
coverage action are considered in terms of jointly optimizing the energy and throughput
through revenue and cost components. The UAV task scheduling was investigated in [22],
where a mathematical framework for the optimization of UAV-aided video monitoring of a
set of points of interest (PoI) distributed in a large urban area was proposed. Using this
framework, which is based on mixed integer linear programming (MILP) techniques and
real experimental data, particular energy-constrained UAVs are selected for recharging
using public transportation buses, which also transfer the UAVs to desired PoIs in order to
increase reliability and coverage.

UAV trajectory optimization may be carried out using traditional optimization ap-
proaches when realistic models of UAV wireless networks, including their flight dynamics,
are available. Still, building these realistic network models is quite challenging; thus,
model-free machine-learning methods can be used to manage the operation of UAVs that
utilize wireless communication networks. By utilizing data gathered from prior experi-
ences, machine learning algorithms are able to create autonomous control policies [23].
The authors of [24] studied the optimal deployment of UAVs equipped with directional
antennas, using circle packing theory, where the 3D locations of the UAVs are determined
such in a way that the total coverage area is maximized. The policy gradient approach
for trajectory optimization used by the authors of [25] was able to maximize the overall
distance covered by the UAV. However, this method took a lot of time and effort to find
the best answer due to the large number of possible trajectories that the UAV must fly.
The authors of [26] used the deep Q-learning method to optimize the UAV’s flight path
to maximize data rate during the flight period in an unknown environment. One major
limitation of this proposed Q-learning approach for trajectory optimization is the long
learning time, which makes it unfeasible even for moderate state spaces. By planning the
UAV’s flight trajectory, the authors of [27] were able to maximize the uplink transmission
rate in a UAV cellular network. The deterministic policy gradient (DPG) approach was
used to solve the optimization problem after it was converted into a Markov decision
process (MDP). However, the characteristics of mmWave channels and beamforming were
not taken into consideration during the optimization process.

Despite the existence of numerous excellent studies on UAV wireless communication
networks, there are only a few works that focus on UAV-assisted emergency wireless
communication networks. In our earlier studies [28,29], we investigated the radio resource
allocation for a UAV emergency wireless communication network using a dynamic spec-
trum access system. The purpose of the deployment of UAVs as a cognitive radio network
(CRN) was to maximize the downlink data rate in a post-disaster environment. Moreover,
the limited transmission power of each UAV was used to control the constructed two multi-
player MAB-based optimization problems called the power budget aware upper confidence
bound (PBA-UCB) algorithm and the power budget aware Thompson sampling (PBA-TS)
algorithm. The problem of gateway selection in a post-disaster area was addressed in [30],
where a decentralized MAB algorithm was adapted to each UAV to let it maximize its
data throughput by optimally choosing a suitable gateway. However, the optimization
algorithm encountered some data loss due to not choosing the optimal strategy at the be-
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ginning of the optimization process. The authors of [31] built a system of a re-configurable
intelligent surface (RIS) attached to a UAV. With the aid of a modified version of the MAB
algorithm, the optimization problem aimed to find the optimum trajectory of the UAV that
maximizes the total throughput while reducing the consumed flying power of the UAV.
For a UAV with a limited battery capacity, the maximization problem for the number of
served users was studied in [32] using two MAB algorithms called the ε-greedy algorithm
and the D-UCB algorithm. The UAV trajectory optimization problem was studied in [33] to
maximize the accumulated data volume from ground sensors under unknown network
information. The optimization problem was transformed into a finite MDP and solved
using two Q-learning-based UAV trajectory optimization frameworks called SUTOA and
QUTOA. A Lyapunov-based deep Q-learning framed work called Safe-DQN was proposed
in [34] to study the UAV trajectory optimization problem in a UAV-based emergency wire-
less communication network. The joint optimization problem aimed to maximize the total
system rate under the constraints of the limited flight time of the UAV, the power capacity
of the ground user, and the need to avoid obstacles in the disaster area. All the previous
research was controlled by the limited capacity of the attached onboard battery for each
UAV.

All of these studies on UAV emergency wireless communication networks focused
on the optimization issue under a single power restriction, either a restricted UAV battery
capacity or a limited amount of energy accessible to ground users (i.e., ground UE or
ground sensors). We argue that these two elements together should be taken into account
while constructing a UAV emergency wireless communication network. This is because
the natural disaster destroys or at least renders the power supply network inoperable.
Therefore, the goal of our suggested framework is to solve the UAV trajectory optimization
problem under these two limited power constraints. In order to do this, our goal was to
investigate a dual constraint optimization problem that might increase the UAV emergency
wireless network’s reliability in comparison to earlier studies. It should be noted that, to
the best of our knowledge, our earlier work in [35] was the first study to investigate this
sort of optimization issue with dual constrained energy capacity for both UAV and UEs
at the same time. Furthermore, in the research, we extend our problem formulation by
deeply evaluating the performance of our proposed framework against different benchmark
methods. This evaluation was conducted in terms of the accumulated long-term uplink
throughput of all UEs, the energy consumed by all UEs during the data-offloading process,
and the energy efficiency of the UEs.

1.2. Contributions and Organization

According to the discussion in the preceding subsection, the majority of recent research
on UAV emergency wireless communication networks concentrated primarily on the
limited battery energy capacity of UAVs; just a small number of studies took into account
the restricted energy capacity of ground users, i.e., ground users’ equipment (UEs). We
created a suggestion to fill this gap by examining an optimization scenario with constrained
energy capacity for both UEs and UAVs. UAVs are seen as flying BSs that provide a wireless
connection to ground UEs in the disaster-affected region from the sky. The information
gathered from the UEs is deemed critical for estimating the status of the victims and
assessing the damage in the post-disaster area. As a result, this critical data may be
processed to help rescue crews save these precious lives. Our major goal is to acquire
as much data from ground UEs as possible given the restricted power capacity of both
the UAV and the ground UEs. However, since UAV coverage is somewhat limited in
comparison to terrestrial BSs, our goal is to optimize the UAV flight trajectory to maximize
the number of ground UEs visited before the battery runs out. Considering this limited
battery capacity, another interesting idea is to have the UAVs maximize the scanned area
while capturing photos to aid the rescue teams or to estimate the damage caused by the
natural disaster. This goal was kept for our future work. The primary contributions of this
work can be summarized as follows:
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• In our situation, a UAV would gather user data in a disaster-affected region as part of
a wireless emergency communication network. Ground BSs fail as a consequence of
natural catastrophe damage, but ground UEs in the UAV coverage area may upload
data using an alternate mode of connection from the sky thanks to the assistance
of the UAV emergency wireless communication network. We propose an online
optimization problem to optimize the uplink throughput for the UAV emergency
wireless communication network by optimizing the flight trajectory of the UAV under
these assumptions, taking into consideration the limited available energy for both the
UAV and ground UEs in the post-disaster region.

• The optimization problem is adapted into a constrained MAB problem, with action,
reward, and cost defined as the flight direction, uploaded data throughput, and
dissipated energy for both the UAV and UEs, respectively.

• The numerical analysis of our proposed framework shows a considerable increase in
long-term throughput and a slight increase in the energy consumption of the UEs in
the post-disaster area, resulting in better energy efficiency for our proposed framework
compared to other benchmark UAV trajectory optimization methods.

The rest of this paper is organized as follows. Section 2 presents the network architec-
ture and formulates the online optimization problem for the long-term uplink throughput
maximization problem. In Section 3, the general MAB framework is illustrated, followed by
our proposed MAB-based framework for UAV trajectory optimization under dual energy
constraints. Simulation results and numerical analysis are given in Section 4, and finally,
the paper is concluded in Section 5.

2. Network Architecture and Problem Formulation

In this section, we discuss the architecture for the UAV-assisted emergency wireless
communication network, including the flying model used for the UAV, the channel model
for data uploading, and the optimization problem formulation.

2.1. UAV Flying Model

The system architecture for the UAV-assisted emergency wireless communication
network is shown in Figure 1. In this scenario, a natural disaster, such as an earthquake
or flood, strikes a specific location and causes the power grid and wireless network to fail.
Our plan is to use the UAV to enable wireless access from the sky in this post-disaster area.
In this approach, wireless connectivity may be enabled for victims, i.e., ground UEs, in this
devastated region, allowing them to offload data that will be useful in guiding rescue crews
and evaluating the damage. We assumed that there are M UEs trapped in this post-disaster
area, denoted byM = {1, . . . , M}. Each of them has a fixed position designated by the
following in Cartesian coordinates lm = (xm, ym). The UEs locations are supposed to be
known to the UAV through self-reported global positioning system (GPS) coordinates. The
discussion on how these data are transferred to the UAV is beyond the scope of this paper.
It is assumed that the UAV will begin flying from the center of the post-disaster area, i.e.,
the center of the simulation area, which is denoted by l0 = (x0, y0). Additionally, it flies
according to a constant speed of ν and an altitude of H. We assume that this altitude is
relatively high and that the data transmission duration is reasonably short and denoted by
τ. As a result, the UAV is regarded immobile when uploading the UE data.
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Figure 1. UAV emergency wireless communication network.

2.2. Wireless Communication Channel Model

For the convenience of designing an emergency wireless communication network,
our designed system should utilize a channel in the unlicensed band, i.e., 2.4 GHz. In
such a way, this system can be easily integrated with the hardware of modern UEs. Hence,
the utilized channel model is expounded at [34], in accordance with the 3rd Generation
Partnership Project (3GPP) specification in the technical report presented in [36]. This
channel model represents the wireless communication link between the UAV and each
of the served UEs into two components, i.e., the line-of-sight (LOS) component and the
non-line-of-sight (NLOS) component, according to their corresponding probabilities, and
can be calculated by (1).

Lm =

{
30.9 + (22.25− 0.5 log10 H) log10 dm + 20 log10 f , if LOS link
max

(
LLOS

m , 32.4 + (43.2− 7.6 log10 H) log10 dm + 20 log10 f
)
, if NLOS link

(1)

where H denotes the UAV flight altitude, f is the carrier frequency, and dm is the distance
between the UAV and any corresponding UE m, which can be calculated as follows:

dm =
√

H2 + ‖lm − l0‖2, ∀m ∈ M (2)

Since the calculation of path loss due to the NLOS component is a function of the path loss
due to the LOS component LLOS

m , the term LLOS
m should be calculated prior to estimate the

path loss of the NLOS component. The probability of the LOS link is denoted by PLOS
m and

given in (3).

PLOS
m =

1, if
√

d2
m − H2 ≤ d0

d0√
d2

m−H2
+ exp

{(
−
√

d2
m−H2

p1

)(
1− d0√

d2
m−H2

)}
, if

√
d2

m − H2 > d0
(3)

d0 = max
(
294.05 log10 H − 432.94, 18

)
(4)

p1 = 233.98 log10 H − 0.95 (5)

Furthermore, the probability of NLOS can be obtained naturally for the probability of LOS
as follows:
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PNLOS
m = 1−PLOS

m (6)

The channel gain between the UAV and any connected UE can be calculated as follows:

gm = PLOS
m

(
10LLOS

m /10
)−1

+ PNLOS
m

(
10LNLOS

m /10
)−1

(7)

where LLOS
m and LNLOS

m are the path loss for the LOS and NLOS, respectively, and can be
calculated from (1).

2.3. Data Transmission Model

For the sake of simplicity, we assumed that the UAV emergency wireless communi-
cation network can be established between the UAV and only one UE at any certain time.
Hence, there are no simultaneous wireless connections from different UEs to the UAV. The
effective radiation angle of the UAV antenna is denoted by ϕ, so the maximum distance
between the UAV and any UE that permits the establishment of a wireless communication
link is H/ cos(ϕ). Additionally, it can be observed that the relationship between the channel
gain gm in (7) and the distance dm in (2) is an inverse relationship. Therefore, our definition
of the effective radiation angle ϕ is used as a parameter to make sure that this distance is
suitable for establishing a wireless communication link. This can be done by evaluating the
signal-to-noise ratio (SNR) value for a covered UE. When it reaches a certain threshold that
permits the establishment of a wireless communication link, this covered UE can access
the UAV to offload its data. Additionally, the value of ϕ can be chosen to be very narrow
to shrink the UAV coverage. In such a way, the simultaneous transmission from different
UEs can be easily eliminated. Hence, a UE can be within the UAV coverage if and only if it
belongs to the following set:

Mcov = {m ∈ M : dm ≤ H/ cos(ϕ)} (8)

It is assumed that each UE in the post-disaster area has an amount of data equal to Ψ bits.
Then, a UE access indicator, denoted by αm, is used to show whether the m-UE is connected
to the UAV or not. This access indicator depends on two factors, i.e., the distance from
the UAV, dm, and the total uploaded bits from the m-UE to the UAV, Ωm. Thus, αm can be
expressed as follows:

αm(t) =

{
1, if m ∈ Mcov, Ωm(t) < Ψ
0, otherwise

(9)

where t ∈ T , T = {1, . . . , T} is the time elapsed while the UAV flies over the post-disaster
area. The total uploaded bits from the m-UE to the UAV can be calculated as:

Ωm(t) =
t

∑
i=1

ωm(i) (10)

where ωm is the instantaneous uploaded data size at time t and can be calculated as follows:

ωm(t) = Rm(t) τ (11)

where Rm is the transmission data rate from the m-UE to the UAV and can be calculated
according to Shannon’s theorem as follows:

Rm(t) = αm(t) B log2

(
1 +

gm PTx
m

σ0

)
(12)

where B is the available wireless channel bandwidth, PTx
m is the transmission power from

m-UE, and σ0 denotes the power of the additive white Gaussian noise (AWGN) at the UAV
receiver.
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2.4. Energy Model

From the perspective of the limited energy capacity, the consumed energy can be
classified as follows: (1) the energy consumed by each m-UE while it is idle and during
the data offloading period; (2) the energy consumed by the UAV while it is flying over the
post-disaster area to provide the wireless connectivity for the trapped UEs. Thus, at any
time t, these two consumed terms of energy can be denoted as follows:

em(t) =

{
αm(t) PTx

m τ, if m-UE at Tx mode
(1− αm(t)) eidle, if m-UE at idle mode

(13)

E(t) = Ξ t (14)

where eidle is the energy consumed by each of m-UE during the idle mode, and Ξ is the
UAV’s flying power. Of course, there are many factors that control the UAV’s energy
consumption, such as the flying speed, acceleration, and mass of the UAV. However, we
tried to simplify the notation of the energy consumption to be averaged per unit of time.
In such a way, we can study the ability of our proposed solution to handle this dynamic
energy consumption over time. Furthermore, the energy consumed by the UAV’s receiver
circuit and signal processing are relatively low compared to the energy consumed during
flying, so it can be neglected. To expand this research to more detailed power consumption,
the work presented in [3] is a straightforward extension, and it will be considered for our
future work.

2.5. Problem Formulation

The ultimate goal of the post-disaster surveillance system is to improve the rescue
success rate of victims and also to reduce casualties. This goal can be achieved by maxi-
mizing the data uploaded from the trapped victims in the post-disaster area over the UAV
trajectory. At the same time, we must take into account the valuable limited energy of both
UEs and the UAV. Mathematically speaking, our optimization problem can be expressed as
follows:

max
m∈M

1
T

T

∑
t=1

M

∑
m=1

ωm(t) (15)

s.t.
T

∑
t=1

em(t) ≤ e0, ∀m ∈ M (16)

T

∑
t=1

E(t) ≤ E0 (17)

The optimization problem shown in (15) is considered an online optimization problem
that aims to maximize the long-term throughput of the whole network by optimizing the
UAV’s flight trajectory. Since there is an unlimited number of routes that can be existed
by changing the order of how the UAV serves the UEs, our optimization problem is an
NP-hard problem. However, by considering energy constraints introduced in equations (16)
and (17), the optimization problem can be viewed as an NP-complete problem. The whole
optimization process is done not only in an online manner but also in a decentralized way
where there is no information exchange between different network elements. Furthermore,
for any conventional programming solvers, all information should be gathered at one
centralized entity to solve the optimization problem, which cannot be satisfied while
designing an emergency wireless communications network for a post-disaster surveillance
system. In such a case, we suggest using a reinforcement-learning-based algorithm to deal
with this kind of online optimization problem.

The decision variables can be defined as the accumulated instantaneous throughput
ωm(t) for all the M UEs throughout the UAV’s flight time T. The constraint (16) shows that
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the maximum energy available for each UE is limited by e0, and the other constraint (17)
limits the energy available for the UAV by E0; both are considered the feasibility constraints
of the optimization problem. Furthermore, the right-hand sides of constraints (16) and (17)
are also long-term cumulative variables related to the UAV flight trajectory. Hence, the
whole flight-trajectory process should be taken into account when solving the position of
the UAV at any time t. Therefore, this optimization problem becomes difficult to figure
out using conventional optimization methods. Additionally, sharing information on the
remaining battery capacity for every UE in the post-disaster area is quite a changeling,
especially when the commercial mobile network has malfunctioned. Therefore, for the sake
of simplicity and without loss of generalization, our optimization problem was designed
for the worst-case scenario for the available battery capacity for each UE. This value was
chosen to be around 10% of modern UE’s average total battery capacity [37]. In the next
section, we introduce an MAB-based framework to tackle this issue.

3. Dual-Energy-Aware MAB-Based UAV Trajectory Optimization Approach

In this section, we explain the general MAB framework and then illustrate how
the proposed dual-energy-aware MAB approach could address our previously described
optimization problem.

3.1. General MAB Framework

Generally speaking, in any MAB-based framework, a player aims to maximize his long-
term reward while playing with a set of arms of the bandit machine, j ∈ {1, . . . , J}. This
can be performed in a sequential way by selecting an arm at time t, i.e., j(t), and observing
their corresponding reward, i.e., rj(t). In the first few moments, the player tries to explore
candidate arms as much as possible and observes their corresponding rewards. After that,
the player exploits the arm with the highest reward, based on the gathered information
from the already explored arms, to maximize the cumulative reward over the episode.
This dilemma is quite well-known in the world of the MAB framework and is known
as the exploration–exploitation trade-off [15]. The MAB framework can be classified as
stochastic or adversarial based on the distribution of the rewards [14,15]. For the stochastic
MAB framework, the rewards behind each arm are drawn from independent and identical
distribution (i.i.d); however, for the adversarial MAB framework, rewards are selected
arbitrarily with no prior distribution. For these two types of MAB frameworks, extensive
research has been done to deal with these kinds of problems, resulting in the introduction
of different algorithms, such as the ε-greedy algorithm [38], the upper confidence bound
(UCB) algorithm [39], the Thompson sampling (TS) algorithm [40], and the exponential-
weight algorithm for exploration and exploitation (EXP3) [41]. Furthermore, in real-world
optimization problems, choosing an arm with a higher reward will have a high cost as well.
Thus, cost-effective and budget-constrained MAB algorithms are introduced to deal with
these kinds of scenarios [42,43].

3.2. The DEA-MAB Approach

To address the online optimization problem with the dynamic energy consumption
over time that is given in (15), and which constrained by conditions (16) and (17), an
MAB-based framework that is dual-energy-aware called DEA-MAB is proposed. Our DEA-
MAB approach is inspired by the cost-subsidized explore-then-commit algorithm proposed
in [43], where the chosen arm is accompanied by a certain cost. One of the traditional ways
to optimize this reward/cost is to directly deduct the cost from the reward in the control
formula. However, this is not usually meaningful in real-world problems, especially when
the reward and the cost are defined in different quantities [43], such as the achievable
throughput and the energy consumed, as illustrated in our problem formulation. Hence,
it is necessary to find a better way to optimize for both the reward and the cost. In other
words, the algorithm should avoid incurring an excessive cost for just a marginal increase
in the reward. This may be done by building a feasible set of arms which is an estimate of
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all arms with a mean reward greater than the least tolerable value in each round, based on
the upper confidence bound (UCB) and lower confidence bound (LCB) of the reward of
each arm. Then, the arm with the lowest cost in this feasible set is selected to be played by
it.

Though the cost-subsidized explore-then-commit algorithm is considered a good
solution for separating the reward and the cost functions, it still needs some adaptation to
tackle our optimization problem that is given in (15). Precisely speaking, our optimization
problem considers two different energy costs, so the DEA-MAB algorithm adds a further
step for checking the second cost. Thus, some controlling functions were added in the
proposed algorithm to precisely address this issue.

Algorithm 1 summarizes how the DEA-MAB algorithm works. The DEA-MAB al-
gorithm’s input attributes are the state spaces of all available M UEs, including their
corresponding locations lm ∀ m ∈ M; the total flight time T; tuning parameters δ and ε; the
available energy for each piece of UE e0; and the total flight time of the UAV till its battery
is completely depleted, T. At each time period t of the total flight time T, the UAV should
select one of M UEs distributed in the post-disaster area via the DEA-MAB algorithm; then
it will fly towards it to offload its data. In the beginning, the algorithm is initialized at t = 0
by setting the number of times each m-UE is selected, Qm(t), and their average achievable
throughput, ωm(t), to 0. The DEA-MAB algorithm is divided into two phases, i.e., the
pure exploration phase and the selection phase. During the exploration phase, the UAV
randomly selects a UE to visit as follows:

m∗(t) = t mod M (18)

Then, the corresponding throughput ωm∗(t) is observed, and the selection number, Qm(t),
and the average throughput, ωm(t), are updated as in the following equations:

Qm∗(t) = Qm∗(t− 1) + 1 (19)

ωm∗(t) =
1

Qm∗(t)

Qm∗ (t)

∑
i=1

ωm(i) (20)

The exploration phase is performed for a time period equal to M π, where π = (T/M)2/3

is as given in [43]. After that, the DEA-MAB algorithm goes for the selection phase during
each time t ∈ [Mπ + 1, T], where both the UCB and LCB are calculated as follows:

γUCB
m (t) = ωm(t) +

√
2 ln(t)/Qm(t), ∀ m ∈ M (21)

γLCB
m (t) = ωm(t)−

√
2 ln(t)/Qm(t), ∀ m ∈ M (22)

Then, the UE index corresponding to the maximum value of the γLCB
m (t) is calculated as

follows:

ηt = arg max
m

γLCB
m (t) (23)

Afterwards, the feasibility region of all UEs having γUCB
m (t) ≥ (1− δ)γLCB

ηt (t) is enumerated
as follows:

F(t) =
{

m : γUCB
m (t) ≥ (1− δ)γLCB

ηt (t)
}

(24)
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Algorithm 1: The proposed algorithm: DEA-MAB.

Output: m∗(t)
Input:M, lm ∀ m ∈ M, T, δ, ε, e0, ν, Ξ, E0
Initialization: at t = 0, Set Qm(0) = 0, ωm(0) = 0, ∀m ∈ M
Exploration Phase:
Explore available UEs and calculated the corresponding throughput
for t = 1 to Mπ do

1 m∗(t) = t mod M
2 Fly towards a UE m∗(t) and obtain ωm∗(t)
3 Qm∗(t) = Qm∗(t− 1) + 1

4 ωm∗(t) = 1
Qm∗ (t)

∑
Qm∗ (t)
i=1 ωm(i)

end for
Selection Phase:
for t = Mπ + 1 to T do

1 γUCB
m (t)← ωm(t) +

√
2 ln(t)/Qm(t), ∀ m ∈ M

2 γLCB
m (t)← ωm(t)−

√
2 ln(t)/Qm(t), ∀ m ∈ M

3 ηt = arg max
m

γLCB
m (t)

4 F(t) =
{

m : γUCB
m (t) ≥ (1− δ)γLCB

ηt (t)
}

5 Obtain em ∀ m ∈ F(t)
if ∑t

i=1 em(i) ≥ (1− ε)e0 then

6 C(t) =
{

m : ∑t
i=1 em(i) ≥ (1− ε)e0

}
else

7 C(t) = F(t)
end if

8 m∗(t) = arg min
m∈C(t)

E(t)

9 The UAV fly towards UE m∗(t) and obtain ωm∗(t)
10 Qm∗(t) = Qm∗(t− 1) + 1

11 ωm∗(t) = 1
Qm∗ (t)

∑
Qm∗ (t)
i=1 ωm(i)

if E0 −∑t
i=0 E(i) < 2 Ξ

√
‖lm∗ − l0‖2 ν−1 then

12 Break the data offloading loop and the UAV returns to its base
end if

end for

For this set of UEs, F(t), the dissipated energy for each of the m-UE contained in this
F(t) list is obtained. Then, a control set, C(t), is constructed out of all UEs in F(t). A check
is performed for the UEs’ energy consumption; then priority is given to all UEs in the F(t)
list in case they exceed their energy consumption with a value of 1− ε of the total available
energy e0. Otherwise, C(t) is set to be equal to F(t). This can be illustrated as follows:

C(t) =

{
m : ∑t

i=1 em(i) ≥ (1− ε)e0, ∑t
i=1 em(i) ≥ (1− ε)e0

F(t), otherwise
(25)

Out of this list, C(t), the UE corresponding to the minimum UAV energy cost, E(T), is
selected as a next-served UE for data offloading in the UAV flight trajectory as follows:

m∗(t) = arg min
m∈C(t)

E(t) (26)

Afterwards, values of the selection number, Qm(t), and the average throughput, ωm∗(t),
are updated for the selected UE, m∗(t), as given in Algorithm 1. Since the UAV should
accomplish the whole data offloading task and ensure flying back to its base before the
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battery is used up, the UAV should confirm that there is enough remaining battery energy
for returning. Otherwise, the UAV could be lost or damaged if it cannot arrive at its base
before the battery becomes empty. Therefore, a checking step is provided to confirm this
critical condition at each time before deciding to choose the next UE to be served. In this
way, the DEA-MAB algorithm can optimize the UAV’s flight trajectory considering limited
energy of both the UAV and the UEs.

3.3. Complexity Analysis of The Proposed Approach

In the previous section, the task of the UAV finding the best trajectory in the post-
disaster area is spotlighted. This is accomplished by finding the optimal policy to choose
the next UE to be served through the learning process in Algorithm 1. In the beginning, the
uplink throughput that can be achieved while the UAV connects to this UE is examined.
Then, a higher priority is given to UEs whose batteries are nearly depleted. The consumed
energy during UAV flying is also minimized. Moreover, it is assumed that the action space
is deterministic; i.e., all actions are well-known to the UAV. Hence, the fundamental source
of the computational complexity of the DEA-MAB algorithm comes from calculating both
the UCB and the LCB. Then, other parameters are updated according to this selection.
It should be mentioned that these parameters have the same computational complexity
order as UCB or LCB. Hence, the overall computational complexity order of our proposed
algorithm is a polynomial of M + 1, and can be expressed as O(M + 1) [43].

4. Simulation Results

In this section, the performance of the DEA-MAB algorithm is evaluated. In the
simulation, it was assumed that the UAV will provide wireless connectivity for a previously
allocated area where there are M trapped UEs which are randomly distributed. However,
for a large post-disaster area, more than one UAV can be deployed to support the data
offloading while considering the coordination between UAVs to facilitate rescue operations.
This larger system is left for future work.

Table 1 shows the simulation parameters used in verifying our proposed algorithm. In
order to investigate the effectiveness of our proposed framework, two trajectory optimiza-
tion methods were used as benchmarks for the sake of comparison. These two methods
can be described as follows:

1. The post-disaster area spiral scanning (PASS) method: This method is designed to
scan the whole area using the spiral path where the UAV starts to fly from the center of
the post-disaster area. With respect to the UAV antenna’s radiation angle, a projected
circle is created on the ground. This circle scans the whole post-disaster area from the
center to the borders.

2. Shortest flight path (SFP) method: In this method, the UAV starts to fly from the center
of the post-disaster area and then selects the UE with the shortest path. Then, the
UAV flies toward this UE and hovers above it to offload its data. After that, the UAV
searches for the next close UE and flies toward it. This operation is performed till the
last UE.

In the following, the performance of the proposed framework is evaluated by compar-
ing it with benchmark algorithms during the varying of both the number of trapped UEs in
the post-disaster area and the UAV’s battery capacity. For the sake of accuracy, and due to
the randomness in UEs’ distributions, all simulations were performed for a long enough
time, i.e, 104 iterations. The average value of each case is provided for a better estimation
of the result.

Figure 2 shows a sample of the UAV’s flight trajectory in the post-disaster area. To
visualize how our DEA-MAB algorithm could optimize the UAV’s flight trajectory consid-
ering its available battery power, three different values were used, i.e., E0 = 20, 30, 40 Wh,
while keeping the number of UEs equal to 40. Obviously, increasing available UAV battery
power increases the chance of serving more UEs in the post-disaster area.
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Table 1. Simulation parameters.

Parameter Value

Simulation area 500 m × 500 m

Number of UEs in the simulation area (M) 20, 30, 40, 50

UAV flight speed (ν) 20 km/h

UAV flight altitude (H) 100 m

UAV antenna radiation angle (ϕ) π/8 rad

Carrier frequency ( f ) 2.4 GHz

Channel bandwidth (B) 10 MHz

Data transmission duration (τ) 1 s

UE Transmission power (PTx
m ) 23 dBm

AWGN spectral density (σ0) −130 dBm/Hz

UAV battery capacity (E0) 20, 30, 40 Wh

UAV flying power (Ξ) 120 W

UE battery capacity (e0) 1 Wh

UE energy dissipation in idle mode (eidle) 0.01 J

Data rate feasibility region factor (δ) 0.6

Critical power feasibility region factor (ε) 0.5
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(c) E0 = 40 Wh

Figure 2. A sample of the UAV flight trajectory using the DEA-MAB algorithm.

Figure 3 gives the long-term throughput for the data uploaded from UEs in the
emergency wireless communication network. It is clearly visible that regardless of the
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value of the UAV’s battery capacity or the algorithm used, as the number of UEs trapped in
the post-disaster area increases, the uplink data throughput increases as well. Nevertheless,
this upward trend gradually decreases, and all curves would saturate at a certain number
of UEs. This is because the maximum capacity of a communication system with a fixed
bandwidth is fixed. Hence, while the number of UEs increases, the accumulated uplink
throughput of the emergency wireless network continues to approach this maximum
capacity. When comparing the throughput performance of the DEA-MAB algorithm with
other benchmark methods at various values of UAV battery capacity, it is clear that our
proposed algorithm can achieve more uplink throughput than the PASS method, and much
higher than the SFP method. For example, when (E0 = 20 Wh, M = 30), (E0 = 30 Wh,
M = 40), and (E0 = 40 Wh, M = 50), the DEA-MAB algorithm achieved higher throughput
performance by 26%, 28%, and 24% compared to the PASS method, and high performance
by 113%, 188%, and 184% than the SFP method, respectively.

(a) E0 = 20 Wh (b) E0 = 30 Wh

(c) E0 = 40 Wh

Figure 3. The DEA-MAB algorithm’s throughput versus the number of users.

In Figure 4, the normalized total energy consumption of all UEs trapped in the post-
disaster area is compared among the three methods. It can be seen clearly that regardless of
the used method, as the number of UEs increases, the total normalized energy consumption
of UEs increases as well. Furthermore, for the same method with a certain number of
UEs, the higher the UAV’s battery capacity, the more energy consumed per UE. This
can be justified, as when the UAV has a higher battery capacity, it can have a higher
chance to offload data from a larger number of UEs before its battery becomes depleted.
Additionally, since PTx

m τ >> eidle, more UEs tend to consume energy in the data-offloading
process rather than just staying in idle mode. When comparing the normalized energy
consumption performance of the DEA-MAB algorithm with other benchmark methods at
the same values of UAV battery capacity, it can be shown that the DEA-MAB algorithm
always has higher energy consumption than the PASS method, and much higher than the
SFP method. This can be explained by the overall system throughput being increased at the
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cost of more energy consumption by the UEs. For the sake of comparison, let us observe the
same points at (E0 = 20 Wh, M = 30), (E0 = 30 Wh, M = 40), and (E0 = 40 Wh, M = 50):
the total energy consumption of all UEs using the DEA-MAB algorithm was increased by
11%, 24%, and 23% compared to the PASS method, and by 73%, 109%, and 169% compared
to the SFP method.
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(c) E0 = 40 Wh

Figure 4. Normalized total energy consumption versus the number of users.

As observed from the analysis of results in Figures 3 and 4, it can be concluded that
the DEA-MAB algorithm can achieve a considerable increase in the uplink throughput
of UEs with a reasonable increase in the UEs energy consumption. Hence, for a better
understanding of the advantages of using the DEA-MAB algorithm, the UEs’ energy
efficiency (µ) is compared using our proposed algorithm against benchmark methods. µ
can be defined as the ratio of the long-term UEs uplink throughput over the total UEs
energy consumption in bit/Joule as follows:

µ =
∑T

t=1 ∑M
m=1 ωm(t)

∑T
t=1 ∑M

m=1 em(t)
(27)

In the energy efficiency performance shown in Figure 5, it is observed clearly that whatever
the UAV’s battery capacity or the number of UEs trapped in the post-disaster area, the
DEA-MAB algorithm can surpass benchmark methods in terms of energy efficiency, which,
of course, means enhancing the overall performance of the emergency wireless communica-
tion network. It should be mentioned that, when increasing the UAV’s battery capacity to
40 Wh, as in Figure 5c, the PASS method achieved a performance that is very close to that of
the DEA-MAB algorithm. This can be justified, as the UAV’s battery at this point becomes
quite enough to accomplish the spiral scanning for a major part of the post-disaster area.



Sensors 2023, 23, 1402 16 of 19

(a) E0 = 20 Wh (b) E0 = 30 Wh

(c) E0 = 40 Wh

Figure 5. UEs’ energy efficiency versus the number of users.

5. Conclusions

In this paper, the trajectory optimization for a UAV-assisted emergency wireless
communication network was investigated. The UAV is deployed as a temporary BS to
provide wireless connectivity from the sky for trapped UEs in a post-disaster area where
all BSs are damaged or have malfunctioned due to a natural disaster. The UAV’s target
is to optimize its flying trajectory to maximize the long-term uplink throughput from
UEs. However, due to the malfunctioning of the power supplies in the disaster area as
well, this optimization problem is performed with limited battery capacity of not only
the UAV but also UEs in the post-disaster area. We proposed an MAB-based algorithm
constrained with these two energy limitations to address this optimization problem. The
proposed algorithm can solve the trajectory optimization problem with respect to this
dynamic energy consumption over time. Simulation results showed that our algorithm
outperforms benchmark methods in terms of long-term uplink throughput and energy
efficiency. Furthermore, it could increase the energy consumption of the UEs during the
data offloading process, which reflects success in maximizing the UEs served in a post-
disaster area and accomplishing the task of information collection in the post-disaster area.
A straightforward extension could be to expand the simulation area to be served with
more than one UAV. In such a case, each UAV would have to develop a strategy to not
only maximize the objective function but also to avoid collisions with other UAVs. One of
these strategies would be to keep a certain operating distance between each pair of UAVs.
This distance could be designed using optical sensors attached to the UAV to recognize
the surrounding UAVs, or by detecting a low-power beacon signal transmitted from each
operating UAV. A detailed system design was kept for our future work. Additionally, for a
more realistic scenario, UEs might be considered as moving objects, and the UAV should
consider an accurate methodology for estimating the location of each UE that should be
served.
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The following abbreviations are used in this manuscript:

BS Base station
UAV Unmanned aerial vehicle
ML Machine learning
RL Reinforcement learning
MAB Multi-armed bandit
DPG Deterministic policy gradient
MDP Markov decision process
CRN Cognitive radio network
UCB Upper confidence bound
TS Thompson sampling
RIS Re-configurable intelligent surface
SUTOA state-action-reward-state-action based UAV-trajectory optimization algorithm
QUTOA Q-learning based UAV-trajectory optimization algorithm
UE User equipment
GPS Global positioning system
3GPP 3rd generation partnership project
LOS Line-of-sight
NLOS Non-line-of-sight
SNR Signal-to-noise ratio
AWGN Additive white Gaussian noise
EXP3 The exponential-weight algorithm for exploration and exploitation
LCB Lower confidence bound
DEA Dual-energy aware
PASS Post-disaster area spiral scanning
SFP Shortest flight path
PoI Points of interest
MILP Mixed Integer Linear Programming
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