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Abstract: COVID-19 is highly contagious and spreads rapidly; it can be transmitted through coughing
or contact with virus-contaminated hands, surfaces, or objects. The virus spreads faster indoors
and in crowded places; therefore, there is a huge demand for contact tracing applications in indoor
environments, such as hospitals and offices, in order to measure personnel proximity while placing as
little load on them as possible. Contact tracing is a vital step in controlling and restricting pandemic
spread; however, traditional contact tracing is time-consuming, exhausting, and ineffective. As a
result, more research and application of smart digital contact tracing is necessary. As the Internet of
Things (IoT) and wearable sensor device studies have grown in popularity, this work has been based
on the practicality and successful implementation of Bluetooth low energy (BLE) and radio frequency
identification (RFID) IoT based wireless systems for achieving contact tracing. Our study presents
autonomous, low-cost, long-battery-life wireless sensing systems for contact tracing applications in
hospital/office environments; these systems are developed with off-the-shelf components and do not
rely on end user participation in order to prevent any inconvenience. Performance evaluation of the
two implemented systems is carried out under various real practical settings and scenarios; these
two implemented centralised IoT contact tracing devices were tested and compared demonstrating
their efficiency results.

Keywords: COVID-19 pandemic; contact tracing; hospital/office settings; BLE; RFID; indoor infection
spread; human–human proximity; IoT; wireless sensing systems

1. Introduction

Starting in 2020, the world has been witnessing the COVID-19 pandemic that has
affected people’s economic [1], physical [2], psychological [3], mental [4], and social [5]
life aspects [6]. Many countries have taken rigorous measures: cities began locking down,
international travelling was completely banned, and there was an urgent direction and
tendency to contain the virus using currently available technologies. One efficient method
of containing the virus is through contact tracing [7], which is—as defined by the World
Health Organization (WHO)—the procedure for identifying and monitoring people who
have been exposed to an infected case [8] so they can isolate and further reduce the spread.

Contact tracing has been effectively adopted to contain historical outbreaks of Ebola,
human immunodeficiency virus (HIV), and measles [9]. However, at that time, the tradi-
tional contact tracing was done manually, which was extremely time-consuming, labour
intensive, inefficient, highly prone to errors, and not scalable [10]. In response to that,
digital contact tracing, a more autonomous method, was deployed during the early stages
of the COVID-19 pandemic [11]. Many countries, such as Singapore [12], Australia [13],
China [14], and India [15], adopted a range of new contact tracing technologies [10], such
as Wi-Fi [16], Bluetooth [17], cell tower triangulation [18], Global Positioning System
(GPS) [19], QR codes [20], Zigbee [21], RFID [9], along with IoT [22].
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IoT is an emerging concept that allows smart communication between multiple elec-
tronic devices and sensors through the Internet without requiring human interaction [23].
Common IoT applications are for smart homes [24], smart farming [25], smart transport [26],
smart cities [27], and smart security [28]. The architecture of IoT consists generally of four
main layers [29,30]. The first is the perception layer for dealing with all the electronic
devices and sensors. The next is the transport layer, which allows physical devices to com-
municate with the network in various ways, such as using the TCP/IP stack, via gateways
or wirelessly through Wi-Fi/3G/4G. The third layer is the processing layer for processing
the incoming data. The final layer is the application layer that helps visualize the processed
data to help answer business questions.

Using IoT in contact tracing can enhance its scalability and automation and can
handle the ever-increasing number of contact tracing tasks [31]. Generally, there are two
common contact tracing architectures: centralized and decentralized [32]. In a centralized
architecture, users share their anonymous assigned IDs with a central server where contact
tracing and risk analysis are done. In decentralized architecture, however, the users
download the database from the server and perform the risk analysis on their devices [33].

RFID and BLE are among the most common wireless sensing technologies used in
contact tracing. Developments in RFID chip production are making it viable for new
applications and contexts [34]. Usually, an RFID system consists of a tag, a reader, and
middleware. Based on the operating frequency (low frequency, high frequency, ultra-high
frequency, microwave, or ultra-wide band), the system’s performance, operating range,
and power requirements will differ [35]. Despite the advancements of RFID technology,
some technical issues still appear due to environmental factors; for example, noise may
interfere with the reader, causing it to miss some tags, which negatively affects the read
rate (It represents the number of tags that can be scanned in a specific amount of time
whether it is the same tag or multiple tags.) [34]. In addition, the prices for RFID systems
remain relatively expensive compared to other available technologies [34]. Regarding the
healthcare industry, the adoption of RFID technology is relatively recent compared to other
fields such as education (libraries), retail, supply chain production, and logistics [36].

Bluetooth has also been used by many countries designing automated contact trac-
ing [37]. Bluetooth low energy (BLE) is a low power standard introduced to the Bluetooth
4.0 standard in 2009 that uses the unlicensed 2.4 GHz band for communication [10]. BLE
only sends short messages either as broadcasting advertisements or data packets between
the transmitter and receiver. These packets are sent on three advertising channels (37, 38,
39) in order to not interfere with standard Wi-Fi channels, which makes it suitable for
indoor environments [38]. Technically, the device transmits broadcast packets to these
three channels throughout each of its advertisement spans. The scanning mode is used
by recipients to listen for such advertisement packets. During each scanning window,
they record communications, either actively or passively. The former allows the scanning
gadget to request further information from the advertiser. In contrast, gadgets in passive
mode do not communicate with one another; instead, they only collect information from
broadcast messages. A common method for performing localization with BLE beacons is
to use the receiver signal strength indicator (RSSI) to measure the distance between the
receiver and transmitter with a propagation model [9]. This method can also be done with
multiple beacons to perform triangulation obtaining a relative location as well as used
for room level localization [39,40]. Another typical solution is to take advantage of the
smartphone Bluetooth radio, which is a ubiquitous feature, by having the population install
an application on their smart phones. These applications will then periodically send out
BLE advertisements that contain some information about the user,. When another phone
detects the packet, it will determine the distance from the first device using the RSSI. After
this exchange, the close contacts get notified depending on the applications architecture
as previously noted [9]. Examples of some countries and their apps are Brazil (SUS) [41],
Vietnam (Blue zone), Singapore (TraceTogether), South Korea (Corona 100 m), Australia
(COVIDSafe), India (Aarogya Setu), and USA (Safe Paths) [42]. However, many researchers
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have pointed out for the impracticability for hospital and offices staff to continuously carry
their mobile devices and, more importantly, these devices could be potential carriers for
infection within indoor environments [43,44].

The success of any system must follow three critical success factors levels as defined
in [45]. The first is the strategic level, which involves developing a clear strategy; the second
is the tactical/management level, which includes integrating the system infrastructure and
proper staff usage. Finally, there is the operational level, which addresses avoiding major
process changes, integrating the data collected, and using cost-effectiveness components.

This research presents autonomous, low-cost, long-battery-life IoT solutions for contact
tracing that follow the three success factors levels. These solutions function without an end
user dependency in hospital/office setting environments to protect the staff from indoor
virus transmission. This is done by measuring the proximity between staff and tracking
their presence as well as duration in commonly used indoor areas. This was based on the
practicality and success of Bluetooth and RFID radio frequencies used in IoT devices for
localization. Through this study, two implemented proposed contact tracing devices are
described, compared, and tested, starting from concepts through final product examination.

The article is divided into seven sections. Section 2 reviews the related work for BLE
and RFID technologies in contact tracing. Section 3 thoroughly describes the BLE-based
system, Section 4 explains the RFID-base systems, and Section 5 displays the tests and
results. Finally, our work is discussed in Section 6 and concluded in Section 7.

2. Related Work

Regarding using RFID and Bluetooth in automated contact tracing for pandemic out-
break management, some trials were conducted employing each technology. For tracking
the severe acute respiratory syndrome (SARS) pandemic, Singapore deployed an RFID
system created by Singapore’s Department of Defence, Science, and Technology in col-
laboration with ST Engineering [46]. In Taiwan [47], the Industrial Technology Research
Institute built another system. These two systems shared numerous commonalities: both
systems were used in hospitals and employed active RFID tags that communicated with
readers through ultra high frequency (UHF) bands. The only difference between the two is
who was tagged: RFID tags were provided to all hospital employees, patients, and visitors
in Singapore; however, only medical personnel in Taiwan were issued RFID tags. These
systems showed major challenges, including integrating the data collected and the costs of
the installed systems. Another trial used ultra high frequency for accurate indoor localiza-
tion [48]. This system introduced a new concept of semi-passive RFID tags; it can sense the
location of this semi-passive tag using the backscatter signals from normal passive RFID
tags. The drawback of this system is its practicality; it needs a large number of fixed passive
tags to detect one semi-passive tag. A trial in proposed an IoT RFID based automated
tracing and tracking method, which used RFID tags and the near field communication
(NFC) protocol-based mobile application as a reader. This study asked people to install a
specific application on their smartphones and leave it open in the background, which made
the study dependent on human interaction. Another study [49] used the RFID together
with GPS in a wearable contact tracing wristband; however, many people raised privacy
concerns about using GPS in contact tracing.

On the other hand, many countries and trials used Bluetooth for contact tracing. Some
approaches for positioning and proximity detection (especially indoors) were
presented in [50–56]. These works use the RSSI to measure distance between receiver
and transmitter. One study [57] demonstrated that Bluetooth 2.0 can be utilised for locali-
sation with an inaccuracy of less than 45 cm. However, Bluetooth has the disadvantage
of being an active protocol that requires two parties to establish a connection before any
payload can be sent. Because of the extra complexity of the connection formation, this may
impede effective message exchange. Furthermore, because devices advertise themselves,
they alert potential attackers to the location of an engaged interface.
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In the same manner that distance measurements for conventional Bluetooth are used,
RSSI is used to determine the distance between transmitter and receiver in BLE. Various
signal propagation models could be utilised to achieve this goal (e.g., the exponential
or the polynomial model). BLE is more suitable than Bluetooth for co-location detection
and distance measurements due to its passive advertising/broadcasting and lower energy
consumption. As a result, BLE became widely employed as a contact tracing technology
as developed in [58–60]. However, these studies used people’s personal devices, such as
smartphones, smart watches, or fitness trackers, which are distinctively different in their
transmission power as well as their antennas gain/radiation patterns. RSSI readings must
be calibrated to the appropriate instruments. Moreover, some wearables were introduced
for the sake of contact tracing, such as Easy band [61] and Abeeway [62], which used BLE
and Wi-Fi. These wearables give optical, acoustical, or mechanical alerts to maintain social
distancing. These wearables have some limitations, such as limited accessibility and the
trade-off between user comfort and device complexity.

BLE has also some limitations, including that distance measurements can be inaccurate
due to multi-path and shadowing effects produced by signal reflection, walls, and objects
that obstruct wireless signal propagation. Furthermore, an advertisement packet’s payload
is limited to 31 bytes. Approaches that use passive scanning can save significant amounts
of energy as compared to systems that use active message exchanges. BLE, like Bluetooth,
contains vulnerabilities that allow attackers to exploit it when it is turned on. Moreover, this
method is bound to produce false-positives and false-negatives, which affect the system
performance and efficiency [42]. The authors in [63] were able to correctly detect 100% of
risky contacts in 15 min at a distance of 2 m while accepting a 30% false-positive rate.

In this study, we offer two fully constructed IoT wireless sensor systems for contact
tracing and monitoring infection spread. Most trials in literature sacrificed one aspect
over another, such as power consumption, cost, simplicity, performance, or design. We
claim that we solved the previously mentioned problems without sacrificing any aspects,
based on our results, design, and hardware. First, our systems do not rely on people’s
smart devices or wearables, which avoids concerns such as virus transmission carried by
these devices, privacy violations, impracticability, technical variations between devices,
and power consumption payload off individuals’ personal gadgets [61,62]. In addition, our
systems are completely independent from human interaction; no actions such as installing
applications, granting them permissions [9,41,42], code scanning [20], or tag taping [64]
are required; to improve simplicity and performance, our system will not be prone to
human errors. Furthermore, in the implementation of our RFID system, we give special
care to guarantee that the beacon is in the best location to minimize any partial gaps in
contact tracing that might result in missing personnel interaction, as noted in some former
studies [65–67]. Although some studies have shown that RFID tags are unable to directly
convey the extent of an exposure, we used the RSSI values in our system to overcome
this limitation. Moreover, unlike some RFID systems discussed in the literature [48], our
RFID system does not require large numbers of tags to identify the individuals; each
individual needs only one tag to be sensed, which reduces expenses and system complexity.
Additionally, our systems are cost effective as compared to some trials, such as the BLE
application COVIDSafe, which had predicted development and operational expenditures
of AUD 6.75 million through early 2021, with additional monthly maintenance costs of
around AUD 100,000 [13]. In contrast, our systems used low-cost and power efficient
off-the-shelf sensors. In relation to privacy preserving purposes, our system is able to
successfully track hospital/office staff inside the premises only where beacons/readers are
installed, as opposed to other systems using geo-localisation [68,69].

In the following sections, we describe the comprehensive system architecture of the
two proposed autonomous IoT contact tracing platforms, discussing briefly the hardware,
software, and web interfaces of each system.
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3. BLE Based Contact Tracing System

Because of the low cost presented by BLE indoor localization methods and the standard
availability of Wi-Fi in modern buildings, this study makes use of these two technologies
to detect close contacts and measure staff proximity for indoor environments. The compre-
hensive system architecture is shown in Figure 1. It consists of BLE beacons, BLE and Wi-fi
enabled tags, and a server. The beacons are low power devices that are used to periodically
broadcast specific identifying data to all listening devices. They are implemented in each
room of the office or the hospital to distinctively identify the room. The data transmitted
between the beacons and the tags are passively transmitted, with no need for connecting,
pairing, or bonding with the devices (i.e., no peer-to-peer connection needed). The tags
are responsible for listening to the beacons’ advertisements, recording the beacons’ RSSI
received values, as well as transmitting the data to the server over Wi-Fi upon connecting
to a Wi-Fi access point.

Figure 1. BLE based contact tracing system architecture overview.

The system calculates threshold RSSI values in advance using propagation models
(as will be further discussed in coming sections) to define different levels of proximity
to the beacons. Comparing the received RSSI value of this room’s beacon against the
predetermined RSSI threshold values, the server back-end decides whether a tag is within a
room (entry and exit detection). When a tag enters a room, the RSSI value increases above
the threshold. Close contacts can be determined when two tags enter the same room at the
same time interval.

3.1. Hardware

The system hardware consists of two main components: beacons and BLE/Wi-Fi
equipped tags as shown in Figure 2.

BLE Driver WiFi Driver

Figure 2. BLE contact tracing IoT system architecture overview.
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Beacons: The choice of the Bluetooth beacons controller was heavily driven by a
months-long battery management requirement. Several trials were made using ESP32-
C3 and the old original ESP32 microcontrollers, but upon testing they were found to be
nonviable due to continuous high current draw. A more power-efficient system on a
chip (SoC) was the nRF52810, which has a significantly lower current draw at both BLE
transmission powers of 0 dBm and +4 dBm of around 4.6 mA and 8 mA, respectively [70].
It is a cost-effective and high-performance Bluetooth 5.3, 2.4 GHz transceiver SoC. Its
microprocessor is 64 MHz, 32-bit Arm Cortex-M4, and it has a flash memory of 192 KB and
RAM memory of 24 KB. In addition, nRF52810 has both a low drop out linear regulator and
a high efficiency DC/DC switch mode regulator, which does not require other integrated
circuits (ICs) in the beacon design.

For the beacon antenna, a printed circuit board (PCB) design was chosen compared to
a chip antenna for lower cost. The antenna chosen is a meandered inverted F design, chosen
from a list of reference designs produced by Texas Instruments [71], for its popularity in
Bluetooth and other 2.4 GHz embedded devices. The final beacon design is shown in
Figure 3a.

(a) (b)
Figure 3. BLE contact tracing IoT system hardware: (a) the top side of the BLE beacon, (b) the BLE tag.

The microcontroller is fed by a CR2450 battery that has a 550 mAh capacity. The
estimated power usage was calculated using the manufacturers power profiling tools
‘’Online Power Profiler for BLE” [72]. It estimated a total average current of 14 µA (11.36 µA
for BLE events, 1 µA for LF clock calibration current, and 1.2 µA Idle current). Depending
on these figures, the battery capacity estimate is 1636 days.

Tags: The tag is quite important in this system, as it performs the majority of the work.
The ESP32 C3 single-core Wi-Fi and Bluetooth 5 microcontroller SoC was chosen over the
other versions (the single RISC-V core and the old Xtensa dual core design) due to the better
power efficiency. A rechargeable lithium-polymer (LiPo) battery of 1100 mAh was selected
to power the tag, as shown in Figure 3b. The charged battery time was measured to be 16 h
and 18 min, which is the time between the tag’s first transmitted RSSI measurement to the
database and the last one before it runs out of battery (more specifically when the battery
goes below 3.446 V, where an under-voltage protection circuit turned off the device).

The implemented hardware overview of the tag can be seen in Figure 4. The tag
contains a battery charging IC for charging the LiPo at 500 mA rate. A RP515x DC/DC
buck converter (regulator) is used, because the LiPo has a variable output voltage. The
regulator is capable of providing 300 mA needed by the ESP32, and it has an efficiency of
approximately 95% when voltage is between 3.6 and 4.2 Volts [73]. For protection from over
discharge, an analogue under-voltage protection circuit was designed and implemented.
This circuit used a Schmitt trigger to turn off the DC/DC buck converter once the voltage
drops below 3.4 V with a 100 mV hysteresis loop to deal with the battery voltage rising
when there is no longer under-load. A switch is placed between the protection circuit and
the buck converter to allow for manual turn off. The prices for beacon and tags materials
used for the BLE system are shown in Table 1.
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Figure 4. The BLE tag hardware circuit overview.

Table 1. BLE contact tracing system hardware components and their prices.

Product/Manufacturing Process Price (AUD)

PCB × 5 (beacon and tag paneled together) 26.13
BLE beacon components 11.79

WiFi tracing tag components 14.33
Solder stencil 9.51

Total 61.76

3.2. Software

As previously noted, the system consists of BLE beacons, tags, and a server. The
beacons periodically rather than constantly advertise their data in order to conserve power,
and the advertising interval was chosen to be 1000 ms [74]. Between the advertising
intervals, the device is in its light sleep state that only uses 1.5 µA. This also helps in
reducing the interference between other Bluetooth devices that would affect the RSSI
readings. The advertising data come in the form of packets including manufacturer data
bytes and a 32-bit unique identifier (UID) for beacons identification, as seen in Table 2.

Table 2. Detailed BLE beacon advertisement packet.

Flags Manufacturers Data 32-bit UID TX Power Device Name

The operational flowchart of the BLE wearable tag is shown in Figure 5. All tasks are
performed in a single loop that has a period of 10 s; although this loop could be faster to
improve the localization, the power consumption due to radio usage would have been
heightened, resulting in lower tag battery life. On startup, the tags attempt to connect to
an indoor Wi-Fi access point; this is pre-configured in the software to be either a Wi-Fi
Protected Access 2 (WPA 2) enterprise or WPA 2 personal. If the tag loses connection or
does not find a network, it will keep scanning for a known service set identifier (SSID). Then,
it listens for any advertising events for 2 s to avoid missing any of them due to interference.
The list of recorded beacons with their RSSIs are then packaged with a packet ID that
iterates with each packet in order to keep track of the beacons heard at approximately the
same times with different tags. This appended list is then transmitted to the server via
use of a series of HTTP post requests that contain the packet ID, beacon UIDs, and the
measured RSSIs. The tag then goes into a lite-power saving mode when the Wi-Fi radio is
not being used for transmission, which enhances the battery life.



Sensors 2023, 23, 1397 8 of 31

Has WiFi  
Connection?

Start BLE scan

Yes

 Has 2 seconds
elapsed?

Record 
advertisements

 to the list

Contact Database

Sleep for 7 seconds

Yes

No

No

Figure 5. Operation flowcharts for BLE wearable tag.

The received values of the beacons’ RSSI are used for contact tracing and human prox-
imity calculations. These values are dependent on the distance from tags and broadcasting
power value: the BLE broadcasting power value is around 2–4 dBm—and therefore, the
RSSI value will be around −26 (a few inches) to −100 (40–50 m distance). The distance d
between beacon and tag can be measured according to the following equation:

RSSIdBm = RSSIdo − 10 × n × log10(
d
do

), (1)

where n is the propagation constant or path-loss exponent, which is selected as 2.5 for a
standard office environment [34]; do = 1 m, and RSSIdo is the average measured received
RSSI at 1 m that was found to be −57 dBm [59]. This equation is used to find threshold
values for determining different distance ranges. Determining in what room a tag is located
through calculations is done with some assumptions, primarily that the beacons are placed
centrally within the room and that the walls of the room have a significant effect on the
RSSI reduction.

To test the validity of the threshold values obtained, two tests were conducted. The
first was outdoors with n (multi-path factor) being lowered to 1, and the second was
conducted indoors. The tests involved placing a tag and a beacon on stands at the same
height, then, for each distance interval of 1 m, an average of 150 samples of RSSI data were
recorded. These data are then plotted and compared to the expected calculated threshold
RSSI values. From Figure 6, it can be seen that there is a general decreasing trend for the
RSSI with increasing distance. In Figure 6a, distances were examined reaching 6 m, and a
large amount of error was observed due to outdoor interference and multipaths. Figure 6b
shows the results of the indoor environment with smaller distance tested, where the results
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came far closer to matching the predicted RSSI values. The mean indoor error for 1 m was
0.0076, for 2 m was 0.99, and for 3 m was 1.99 dB for filtered RSSI.

1m 2m 3m 4m 5m 6m

Distance

-82

-80

-78

-76

-74

-72

-70

-68

-66

-64

-62

R
S

S
I 
(d

b
)

1 meter

2 meter

3 meter

4 meter
5 meter
6 meter

raw RSSI
Kalman filter RSSI

(a)

1m 2m 3m

Distance

-84

-82

-80

-78

-76

-74

-72

-70

-68

-66

-64

R
S

S
I 
(d

b
)

1 meter

2 meter

3 meter

raw RSSI
Kalman filter RSSI

(b)
Figure 6. RSSI measured values at 1 m intervals against the predetermined threshold values vs,
distance in an (a) outdoor environment, (b) indoor environment.

As the RSSI values tend to fluctuate, at the server the received data from the tags are
filtered by a Kalman filter and stored upon upload. The Kalman filter is an iterative state
predictor that uses the history of noisy observations, and it has two stages: forecasting and
updating. First, the filter defines the current RSSI state xt as a combination of the former
state xt−1 and noise ε (the system process noise) [75–77]. Then, it defines the observation
model to get the observation measurement zt:

zt = xt + δt (2)

where δ is the measurement noise caused by faulty measurements.
The forecast step: This step describes the expectation of the state without using

any measurements.
µt = µt−1 (3)

Σt = Σt−1 + Rt (4)

The forecast is described by µ, the bar above the prediction indicates that it still needs
to integrate knowledge from the measurement in the update stage, and Σ determines the
certainty of our prediction; R defines system noise; we select a low value for process noise
(R = 0.01), believing that the majority of the noise is created by measurements. Using these
predictions, Kalman gain can be computed:

Kt = Σt(Σt + Qt)
−1 (5)

The gain is used to weight the certainty of our estimate versus the certainty of the
measurement (influenced by the measurement noise Q); Q is given a value that corresponds
to the noise in the measurements (the variance of the RSSI signal). The variance of the
signal strength in this study was determined by taking the variance of a sample set taken at
1 m from a beacon: it was found to be 1.0682. This translates directly to the update step:
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µt = µt + Kt(zt − µt) (6)

Σt = Σt − (KtΣt) (7)

In the update stage, the final prediction of the system (µ without the bar) and the
certainty Σ are calculated. To test the effectiveness of Kalman filter, it is compared against a
moving mean filter with a window size of 5. From Figure 7, the Kalman filter showed better
results than the moving average filter. At the 3 m measurements, the Kalman filter has
a standard deviation of 1.51, whereas the moving mean had a higher standard deviation
of 1.72. A limitation of the Kalman filter that can be seen in the 1 m to 2 m step is that its
response time is rather slow.

1m 2m 3m

Distance

-84

-82

-80

-78

-76

-74

-72

-70

-68

-66

R
S

S
I (

db
)

raw RSSI
Kalman filter RSSI
moving mean RSSI

Figure 7. Received signal strength indicator (RSSI) raw data compared to Kalman and moving
average filter RSSI.

The server in this study has three components: the web application front-end for
user interfaces and results monitoring, the back-end for data handling, and a MySQL
database for data storage. The front-end is built on Vue 3 to allow the web page to have
reactive elements, and the back-end uses a Python-based server called Flask to keep the
development time down for the data processing. The web interface (front-end) has three
main divisions, two tables (for room tracking and close contacts) and an input panel, as
shown in Figure 8. The input panel allows the user to look up a certain tag ID and specify a
time frame of interest. These data are then passed to the back-end to retrieve and format
the data, where they can be handed back to the front-end. One of the tables shows a list of
all the rooms that a tag has visited with time stamps of the entry and exit times, and the
other table lists all the other tags that have been in the same room at the same time as the
tag ID that is being searched.

To reduce the chance of the database being abused, the database has users set up with
permissions, which only give access to permitted individuals to use SELECT and INSERT
commands on the data stored.
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Figure 8. BLE system web interface displaying the information found on the database for tag 2 in the
displayed time range. This information includes the rooms enterance and exit times as well as the
close contacts that were in the same rooms at the same time.

4. RFID Based Contact Tracing System

This study investigates the use of high frequency (HF) and ultra high frequency RFID
systems (UHF) in a low-cost contact tracing application. The overall system overview can
be seen in Figure 9. It consists of an RFID reader, tags, and a gateway. It captures details
such as name and contact details from the tags; it also tracks the rooms the tags have been
in and gives indications of human-to-human proximity.

Figure 9. RFID based contact tracing system architecture overview.

The reader/beacon usually consists of a transmitter and a receiver, where the trans-
mitter broadcasts a signal searching for any tags within its range. Once an RFID tag has
received this signal from the reader, the tag back-scatters the received signal [78], sending
its own signal back to the reader. The reader will then capture the back-scattered signals
by its receiver, so it can locate the tag; following that, the transceiver transfers the data to
the gateway. The proposed system can be divided into two parts as seen in Figure 10. The
first part is responsible for contact tracing and is done by the RFID tags and the reader
along with the microcontroller unit, and the second part is the IoT part, including the
gateway that hosts the database and is connected to the web app. The transceiver is the
communication between the contact tracing and the IoT component of the project.
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Figure 10. RFID contact tracing IoT system overiew.

4.1. Hardware

The system hardware consists of beacons, tags, transceivers, and the gateway. Two
RFID beacons were implemented (one for each frequency band); however, the transceiver
modules and gateway were shared between the HF and UHF systems as the performance
for these two components does not differ between the systems. Beacons:

• HF RFID: The microcontroller chosen for the HF RFID system was the ATmega328P
Arduino Uno board; it was chosen over other microcontrollers, such as ARM cortex-
M7, due to its wide availability, relatively cheap price, and available open-sourced
libraries [79]. The HF RFID reader used was the RC522 RFID reader, as it is relatively
cheap, it has a MFRC522 chip onboard for the reading/writing work, and it also comes
with an inbuilt antenna that operates at 13.56 MHz. Its operating voltage is 3.3 V and
it consumes 30 mA. The communication between the RC522 and the Arduino board is
done via full duplex serial peripheral interface (SPI) communication protocol, as both
the master (Arduino) and slave (RC522) transmit data simultaneously [79].

• UHF RFID: The microcontroller used was the ATmega2560 Arduino Mega board,
it regulates the input voltage down to 5 V using LMV358LIST STMicroelectronics
Operational Amplifiers and SPX1117M3-L-5-0/TR – Linear Voltage Regulator IC. The
Z6334 DC/DC buck converter with output 5 V and S9V11F3S5 (3.3 V–1.5 A) step
down voltage regulator were used with the design. The M6E Nano RFID reader was
picked to be the UHF RFID reader for its good price to performance ratio; it operates
at frequencies ranging from 859 to 920 MHz and at minimum output power of 5 dBm
and a maximum of 27 dBm. For this study, the 920 MHz frequency and 20 dBm output
power were used. Although the M6E nano reader comes with an inbuilt antenna, the
performance was not up to standards, and the reading distance was only up to 30 cm.
For this reason, an external antenna was used instead, operating at a similar frequency
range as the reader and at a maximum power of 100 W with a gain of 6 dBi. The M6E
nano reader consumes 0.84 W in operating mode, 15 mW in sleep mode, and 0.25 mW
in shutdown mode. It is rated to read up to 200 RFID tags per second and at a reading
range of 4.5 m.

Tags: RFID tags are typically made up of an antenna and a microchip; the microchip
provides the tag with computation and storage [34]. There are two main categories of RFID
tags: passive and active. Passive tags do not have any self-energy source [38], however,
when the tag comes within the range of a transmitted reader signal, its antenna is activated,
creating a magnetic field and thus powering the microchip for transmitting back the tag’s
unique data (a unique 32/64 bit code) to the reader. This tag has a long lifetime, but shorter
reading distance. Conversely, an active RFID tag transmits its own signal to a RFID reader
and requires an inbuilt battery source. These active tags have larger reading distance, but
significantly higher cost. The read range of an active tag can go as far as 30 m compared to
the maximum of only 6 m for a passive tag [80,81]. The RFID tags used in this study are
passive due to price consideration and are shown in Figure 11a.
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(a) (b)
Figure 11. Hardware of ultra-high frequency system (a) RFID tags, (b) RFID system put together.

• HF RFID system: The RFID tag contains 1024 bits of memory and operates at the same
13.56 MHz frequency as the reader.

• UHF RFID system: The tags are adhesive based on the Electronic Product Code global
(EPCglobal) Gen2 standards containing 800 bits of memory.

Transceiver: The transceiver module used in this study is the RFM69HCW. Its radio
module operates in the unlicensed ISM (industry, science and medicine) band, in either
433 MHz (used in this study for better system power consumption) or 868/915 MHz.
The operating voltage ranges from 3.3 V to 5 V and draws current up to 150 mA. The
RFM69HCW module does not come with an inbuilt antenna, so instead an external 2.4 GHz
dipole swivel antenna was soldered to the transceiver module, operating at a gain of 2 dBi.
Figure 11b shows the UHF beacon and transceiver connected together. The RFM69HCW
transceiver then uses an SPI to communicate with a host microcontroller (the Arduino
ATmega328P on the transmitter side and the Arduino mini on the receiver side). It features
advanced encryption standard (AES) encryption to keep data private from the readers to
the gateway.

Gateway: The gateway is built using Raspberry Pi 4 and the RFM69HCW transceiver
module for receiving information from the MCU/RFID reader. They are connected via
UART serial communication as shown in Figure 11b. The prices for the hardware materials
used for the HF and UHF RFID systems are shown in Table 3.

Table 3. RFID contact tracing system hardware components and their prices.

System Product Price (AUD)

High Frequency Arduino Uno Microcontroller 13
RC522 RFID Reader 15.95
Extra RFID tag/card 5.70

Transceiver 37.22
Total 71.87

Ultra High Frequency ATmega2560 Arduino mega 40
M6E Nano simultaneous RFID

Reader 350.90

RFID Tags (set of 5) 3.30
UHF RFID Antenna (TNC) 65.50
Interface Cable RP-SMA to

U.FL 8.10

Transceiver 37.22
Total 505.02

4.2. Software

Because the RFID tags hold at most 1024 bits of memory, they would not have enough
memory to hold all the relevant information needed. Therefore, first the web interface
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registers the unique RFID tags ID through manual registration, as shown in Figure 12. It
connects these tags to the users along with some contact details, storing them in a separate
database called registerUsers. The RFID tags instead store only their unique ID. The room
number, on the other hand, was pre-programmed on the MCU, as it is assumed there is
always an MCU/Reader pair in each room.

Figure 12. RFID system registration web interface.

Figure 13 shows the operation flowcharts for The RFID system. The readers are con-
tinuously scanning for tags; whenever a tag is identified, the MCU retrieves the data from
the tags, measures the RSSI value of the back-scattered signals, concatenates it with the pre-
programmed room name, and activates the transceiver to transmit these data to the gateway.
Finally, the gateway extracts the relevant information from the received message, looks up
the tag based on the unique RFID ID in its private registerUsers database, and starts inputting
a detected user into the detectedUser database, which has the following information:

• Contact details:

– First and last name
– Email
– Phone number

• The room the user has entered
• The entry and exit time of users of a particular room
• RSSI

The entry and exit tag detection process was tested by three different algorithms.
Algorithm 1 is an RSSI gradient-based method: a positive gradient of the RSSI values
was expected when entering (as the tag approaches the beacon), and a negative gradi-
ent was expected when leaving a room. However, it was found that the multi-path and
interference distorted the RSSI values and the gradient was incorrectly recognized. There-
fore, Algorithm 2 was implemented instead; the gateway handles current entry and exit
detection, as shown in Figure 13.
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Figure 13. RFID algorithm 2 software overview.

Once the data are received at the gateway, tag detection is dependent on the tags’ past
history; the gateway checks the database to see whether there is any history between the
associated tag and room. If there is a history, the gateway alters the state of the tag (if the
last state was entry then its new state is exit, and vice versa). Once a decision is made, the
database is updated with the entry/exit time.

Close contact is determined when two tags are detected for entry at the same time
interval in the same room. The system first captures their RSSI entry values and compares
these values. If their difference is less than or equal to 3.5 (based on practical tests of
tags that were 1 m apart), the system deduces that the two tags are in close proximity.
Algorithm 3 uses two beacons in the same room; it was used to overcome some flaws in
Algorithm 2 that will be thoroughly explained in Section 5. In this study, a web interface
front-end was developed using the MEAN stack (MongoDB ExpressJS Angular Nodejs) for
easy integration with the main database that uses MongoDB and is hosted on the Raspberry
Pi. The web interface front-end has two main features. The first is a user interface to allow
registration for users’ details with their associated RFID unique ID as aforementioned. The
second main feature a display of the detectedUser database in a more user-friendly table. An
example of the display table is shown in Figure 14.

One potential limitation in this study is the security of the system; data encryption in
the database and the addition of server level and database level permissions are among the
proposed future system enhancements.
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Figure 14. RFID system web interface displaying detected user after a tag was found.

Optimal Reader Placement: One important parameter for the RFID system was the
optimal reader placement for enhancing the scanning area, as the system depends on the
LoS communication. There were two positions tested: on the side of the entrance and
in front of the entrance. Each test scenario was run five times. The results, shown in
Table 4, demonstrate that when the antenna is put in front of the door, the reading region
is significantly wider than when it is placed to the side. The green highlighted table cells
mean successful attempts, and red highlighted table cells mean unsuccessful attempts. In
front of the entrance, the system had a 100% success read rate for both entering and exiting;
however, when the antenna was placed on the side of the entrance, it had a 100% entry
detection success but only a 40% exit detection success. The beacons placed in front of the
entrance will be used throughout the upcoming tests.

Table 4. Repeatability test with antenna placed in front/at the side of the entrance.

Placement Entry Exit
1 2 3 4 5 1 2 3 4 5

Infront X X X X X X X X X X
Side X X X X X X X

5. Systems Performance and Efficiency Tests

To test the effectiveness of our systems, a set of tests were done for each device. These
tests are as follows:

• Effect of Walls on RSSI: To test the effect of the walls on the RSSI transmission/reception
and the antenna’s bound of vision, a test was conducted according to Figure 15. A
beacon was placed in a room 1 m from a 10 cm thick wall. Two tags are used, one
inside the room placed 2 m from the beacon and one outside the room placed 90 cm
(for a total of 2 m from the beacon) from the wall.

Figure 15. Test setup for detecting a wall effect on RSSI.

• Room Entrance and Exit Registration: This test was made to check the system’s
ability to differentiate the entrance/exit of a tag/different tags in different rooms and
precisely save the entrance and exit times.

• Identifying Close Contacts: This test was made to check the system’s ability to
detect human–human proximity inside rooms between different tags for contact
tracing necessities.
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5.1. BLE Device Performance

• Effect of Walls on RSSI: From Figure 16, an average of 5 dB difference can be seen at
2 m by having a wall in the way. Although this result will change depending on the
nature of the walls, this test suggests that the system can differentiate what room a tag
is in while using RSSI as a localization method.
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Figure 16. The effect of the wall on RSSI at 2 m.

• Room Entrance and Exit Registration: To conduct this test, multiple beacons were
placed inside multiple rooms at the electrical and computer system engineering (ECSE)
building at Monash University, as seen in Figure 17.

Beacon

Room 5

BeaconBeacon

Room 1 Room 4

Beacon

Room 3

Office space Office space

Lab

Hallway

Text is not SVG - cannot display

Figure 17. Layout of beacons in test environment at the ECSE building at Monash University.

This test involves a tag that starts in room 1, moves to room 4, then to room 3, and
finally to room 5. As shown in Figure 18a, the received RSSI value of a specific beacon
increases above the threshold value when the tag enters its room.

Some issues were noticed, such as the different effects different room architectures
have on the RSSI values. For example, room 1’s beacon is very quiet even though the tag
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moved right next to it compared to the beacon in room 4. The wall between room 1 and 4
attenuated the signal between these rooms well, whereas the glass window between room 4
and room 3 did not. The output of these data to the end user show the entry and exit times
for each of the rooms, which can be seen in Figure 18b. In the output, room one is listed
twice because, as can be seen in Figure 18a, room 1’s RSSI dips below the threshold even
though the tag has not left the room.

(a) (b)

Figure 18. The figures show (a) RSSI from beacons in different rooms while moving between rooms,
(b) web app showing where tag 1 has been within a set time frame.

• Identifying Close Contacts: Two separate tests were conducted to test whether the
contact tracing system can detect close contacts. The first was with only one tag
visiting different rooms where other tags already exist; the second was with multiple
tags moving around to different rooms.
For the first test, tag 2 stays in room 1, while tag 1 starts in room 4, moves to room 1,
then returns to room 4. From the results, the system can detect that both tags 1 and 2
were in room 1 from 4:47 to a 4:49 pm (Figure 19a). This matches up with the web app
output specifying that tag 2 is a close contact and it happens in room 1 (Figure 19b).
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Figure 19. Close contact detection first test results: (a) RSSI values, (b) web app detection.

For the second test, tag 1 starts in room 4, tag 2 in room 1, and tag 3 in room 5. Tag 2
will then join tag 1 in room 4, then leave to join tag 3 in room 5 and turn back room 4.
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Figure 20a,b show the expected results of close contacts in RSSI values and through
the web interface, respectively. One close contact happened in room 4 between tag 1 and 2
and another happened between tag 1 and 3 in room 5.
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Figure 20. Close contact detection second test results: (a) RSSI values, (b) web app detection.

5.2. RFID Device Performance

Because of the short reading distance of an HF RFID system, the possible test cases
were limited. The main testing case scenario for the HF RFID system was to mount the
RFID reader at the entrance of a room where it allows users to tap their RFID tags. This
scenario resembles the QR code check in practice, where it relies on user participation.
Overall, the scenario worked as expected. However, the UHF RFID device was much more
autonomous, produced more promising results, and was able to perform the contact tracing
necessities much better compared to the HF system, as shown in the following tests:

• Effect of Walls on RSSI: The RFID performed the same as BLE in this test with an
average drop of 5 dB difference between a tag in the same room and a tag in different
room at the same distance from the reader but with a wall in between.

• Room Entrance and Exit Registration: For this test, we made multiple scenarios to test
the RFID LoS effectiveness in contact tracing. The tests are listed below:

1. First we tested three tag positions: located on a lanyard, in a pocket, and in a
backpack, to get the best tag position possible for the office and hospital staff.
We assessed the efficiency of the tag position by the entry and exit read rate
and the accuracy of entry and exit timings. The lanyard outperformed the other
two positions for having the most exposure to the antenna, as demonstrated
by the findings in Table 5. The measured entry and exit times were precise, as
the discrepancy between measurement and reality was only about 2 s. With
the pocket and backpack having lower read rate, as shown in Table 6, the back-
pack placement had the lowest rate, as the tag was overly obscured, which is
not recommended.



Sensors 2023, 23, 1397 20 of 31

Table 5. Lanyard placement attempts results with actual and measured timings for entrance and exit.

Lanyard Attempt 1 Attempt 2 Attempt 3 Attempt 4 Attempt 5 Attempt 6 Attempt 7 Attempt 8 Attempt 9 Attempt 10
Enter

Actual 13:50:29 13:54:19 13:56:38 14:01:02 14:10:19 14:12:28 14:16:37 14:19:10 14:20:50 14:27:44

Enter
Measured 13:50:30 13:54:21 13:56:39 14:01:04 14:10:20 14:12:30 14:16:39 14:19:11 14:20:52 14:27:45

Exit Actual 13:52:10 13:55:02 13:59:19 14:09:31 14:10:40 14:14:11 14:17:26 14:19:55 14:24:02 14:29:10
Exit

Measured 1 13:52:12 13:55:04 13:59:20 14:09:29 14:10:38 14:14:09 14:17:24 14:19:57 14:24:00 14:29:13

Table 6. Repeatability test with tag placed in pocket and in backpack.

Placement Entry Exit

Pocket 100% 90%
ine Backpack 40% 30%

2. Two tags; one enters; one outside: One tag will enter a room, while a second tag
will wait outside. This scenario is designed to ensure that the antenna will not
mistakenly detect an entry for the second tag while it is still waiting outside. As
demonstrated in Table 7, the experiment was successfully replicated for all trials.

Table 7. Two tags; one enters; one outside repeatability test results.

Attempts 1 2 3 4 5 6 7 8
First tag X X X X X X X X

Second tag X X X X X X X X

3. Entrance to multiple rooms: For testing the system’s scalability, two antennas
were placed in separate rooms to ensure that users could be tracked when
accessing various rooms. The algorithm was able to locate the rooms of the tags,
as indicated in Table 8.

Table 8. Antennas in two rooms, table of results.

Attempts 1 2 3 4 5 6 7 8 9 10
Enter Room 1 X X X X X X X X X X
Enter Room 2 X X X X X X X X X X

4. Two tags; one exits and one stays inside: In this situation, tag A will exit the room
while tag B remains inside. The system mistakenly detects that tag B has kept
entering and exiting the room. This is because it was in the antenna’s reading
range, and the system mainly checks based on past history, assuming the user is
altering his state. Results are indicated in Table 9.

Table 9. One user exits; one user stays inside table of results.

Attempts 1 2 3 4 5 6 7 8 9 10
Person A exits X X X X X X X X X X
Person B stays
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5. New entry and exit tag detection (Algorithm 3): As the last test exposed a major
flaw with the current algorithm (some cases of entry and exits were mistakenly
detected), a new approach was implemented. Algorithm 3 uses two antennas
in each room, each with its own unique number, and the entry and exit tag
algorithm searches for the sequence of these unique numbers. The unique
numbers will only be 1 and 2 in this study for simplicity. The sequence for
entering will be “1,2,” and the sequence for exit will be “2,1.” These unique
numbers will be transmitted along with the current antenna information, and the
sequence detection will be handled by the Python Gateway script in the gateway.
The success of implementing this new algorithm is reflected in Table 10. The
test was also rerun with several users remaining inside to assess the system’s
scalability; even with multiple users inside, the system was still able to accurately
detect that users did not exit (Table 11). Although there were situations when
the system was unable to correctly anticipate when user A had exited, this was
most likely due to the antenna positioning, which was off to the side (which was
the worst performing antenna position).

Table 10. New algorithm testing two users; one exits, and one stays, table of results.

Attempts 1 2 3 4 5 6 7 8 9 10
Person A exits X X X X X X X
Person B stays X X X X X X X X X X

Table 11. Multiple users inside (scalability test) table of results.

Attempts 1 2 3 4 5 6 7 8 9 10
Person A exits X X X X X X X
Person B stays X X X X X X X X X X
Person C stays X X X X X X X X X X
Person D stays X X X X X X X X X X
Person E stays X X X X X X X X X X

• Identifying Close Contacts: The following scenario tested the entry of two tags at
the same time within 1 m from each other. The system correctly detected both tags
while also capturing their respective RSSI entry values, and proximity was detected
from their RSSI values difference, as seen in Table 12. The reader can read up to
200 tags/s, so 1 reading every 5 ms. The RSSI values obtained in Table 12 are the
results of averaging all values for the same tag occurring in 1 s.

Table 12. Two tags entering simultaneously repeatability test.

Attempts 1 2 3 4 5 6 7 8 9 10
Person A −54 −55 −56 −57 −54 −54 −56.5 −55.5 −57 −54.5
Person B −55 −58 −55 −58 −55 −57 −58 −56 −56.5 −58

Difference 1 3 1 1 1 3 1.5 0.5 0.5 3.5

5.3. BLE and RFID Together

In a separate set of trials, we used both technologies together to test if one can com-
pensate for the shortcomings of the other in order to reach the best approach for indoor
contact tracing. This set of experiments took place in two rooms in the ECSE building at
Monash University, with an RFID beacon and a BLE beacon installed in each room, as
shown in Figure 21. For these experiments, the thresholding method was used in both
devices (comparing the received RSSI values with predetermined threshold values for
each technology to decide whether a tag is inside a room). Each person taking part in
these experiments received a BLE tag as well as an RFID tag, which were pinned to their
clothes. In order to thoroughly comprehend each experiment, ten attempts were made. The
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results of these experiments are presented as follows (experiments 1 and 2 in Figure 22,
experiments 3, 4, and 5 in Figure 23):

Figure 21. The setting for testing the two system together in Monash University. The first row shows
the pictures of the first room and the second row presents the second room.

• Experiment 1: Moving simultaneously: Two people are supposed to enter the room
together then approach the beacon again while exiting after 30 s. The first person is
always near the beacon while entering and exiting. This was done to test the two
systems’ ability to detect two tags moving simultaneously. Figure 22 first row shows
the outcomes of experiment 1: the first RFID tag was read well as the beacon sensed
this tag every 30 s, whereas the other tag’s read rate was not as good, due to the
blockage of the line of sight (LoS) for the second tag by the first person, who was
nearer to the beacon. The success rates for RFID readings in this experiment were 100%
for the first tag and 60% for the second tag. However, the BLE operated adequately, as
the technology does not require a LoS. As shown in Figure 22 first row, third column,
each tag was seen entering and exiting each time the RSSI was above the threshold line;
the success rate for BLE readings of the first tag was 70% and for the second tag was
95%, as some entries and exits were missed due to multi-path and shadowing effects.

• Experiment 2: One person stays inside the room, while the other exits, to test the
system ability to detect tags staying inside the rooms. Every two attempts were a
minute apart. As seen in Figure 22 second row, the RFID system performed well. The
first image depicts a continuous value above the threshold for the tag that remained
in the room, whereas the second depicts the exit of the second tag at each minute. The
BLE system also functioned very well in the third image, with the first tag constantly
over the threshold at roughly 70 dBm and the second tag fluctuating and above the
threshold at the time of the exits. RFID and BLE systems both worked flawlessly in
that experiment.
Experiment 2(2): We re-implemented this experiment; this time the person who
remained in the room was out of range of the RFID beacon (behind the reader). As
shown in the third row of Figure 22, the beacon missed the first tag, but detected the
second tag’s departures. Again, the BLE device detected both tags, but some exits
were missed.



Sensors 2023, 23, 1397 23 of 31

• Experiment 3: Differentiate between inside and outside: One person is to remain just
outside the room door, which has a glass window, while the other enters. This test was
done to test the system sensitivity to distinguish between entry and staying outside
the room. Every attempt was a minute apart from the former one. The outside tag
was still seen by the beacons, but with decreased RSSI, as seen in Figure 23 first row.
As a result of the door barrier, the RSSI was reduced for the RFID signal by around
4 dB and the BLE signal by about 10 dB compared to the former experiment. The other
entering tag, on the other hand, was well read by both technologies. One drawback of
BLE is that it detected the first tag inside the room as the RSSI measurements were
above still above the threshold.

• Experiment 4: Multiple-room based experiment: Throughout the experiment, one
person is intended to remain in the same room (first room). Another participant is
expected to alternate between two rooms, remaining in each for 30 s. This study was
carried out to assess the system’s efficiency in a multiple room-based scenario. The
second row of Figure 23 shows the first room results, whereas the third row shows the
second room findings.
In the first room, the two antennas (RFID and BLE) always detected the initial tag
staying in this room; for the second tag, the two antennas identified the times the
second tag entered and stayed in this room. The BLE system detected a tag whose
RSSI values was constantly high and above the threshold; this is the tag that stayed in
the room, whereas the other fluctuating tag is the one that enters and exits, and whose
RSSI rises above the threshold at the entrances and exits.
For the second room, the RFID antenna saw only one tag at the times the person
stayed in the second room. The figures also show the timing, and it can be clearly seen
the periods the second tag alternated the rooms. For the BLE, one tag was constantly
low and below the threshold; this is the tag staying in the other room, and this is
the effect of concrete wall with no windows between rooms. Whereas the other tag
was fluctuating, rising above threshold at the times of entering and exiting. Both
technologies functioned decently.

• Random Experiment: Finally, we ran an experiment replicating a real-life scenario
in which two tagged people were required to spend their typical day in the office
for 20 minutes. We used the technologies to distinguish between three key actions:
Stay (staying in the room), Corridor (leaving the room and remaining in the corridor),
and Leave (leaving the room and moving away from the corridor). Figure 24 shows
the results of this experiment, with the BLE system results in first row and RFID
system results in second row. The Stay action needed a continuous high RSSI above
the predetermined threshold value from both technologies to be identified (>−85 for
BLE and >−55 for RFID), the Corridor action needed a continuous low RSSI to be
identified below the predetermined threshold (<−85 for BLE and <−55 for RFID), and,
finally, the Leave action needed a continuous absence of the RSSI to be identified. As
seen in Figure 24, the two people’s actions were identified by the two technologies
successfully and identically.
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Figure 22. The first row shows the results of the first experiment of two tags entering and exiting
together, the second row shows the results of the first trial of the second experiment of one tag exits
and one tag stays, and the third row shows the results of the second trial of the second experiment.
The first column represents the results of the first RFID tag, the second column represents the results
of the second RFID tag, and the last column represents the results of the two BLE tags together in
each experiment. In the first experiment, for RFID, the first tag is always detected (shown in blue
dotted lines) while second tag has some missouts (shown in red dotted lines), the BLE system had
some missouts as well. In the second experiment, for RFID, the first tag is always detected as staying
(shown as blue region above threshold) while second tag’s exits were detected, also the BLE system
worked fine detecting one tag always above threshold and the other tag is flactuating. In the second
experiment rerun 2(2), for RFID, the first tag was not detected (shown in red region) while second
tag’s exits were detected, the BLE system had the same performance as the second experiment.
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Figure 23. The first row shows the results of the third experiment of one tag enters and one tag
outside. The second row shows the results of the forth experiment in the first room, and the third
row shows the results of the forth experiment in the second room. The first column represents the
results of the first RFID tag, the second column represents the results of the second RFID tag, and
the last column represents the results of the two BLE tags together in each experiment. In the third
experiment, for RFID, the first tag is always detected as staying outside (shown in blue region below
threshold) while second tag was detected correctly, the BLE system had some miss-outs. In the fourth
experiment first room, for RFID, the first tag is always detected as staying (shown in blue region
above threshold) while second tag’s staying (blue regions) and leaving (red regions) durations were
detected, also the BLE system worked fine. In the second room, the only difference is that the first tag
was not detected (shown in red region).
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Figure 24. A random experiment replicating a real-life scenario in which two tagged people with
tags on were required to spend their typical day in the office for 20 min. The first row shows the
results of the BLE system, and the second row shows the results of the RFID system.

6. Discussion

Upon applying both technologies, some drawbacks appeared in each technology. One
drawback to using the BLE is the interference with obstacles/walls, and external factors
such as absorption, interference, or diffraction can affect the accuracy of calculation as
RSSI tends to fluctuate. The greater the distance between the device and the beacon, the
more unpredictable the RSSI becomes. The tag may mistakenly get low RSSI values and
compared to the threshold that tag would be seen outside the even though the tag has not
left the room. On the other hand, the RFID scanning area of the reader is limited, as it
depends on LoS communications. Algorithm 2 for RFID, which depends on altering the
tags states upon being detected by the antenna based on past history, showed drawbacks
when a tag stayed inside the room. Consequently, Algorithm 3 was implemented that
needs two readers inside each room, which can be an expensive solution. As a solution, we
tested both technologies together using their RSSI values and the thresholding method. As
a result we get a more affordable solution with RSSI values enhancing the performance.
The BLE can get over the LoS drawback of the RFID, and, moreover, the RFID can get over
the BLE RSSI fluctuation issue.

As proposed future system enhancements, we would like to increase the number of
tags to practically evaluate the system’s efficiency and scalability. In addition, the system’s
security and data encryption are important topics to be considered for better enhancing the
systems capabilities.
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7. Conclusions

In this research, we proposed two IoT based sensing devices for contact tracing
in hospitals and offices settings, aiming to prevent personnel from cross infections, by
measuring their close proximity while placing as little strain on them as possible. These
devices have been demonstrated to be IoT-enabled, autonomous, low-cost, long-battery-life
systems and built with off-the shelf materials for simplicity. In the first approach, a BLE
device is proposed, programmed to be used in any environment, indoor or outdoor, simply
by changing the path-loss exponent (n). This method locates tags by comparing their
RSSI values to practically pre-determined threshold RSSI values; it can also detect close
proximity between tag holders in various rooms. The second proposed method for contact
tracing is based on RFID technology, and it investigates the usage of two different frequency
ranges: high frequency (HF) and ultra high frequency (UHF) RFID systems (UHF). This
method was successful in both indoor tag localization and detecting proximity between
tags by comparing their RSSI values. Both systems were thoroughly described in terms
of operation, hardware, cost, software, and web interfaces. Both systems were set up in
an office/hospital-like environment and tested against various life scenarios in order to
evaluate their efficiency. The results demonstrated that they met the required criteria and
that they can be used to solve the previously indicated problem. It is worth noting that the
approaches claimed benefits without sacrificing other aspects, such as power consumption,
cost, and simplicity, which distinguish our proposed approaches from previous work.
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The following abbreviations are used in this manuscript:

IoT Internet of Things
BLE Bluetooth Low Energy
RFID Radio Frequency Identification
HIV Human Immunodeficiency Virus
GPS Global Positioning System
RSSI Receiver Signal Strength Indicator
BLE Bluetooth Low Energy
SARS Severe Acute Respiratory Syndrome
SoC System on a Chip
MCU Microcontroller
ICs Integrated Circuits
SPI Serial Peripheral Interface
AES Advanced Encryption Standard
LiPo Lithium-polymer
HF High Frequency
UHF Ultra High Frequency
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LOS Line of Sight
ISM Industry, Science and Medicine Band
FSK Frequency Shift Keying
UID Unique Identifier
WPA 2 Wi-Fi Protected Access 2
SSID Service Set Identifier
ECSE Electrical and Computer System Engineering
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