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Abstract: The early, valid prediction of heart problems would minimize life threats and save lives,
while lack of prediction and false diagnosis can be fatal. Addressing a single dataset alone to build a
machine learning model for the identification of heart problems is not practical because each country
and hospital has its own data schema, structure, and quality. On this basis, a generic framework
has been built for heart problem diagnosis. This framework is a hybrid framework that employs
multiple machine learning and deep learning techniques and votes for the best outcome based on a
novel voting technique with the intention to remove bias from the model. The framework contains
two consequent layers. The first layer contains simultaneous machine learning models running over
a given dataset. The second layer consolidates the outputs of the first layer and classifies them as a
second classification layer based on novel voting techniques. Prior to the classification process, the
framework selects the top features using a proposed feature selection framework. It starts by filtering
the columns using multiple feature selection methods and considers the top common features selected.
Results from the proposed framework, with 95.6% accuracy, show its superiority over the single
machine learning model, classical stacking technique, and traditional voting technique. The main
contribution of this work is to demonstrate how the prediction probabilities of multiple models can
be exploited for the purpose of creating another layer for final output; this step neutralizes any model
bias. Another experimental contribution is proving the complete pipeline’s ability to be retrained and
used for other datasets collected using different measurements and with different distributions.

Keywords: UCI dataset; heart diseases; artificial intelligence (AI); machine learning (ML); deep
learning (DL); feature selection; model voting; decision support system (DSS)

1. Introduction

The World Health Organization (WHO) declared that heart attacks are the main con-
tributor to 31% of deaths worldwide [1]. In Gulf Cooperation Council countries, including
the Kingdom of Saudi Arabia, the percentage is higher at 46% [2]. The Turkish Society
of Cardiology, in a message issued on World Heart Day in 2015, stated that 300,000 heart
attacks are observed every year in Turkey and 125,000 cases result in death [3]. Moreover,
heart attacks causes death to more than a quarter of a million Americans [4]. Statistics
show that heart disease alone costs over USD200 billion in the United States annually [4].
Additionally, according to the American Heart Association, health care costs for heart
disease are estimated to double by 2030 [5].

Nausea, vomiting, and cold sweats can be symptoms that indicate a heart attack [1].
Fainting and loss of consciousness can be added to these parameters. For patients over a
certain age, shortness of breath is also among the symptoms. These symptoms are experienced
in approximately 80% of individuals who have had a heart attack. It occurs quietly in
the other 20% without any previous symptoms. Eighty percent of cardiovascular diseases
are developed owing to smoking, hypertension, genetic predisposition, obesity, sedentary
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lifestyle, and diabetes. Other causes are high cholesterol (low-density lipoprotein—sometimes
called “bad” cholesterol—and triglycerides), (high-density lipoprotein —sometimes called
“good” cholesterol), consumption of alcohol, presence of various heart diseases (such as
vascular occlusion, arrhythmia, and experiencing a heart attack), and stress. However, the
number of heart disease patients is expected to increase if precautions are not seriously
considered [6]. Apart from adopting a healthy lifestyle, avoiding smoking, and following a
healthy diet, accurate and timely diagnosis of heart disease with comprehensive analysis is
another important factor that can play a role in saving patients’ lives [7].

The growing trend in digital health has introduced a growing opportunity for physi-
cians to enhance patient diagnoses to be more accurate and decisive [1,8,9]. Recently,
doctors have increased their dependency on digital technologies to enhance the decision-
making process. In the business of health care, machine learning (ML) is transforming into
being a key factor in helping the diagnosis of patients [10]. Generally, heart problems are
remarkably critical, and they must be taken seriously. Regarding gender distribution, heart
problems occur more frequently in males than females [11,12]. Therefore, in this paper we
take a step toward saving the lives of heart disease patients by developing a data-driven
generic framework to improve the diagnosis of patients based on their medical history.
In this work, in-depth investigations have been undertaken to invent a novel prediction
model that does not use distinct techniques but rather combines two or more techniques to
come up with the best possible prediction output. These fused techniques are commonly
known as hybrid methods [13]. Our main contribution is the development of a dynamic
multi-model data-driven framework that is applicable to any heart disease dataset schema
with an automated data pipeline and automated feature selection process based on a hybrid
(not single) method with less-biased ML models.

The rest of this paper is organized as follows: in Section 2, we provide the literature
review and analysis of current gaps in the research; in Section 3, we illustrate the scientific
background and describe the ML and deep learning (DL) algorithms used in this work. In
Section 4, we encapsulate the model details such as the dataset description, data pipeline,
features selection framework, and classification framework. In Section 5, we outline the
results and perform a comparative study of the existing research trials and the proposed
work. Finally, in Section 6, we conclude this work and outline future research.

2. Literature Review

The problem of heart disease detection has been addressed through multiple studies
that combine multiple and different ML techniques [14–16]. Parthiban and Srivatsa [17]
proposed a two-step solution: first, they used a support vector machine (SVM) to identify
patients who already had diabetes. Second, they also exploited SVM for diagnosing
heart disease. They accomplished 95% accuracy considering features such as blood sugar
level, patient age, and blood pressure data. They were trying to employ an extremely
common features set and did not carry out any special collection or handling to guarantee
its applicability in any situation. Melillo et al. [10] built a CART-based ML model for
automatic detection of congestive heart failure discriminating between high- and low-
risk patients. The model sensitivity reached around 0.94, and specificity reached 0.64.
Guidi et al. [18] proposed an early detection decision support system (DSS); the aim of this
model is to detect heart problems early. The authors conducted a comparative analysis
of multiple ML and deep neural network (DNN) models such as neural networks, SVM,
and CART methods. The accuracy approached 88% and was achieved using random forest
(RF); it outperformed any other classification model.

Furthermore, Ismail et al. [19] applied the extreme learning machine algorithm, using a
feedforward neural network on real heart disease data. The results showed that prediction
performance was high, reaching 0.8 accuracy when predicting patients with heart disease.
Miao et al. [20] developed an ensemble ML model that uses a heart disease dataset to
predict disease existence among patients. The researchers applied an adaptive boosting
algorithm to four different datasets separately, and the average accuracy was estimated to
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be 85.27%. However, the model suffered from overfitting that resulted from minimizing
its training error and consequently incurred more testing errors than training errors in the
testing phase. Dun et al. [21] exploited multiple ML and DL models for the diagnosis of the
heart’s functional problems and ran hyperparameter tuning to enhance the accuracy. An
artificial neural network (ANN) achieved high accuracy, exceeding 78% for the test data.
In another study, Thomas and Princy [22] applied multiple ML and NN models to predict
risk levels for heart disease patients. The results highlighted an increase in accuracy of
risk-level prediction, which reached 80% accuracy when a greater number of attributes
were used.

Deepika and Seema [23] proved that ML can be effective in predicting heart disease
using a data-driven approach. Naïve Bayes, decision tree, SVM, and other models were
applied to a Cleveland dataset, and the results indicated that SVM achieved the optimum
results over the others. Xu et al. [24] used the same dataset to develop a risk prediction
system using different ML techniques. The RF algorithm provided high accuracy in
predicting the cardiovascular risk level with 91% accuracy and was therefore selected to be
the basis classification strategy of the system. Gavhane et al. [25] applied a neural network
approach using a multilayer perceptron to determine the potential risk of heart disease in
patients based on historical data. Tabassian et al. [26], who investigated the effect of ML on
diagnosing heart failure compared with other traditional medical approaches, recorded
great improvements in accuracy when using ML techniques compared with other standard
medical measurements.

Mohan et al. [13] introduced a hybrid model to predict heart disease more accurately
using the University of California Irvine (UCI) heart disease dataset as an experimental
dataset. Their model combined RF with a linear model, and the resultant accuracy was
87.4%. RF was used to extract important features, then NN was used to predict the output
class for the model. Alotaibi [7] tried to implement different ML techniques on a Cleveland
dataset with the intention of improving the accuracy of heart failure prediction. The
best results were gained from a decision tree algorithm with 93% accuracy. Furthermore,
Shah et al. [27] applied different ML techniques to the Cleveland dataset to envision the
probability of heart disease among patients. The results showed that K-nearest neighbor
provided the highest accuracy. However, none of the researchers implemented a feature
selection framework to dynamically select the features for the model; rather, they selected
the features based on suggestions from different scholars in the literature. ML has also been
applied in different medical contexts to improve the prediction of other diseases and has
recorded a huge increase in accurate results [28,29].

A common situation in the ML field is the high dimensionality of the data (known
as the “curse of dimensionality”). Not only is a large amount of memory and process-
ing needed, but also the models tend to suffer from overfitting [12]. To reduce dataset
dimensionality many models feature engineering/selection approaches that could be ex-
perimented with to eliminate data that do not have much importance in the dataset [30].
Previous researchers have proved that using feature selection and engineering as part of the
model pipeline could remarkably enhance prediction accuracy. Ayatollahi et al. [31] built a
model for diagnosing arrhythmia that focuses on heart rate variability. They proposed a
multilayer perceptron (MLP) for performing the classification and achieved remarkable
accuracy via features reduction using Gaussian discriminant analysis. Besides Gaussian
discriminant analysis, principal component analysis has been exploited by multiple re-
searchers as the initial choice for handling high-dimensional input. Rahhal et al. [32]
proposed a DNN model for selecting the optimal set of features, consequently to be em-
ployed in heart failure diagnoses. Rajagopal and Ranganathan [33] set up a comparison of
five different dimensionality reduction methods (unsupervised linear and unsupervised
nonlinear). They used MLP as a classification layer for detecting cardiac arrhythmia. They
achieved a 0.99 F1 score using Fast-ICA with 10 components as a minimum threshold.
Singh et al. [34] explored the use of “generalized discriminant analysis” for the features
extraction step (nonlinear features). Bashir et al. [35] applied different models of ML with
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the intention to improve prediction performance of heart disease using the feature selection
approach. Naïve Bayes, RF, and other models were applied, and the results gained high
accuracy measures with the feature selection approach. As discussed earlier, dimensionality
reduction and feature engineering can enhance the quality of data explored and ultimately
improve prediction accuracy [36].

After having performed the literature survey, we realized that a gap that still exists in
the current body of knowledge, which needs to be filled. First, most of the research explored
did not fulfill the multi-model approach and cannot be generalized to other datasets because
the models were built specifically for the dataset under investigation with no attempt to
investigate the model in other datasets for generalization purposes. Moreover, most of the
results generated were built using a single model approach, so the result could be biased
by this model, whereas adding an additional layer on top of a set of different models could
overcome this problem and enhance the results from different models. The second pitfall
is that some researchers selected features manually based on common features used in
similar cases, which cannot be applied to other datasets automatically. This requires manual
investigation of the dataset, which is time consuming and prone to human error. Other
researchers have applied a single feature selection method to choose the features, whereas
the hybrid approach that fuses the decisions of different methods and selects the best from
among them could enhance the feature selection process and ensure more accurate results.

The main idea behind this discussion is to stress the significance of ML approaches in
enhancing the prediction accuracy of heart disease using a data-driven approach. In this
research, the start point was a gap analysis of previous research trials. This gap analysis
identified the contribution of this paper as follows:

• Single schema dataset:

Previous studies have been applied to a single dataset, and the models were developed
and adopted to make predictions based on a single dataset schema with no applicability
of working in different modes. In this work, the proposed system can operate in different
modes, and it is neutral for input data quality because the data pipeline is completely
automated. In addition, two datasets were exploited to ensure this privilege: the UCI
dataset, which has been used for framework development and assessment, and another
public dataset [19], which was used to validate the superiority of the proposed framework
in neutralizing the dataset scheme effect.

• Using a single feature selection mechanism:

All previous researchers used a single feature selection approach for feature engineer-
ing. To the best of our knowledge, no previous work has been initiated to apply a multiple
feature selection mechanism and select the best one according to the given dataset (the
hybrid approach). In the proposed work, we built a hybrid voting-based model to select
input features. The hybrid voting model employs multiple feature selection techniques
and adds a voting layer. Consequently, the main contribution of this work is the ability to
dynamically select the best features based on an input dataset.

• Model bias:

The current literature shows that using ML and DL algorithms can introduce bias into
the results, which arises from the lack of fairness concept. The idea of fairness is based on
data bias, such that the model learns the input data without realizing that there are missing
data. The problem of data bias and model fairness has been tackled in the proposed model
because it employs multiple ML and DL algorithms and builds a nonlinear additional
voting layer to neutralize any model or data bias.

• A proposed new Stacking Mechanism:

The classical stacking architecture relies on multi-staging classifiers, and each layer
output is input for the consequent layer. In the proposed framework, we propose and
implement a new stacking classification architecture. The proposed stacking performs a
similar task but adds the classifier decision probability to the classification decision and
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both become inputs for the consequent layer. The thinking behind this idea is to strengthen
each classification result with probabilities so that they are considered in the consequent
classification layer.

To address the gaps in the research, we attempt to improve the performance of heart
disease prediction by developing a novel and generic framework that is agnostic to input
data schema, and which includes a hybrid voting-based feature selection framework and
hybrid multistage stacking classification framework that can be used for other problems.
This research is not intended to replace the traditional medical approach used for diagnos-
ing heart diseases; rather, we attempt to enhance this process with the invention of ML and
DL techniques.

3. Scientific Background

There are different types of algorithms used in this work, all of them belonging to
the supervised learning category. The most commonly used ML algorithms in previous
research were selected to be part of this study framework. ML approaches included in
this research are: logistic regression (LR), SVM, RF, XGBoost, and DL. Every algorithm can
outperform the others for a certain type and quality of data.

3.1. Logistic Regression (LR)

LR is one of the classical statistical approaches that, in its basic form, employs a
“logistic function” to model a binary dependent variable. Mathematically, a binary logistic
model has a dependent variable with two possible outcomes, in our case, such as: has heart
problem/has not, which is defined by an indicator variable [37,38]. LR can be perceived
as a “special-case” of the “generalized-linear model”; however, LR is based on different
assumptions. The equation of LR is as follows [39]:

Logit(p) = ln
(

p
1 − p

)
=

prob. o f presence o f characteristics
prob. o f absence o f charateristics

(1)

3.2. Support Vector Machine (SVM)

SVM creates a hyperplane (or set of hyperplanes) in a high-dimensional space; these
hyperplanes could be used for classification, regression, and removing outliers [40]. Fun-
damentally, a successful separation is accomplished by the hyperplanes that have the
maximum distance from the closest training-data point of any class (functional margin).
Apparently, achieving the maximum margin leads to obtaining the minimum generalization
classification error of the classifier [41].

3.3. Random Forest (RF)

RF is an ensemble-learning-based algorithm for both classification and regression [41].
Regarding classification problems, the result from RF is the class picked by the major trees.
Regarding regression problems, the mean of the individual trees is considered as an output.
RF neutralizes the tendency of decision trees to overfit on the training data [42,43]. The
three common methodologies used are: forest RI (random forest choice), forest RC (random
blend), and a combination of forest RI and forest RC.

3.4. XGBoost

Even taking into account ML competitions and Kaggle competitions, XGBoost is one
of the top-performing algorithms that is picked initially for structured data [44]. XGBoost
shows superiority in terms of speed, accuracy, and performance. It is referred to as the
“enhanced gradient-boosting algorithm” that exploits the gradient-boosting framework in
an efficient way. Boosting is another ensemble technique whereby previously mentioned
model errors are tackled in new iterations [44].
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3.5. Deep Learning (DL)

For the purpose of creating systems that acquire learning similar to how humans learn,
the base architecture for DL was inspired by the base structure of a normal human brain.
Consequently, some fundamental definitions within the scope of DL would be mapped to
neurology [45]. Apparently, similarly to how neurons construct the primary basic blocks of
the human brain, DL architecture includes “computational units” that permit the modeling
of nonlinear functions (perceptrons) [46].

In this work, two models are exploited: DNN and CNN.

4. Proposed Framework

In this section, the framework components and operating flow are discussed in detail,
starting with the dataset description and ending with the diagnosis decision.

4.1. Dataset Description

The dataset used for this paper’s objective is a public dataset collected from the Kaggle
platform, and its time interval starts from 1988. It is known as the UCI heart disease
dataset [47] and includes information regarding clinical instances of heart disease with
76 columns and 75 features beside the label (prediction). It has four different databases
contributed to by four different medical institutions: Cleveland Clinical Foundation, Long
Beach Medical Center, the Hungarian Institute of Cardiology, and Switzerland University
Hospital. All four datasets have the same instance format and within the 75 features,
13 fundamental features are commonly used in most previous research as per scholars’
suggestions. In our model, we have exploited these 13 features based on the platform
recommendation, which is built to select the top influencing features, as will be described
in the next section. A description of each attribute and its meaning is given in Table 1.

Table 1. The resultant features from the UCI dataset.

No. Feature (Attribute Name) Distinct Values

1 Age–Patient age (years) Between 29 and 77

2 Sex–Gender of a patient 1 for males, 0 for females

3 CP–Level of chest pain a patient is suffering from when arriving at hospital (if exists) 0, 1, 2, 3

4 Chol–The cholesterol level recorded when patient is admitted to hospital Between 126 and 564 (mg/dL)

5 RestBP–The blood pressure (BP) figure for the patient at the time of admission to hospital Between 94 and 564 (mm Hg)

6 FBS–The fasting blood sugar of the patient with binary classification: if more than
120 mg/dL =1 else =0 0, 1

7 RestECG–The result of resting electrocardiographic (ECG) from 0 to 2, where each value
describes the severity of the pain 0, 1, 2

8 HeartBeat–The maximum value of heartbeat counted when patient is admitted Between 71 and 202

9 Exang–Used to understand whether exercise induced angina or not. Yes = 1 and not = 0 0, 1

10 Oldpeak–Defines the patient’s depression status Real numbers between 0 and 6.2

11 Slope–Patient’s condition during peak exercise. The value is defined by three segments
[Up sloping, Flat, Down sloping] 1, 2, 3

12 Ca–The status of fluoroscopy. It shows how many vessels are colored 0, 1, 2, 3

13 Thal–A kind of test required for patients with chest pain or breathing difficulty. Four
different values showing the result of Thallium test 0, 1, 2, 3

14 (Class)
Target–The class or label column. There are two types of classes (0, 1), where “0”

indicates that the patient has no heart disease, whereas “1” implies that the patient has
heart disease based on the features used in the modeling process.

0, 1

4.2. Hybrid Feature Selection Framework

To verify the usage of only 13 features based on a data-driven selection process, a
platform has been built to select the top influencing features. Some features have been
dropped such as ID, name, and social security number; there is no need to model this
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exclusion step. The remaining attributes will provide the inputs for a feature selection
framework. The framework is a data-driven selection process that explores the whole set
of features and selects the top influencing features based on a novel voting process. The
framework is a hybrid framework that exploits multiple and different feature selection
methods at the same time and then votes for the best combination of features that gained
the highest ranking among all methods.

There are three basic types of feature selection step:

1. The filter method (chi-square has been exploited after numerical variables binning,
Pearson correlation, and ANOVA coefficients);

2. Wrapper methods: these methods split the data subsets and use them to train a model;
according to the model results, features are eliminated or added (a recursive features
elimination method has been used in this research);

3. Intrinsic methods: data are split into different subsets and train the model and select
the best subset based on model results (the Lasso regularization and decision tree
methods were used).

The proposed framework can select the top features dynamically from a given dataset.
To prevent any bias in the selection process, the model is designated as a hybrid model
that exploits five different methods, run simultaneously, and produces a ranking score for
each feature and a voting layer incorporated to vote for (x) top common features based
on their ranking from each method. The framework at first accepts all datasets columns
as input, and it takes the number of designated features (x) as a hyperparameter for the
framework. In our framework, there are five different ML feature selection methods applied
in parallel to the input dataset. Each method explores the whole set of features, measures
the importance of each feature, and provides a set of top (x) important features (as requested
by the user) that are ranked accordingly. Then, the next layer in the framework takes the
ranking of each feature from the five different methods and votes on them to provide
the top (x) common features according to their importance. In our case, 13 features were
selected from the UCI dataset, and their importance was higher among the 75 features
available. The 13 features derived from the framework are in compliance with the features
recommended by the literature and used in previous research; however, we have selected
them automatically based on the data-driven approach. The feature selection framework is
shown in Figure 1. Moreover, Algorithm 1 is describing the feature selection pseudocode
to clarify the steps in details.

Algorithm 1. Feature selection pseudocode

1- Input: Data features set (S) and (x) is the designated number of selected features
2-Let M is the set of methods { pearson correlation, ANOVA, Recursive Elimination, Lasso and DT}
3-For every Algorithm (i) in (S) do the following:

3.1 Apply the following algorithms for measuring features importance
3.2 Rank the features importance for algorithm (i)
3.3 Save the features descending rank into global list (Fi)

4-for each Sorted list (j) in global list (Fi):
4.1 select the top (x) features and append in TOPi selected list

5-compute the intersection among TOP lists
6-Output: the intersection among the TOP lists

The features are ranked based on the score or coefficient values depending on the
techniques used. For example, Pearson extracts the correlation coefficients, and DT extracts
the features’ importance based on node impurity and so on. The next step is to outrank
each feature within each method and identify the common top features to be used.
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4.3. Data Preprocessing Pipeline

In this work we proposed two different ways of building a model to diagnose heart
diseases using a UCI dataset. The first approach was to skip all data preprocessing steps
(outlier detection, distribution checking, skewness detection, etc.) and expose the dataset
directly to the model. The second approach was to apply a complete data pipeline step
to the data before exploiting any ML models for diagnosis. The data pipeline stages are
illustrated in Figure 2.
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4.3.1. Check Nulls and Duplicates

The UCI dataset does not include null values but, for generalization purposes, a
part of the pipeline has been built to check the nulls and impute them to consider any
future dataset with null values inputted to the framework. Many imputing techniques are
exploited, but the one employed in this research is the variable/label distribution and KNN
imputation. The existence of duplicates in the dataset could affect model performance in
two ways; first, it could introduce model bias for certain data points, and second, it might
affect the model’s ability to generalize in case of one tuple in the training and the exact
same duplicate existing in the testing set. In this work, one tuple was removed from the
UCI dataset owing to duplication, and in general, any other dataset will be cleaned of
such duplication.

4.3.2. Check the Outliers

In this work, multiple outlier detection methods were used for tackling the issue
of multi-variate outliers. Z-Score, Dbscan, and “isolation forest” (IF) were implemented
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and tested [12]. The experimental results confirmed our initial hypothesis that IF gives
better results. Fundamentally, the IF technique is an isolation-based anomalies detection
algorithm that constructs a binary tree to classify the data set. Further, the earlier the data
item is labeled as a leaf, the greater the tendency to consider it as an outlier point. The
algorithm steps start by randomly sampling multiple sample datasets and then construct
many isolation trees based on classification of the field values. Then, for prediction, the
algorithm compares an observation against a splitting value in a “node,” which will have
two node children on which another random comparison will be done. The number of
“splittings” made by the algorithm for an instance is named: “path length.” As expected,
outliers would have shorter path lengths than the normal observations [12].

4.3.3. Label Distribution

Label distribution inside the data set is a key factor in the model’s ability to generalize,
and a balanced label distribution minimizes the model’s tendency to overfit. The UCI
dataset label distribution illustrates that heart disease occurred in 54.46% of the dataset,
and 45.54% had no heart disease. Although the distribution for the UCI dataset does
not seem perfectly uniform, the variation can be neutralized by the model without any
additional preprocessing steps. For a generic framework, we expect nonuniformity to exist
more in real-world datasets; consequently, it is important to tackle this issue even if it does
not appear in UCI clearly. In this work, oversampling and undersampling techniques are
exploited to rebalance the labels.

Another important step is examining the features individually to see if each one is
normally distributed or not, and, if it is normally distributed, if it is skewed or not. The
importance of this step appears in the modeling part such that all non-tree-based models
are affected by features scales. Consequently, if the feature is normally distributed it will be
standardized using the mean and standard deviation; however, if it is not, it will be scaled
by its maximum value (after removing outliers). In the case of skewed normal distributed
features, they will be transformed to non-skewed distribution using log-transformation.

4.4. The Proposed Classification Framework

In this work, a hybrid multistage stacking classification model was proposed and
implemented on a UCI dataset. The main contribution of this model is its ability to exploit
multiple classification models simultaneously and avoid model bias in the case of results
obtained from a single model only. Therefore, the model is considered hybrid in terms
of having multiple classification models applied in parallel to the same dataset, and the
results are evaluated by the next layer that selects the best among them. The results of
each model (output class and classification probability) are introduced into a second-stage
model, which is a binary classifier that votes for the final decision on whether the given
patient has a form of heart disease. This proposed framework does not apply a simple
voting technique, but it incorporates a novel voting technique that considers not only the
counts of each class but also the probability of each class given from each classifier. This
novel voting technique is considered to add value to the model for the following reasons:
first, the second layer classifier has the ability to learn when each first layer classifier makes
wrong or right classification decisions. This second layer learns from data how different
classifiers react toward certain input and, based on the labels, it selects which classifiers
should be fired for certain data feeds. Second, it can be more interpretable than simple
voting because we can draw a boundary and extract knowledge of when each classifier
can be decisive in the right way by considering the probability of each. Third, the overall
model’s tendency to overfit decreases, and the model can be generalized for any dataset
because it does not rely on a single model but on multiple models that are run in parallel,
and the best results are considered among them. Finally, the idea of a second layer classifier
decreases the overall model’s sensitivity whenever data feeds have quality issues. Worth
noting is that this model differs from the traditional well-known stacking technique in
terms of considering the decision probability as well as the decision itself as input for the
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second classification layer. The main advantage of this proposed model over stacking
techniques is the enhanced accuracy of the second layer and the credibility of the decision
in the first layer. This credibility is represented by the classification decision probability.
Figure 3 shows the stages of the proposed classification framework with an indication of
the specified output at each stage.
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The first layer of classifier outcomes and prediction probabilities is passed to the
second layer of classification (LR). This second layer is designed with the intention to
reduce bias in the results and to try to generalize the results to add more predictive power
and neutralize model bias as well as enabling stacking and voting capabilities.

5. Experimental Results

In the evaluation step, there are many experiments and we included multiple evalua-
tion metrics such as the confusion matrix, accuracy rate, precision, and recall. The confusion
matrix is a table that embraces both the actual labels and predicted results. The results are
defined in four basic components:

• True-positive (TP) values are true in both reality and prediction.
• False-positive (FP) values are false in reality but predicted as true.
• False-negative (FN) values are true in reality but predicted as false.
• True-negative (TN) values are false in both reality and prediction.

Let (N) be the number of all samples:

N = TP + FP + FN + TN (2)

N represents the total number of data points in the test set, and it consolidates all
samples whether they have been predicted as correct or not.

The following metrics are commonly used for model evaluation (Table 2).

Table 2. Evaluation metrics.

Metric Definition Formula

Accuracy The overall truly predicted samples divided by
overall samples (TP + TN)/N

Specificity The percentage
of actual negative samples that were predicted as negative TN/(FP + TN)

Sensitivity (Recall) The percentage of actual positive samples that were
predicted as positive TP/(FN + TP)

Precision How many of the positively classified samples were
actually positive TP/(TP + FP)

F1 Score The harmonic means of both recall and precision 2(recall * precision)/(recall + precision)

The experiments have been conducted for many design parameter variations: re-
moving outliers and feature selection, running models separately, and multiple voting
techniques. All the experiments divided the training and validation data into 10 folds
(hyperparameter was selected among others). At every iteration, the k-fold partitioning
was performed by keeping nine partitions for training and one for validation. The accuracy,
sensitivity, and specificity of the results were measured to evaluate the performance of the
model. Table 3 illustrates the average measurements over the 10 k-fold validation using
ML and DL models separately on every design option either with preprocessing pipelines
or without.

The optimal hyperparameters obtained for each model were calculated by grid search
and the values are as follows:

• LR: Alpha = 0.1, Fit_intercept = true, Normalize = false, Solver = sag
• SVM: kernel = ‘rbf’, degree = 3, gamma = ‘scale’, coef0 = 0.0, shrinking = True
• XGBoost: verbosity =true, validate_parameters =false, min_split_loss = 0.001,

max_depth =5, max_delta_step =0
• Random Forest: max_depth = 4, min_sample_split = 10, n_trees = 60, min_samples_leaf = 3
• DNN: hidden_layer_sizes = 3, activation = Relu, learning_rate = 0.01, solver = ’Adam’
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• CNN: filter_size1 = 3, num_filters1 = 32, filter_size2 = 3, num_filters2 = 32, filter_size3 = 3,
num_filters3 = 64, fc_size = 128, learning_rate = 0.01

Table 3. Results for separate models (UCI dataset).

Without Preprocessing Pipelines With Preprocessing Pipelines

Model Accuracy % Specificity Sensitivity Model Accuracy % Specificity Sensitivity

LR 82.1 79.8 85.6 LR 84 82.5 85.6
SVM 83.3 80 78.5 SVM 84.6 82.6 83.5
XGB 85.7 83.4 81.8 XGB 88.1 85.0 83.9
RF 81.4 80.2 79.3 RF 82.8 80.5 80.4

DNN 83.9 80.9 80.4 DNN 85.4 83.1 82.2
CNN 91.2 87.2 84.9 CNN 93.3 88.0 86.1

The hyperparameters for some models were tuned using a grid search such as LR and
RF, and others were tuned using a random search such as DNN and CNN owing to the
huge number of hyperparameters and parameters to be tuned.

Table 3 illustrates that CNN outperforms any other model; CNN employs three
convolution layers followed by a dense layer and finally a softmax classifier. It can be
interpreted from the results that CNN has the ability to handle nonlinear separable data
via its dense layers and has the ability to neutralize the effect of biased data. In addition,
multiple filter contents give it the advantage of allowing for generalization by extracting
multiple data aspects. Another insight from the results is that applying data preprocessing
pipeline steps (outlier detection, feature selection, etc.) can enhance the results whether the
model is ML or DL. Clearly, some models are affected more than others, but the conclusion
is that the data preprocessing pipeline can help to improve accuracy.

The proposed model was compared to another two models that embrace voting in dif-
ferent ways. The experimental results inductively prove the proposed model’s superiority
over other voting mechanisms including classical stacking and traditional voting (where
the voting layer counts the precedent classifiers’ outcomes and makes the final classification
decision based on the majority of the decisions). Moreover, the proposed framework was
compared with single-model CNN only; Table 4 portrays the results of each model and of
the proposed model.

Table 4. Results for the proposed framework on UCI.

With Removing the Outliers and Feature Selection

Model Accuracy % Specificity Sensitivity

Proposed Framework on HDD 96.3 91.9 93.1
Traditional Voting Framework 92.5 91.0 89.3

Classical Stacking 93.9 91.7 92.4
CNN 93.3 88.0 86.1

As illustrated in Table 4, the proposed model outperforms the traditional voting
approach, classical stacking, and the single-model approach (CNN). For benchmarking
purposes, a comparative study was conducted against other research trials that addressed
heart problems and specifically worked on a UCI dataset (Table 5).
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Table 5. Comparative study.

Authors Methodology and Results

Shah et al. [27] (2020)

Accuracy around 90.7%
Implemented multiple classification techniques.

Decision Tree, KNN and K-Means were compared. Concluded that accuracy obtained by
KNN was highest.

Selected features based on literature surveys.

Alotaibi [7] (2019)

Accuracy around 93%
Compared multiple ML algorithms.

The accuracy of Decision Tree, Logistic Regression, Random Forest, Naive Bayes and SVM
classification algorithms were compared.

Decision tree algorithm had the highest accuracy.
Selected features based on literature surveys.

Mohan et al. [13] (2019)

Accuracy 87.4%
Hybrid model combining RF and LM.

RF used to extract features and then NN was used to predict the results and the hybrid model
was compared to other ML techniques.

Their hybrid model showed 1% improvement compared to the other techniques.
13 features extracted by RF and used in the model.

Deepika and Seema [23] (2017)

Accuracy around 95%
Compared multiple ML algorithms

Naïve Bayes, Decision tree, SVM and ANN methods were compared.
SVM gained the optimum results.

Selected features based on literature surveys.

Shu et al. [24] (2017)

Accuracy around 91%
Compared multiple ML algorithms

Random Forest, C4.5, SVM, Bayes, RBF network, AdaBoost were compared.
Random Forest provided the best accuracy.

Includes features selection framework but not hybrid model.

Mioa et al. [20] (2016)

Average accuracy around 85%
Used advanced integrated ML (Adaptive boosting algorithm)

Applied on 4 different datasets of UCI
Used 29 features

Suffered from overfitting

Proposed Model

Accuracy reached 96.3%
Hybrid multi-stage stacking classification framework that can be generalized for

other problems.
Includes hybrid feature selection framework.
Framework is agnostic to input data schema.

6. Framework Validation

One main purpose of this research was to design and develop a model that can
be deployed and used in hospitals and clinics without rebuilding separate models for
each entity according to its data and systems platforms. For the purpose of ensuring the
ability of the proposed framework to be generalized and operable on any other dataset
regardless of its contents of schema, the complete pipeline has been end-to-end tested and
validated on a different dataset, namely, the Cardiovascular Heart Disease (CHD) dataset,
which is available from the Public Library of Science [48]. The dataset contains records
from 299 patients with heart failure collected in 2015. All 299 patients had left ventricular
systolic dysfunction and had previous history of advanced stage of heart failures. The
dataset contains 13 features, which report clinical, body, and lifestyle information. The
dataset columns and a description are given in Table 6.
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Table 6. CHD dataset.

No. Feature (Attribute Name) Measure Distinct Values

1 Age–Patient age (years) Years Between 40 and 95

2 Sex–Gender of patient Boolean 1 (male) 0 (female)

3 Anemia–Decrease of red blood cells or hemoglobin Boolean 0, 1

4 High blood pressure–If a patient has hypertension Boolean 0, 1

5 Creatinine phosphokinase (CPK)–Level of the CPK
enzyme in the blood Mcg/L [23, . . . , 7861]

6 Diabetes–If the patient has diabetes Boolean 0, 1

7 Ejection fraction–Percentage of blood leaving the
heart at each contraction Percentage [14, . . . , 80]

8 Platelets–Platelets in the blood kiloplatelets/mL [25.01, . . . , 850.00]

9 Serum creatinine–Level of creatinine in the blood mg/dL [0.50, . . . , 9.40] mg/dL [0.50, . . . , 9.40]

10 Serum sodium–Level of sodium in the blood mEq/L [114, . . . , 148]

11 Smoking–If the patient smokes Boolean 0, 1

12 Time–Follow-up period Days [4, . . . , 285]

13 (Class) Death event (Target)–If the patient died during the
follow-up period Boolean 0, 1

For the CHD dataset, the proposed feature selection framework concludes that no
features can be eliminated for the purpose of modeling and all features should be included
with different importance and label correlation degrees. Regarding the preprocessing
pipeline step, the CHD dataset has null values in multiple columns and needs to be resolved.
The dataset has 60% survival and 40% death cases as labels; however, the distribution for
this dataset does not seem perfectly uniform, but the variation can be neutralized by the
model without any additional preprocessing steps. The classification stage was performed
on the dataset with its features, and the results were recorded and compared with those of
Chicco and Jurman [49], who have developed the dataset and made it publicly available for
researchers. Chicco and Jurman [49] have explored different ML techniques in this dataset
to predict patient survival. They have reached 0.83 accuracy in their work, as can be seen
in Table 7.

Table 7. Results for the proposed framework on CHD dataset.

Model Accuracy %

Proposed Framework on CHD Dataset 91.8
Chicco and Jurman [49] 83

As illustrated in Table 7, the proposed model gives better results than other work
developed on the same dataset. The proposed framework has outperformed the other work
with almost 9% higher accuracy.

7. Conclusions

In this paper, we proposed a new heart disease detection model that builds multiple
models of prediction and uses the output probability distribution to produce a following
prediction layer. The concept of considering first-layer classification output probability
outperforms the normal voting or stacking technique because it minimizes model bias based
on its output distribution. Another important aspect is ensuring pipeline reusability for
different datasets with different columns and distributions. In this research we developed
a generic framework for heart disease diagnosis that operates using multiple machine
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learning and deep learning techniques. The proposed multistage stacking framework
contains two consequent layers. The first layer contains simultaneous machine learning
models. The second layer consolidates the outputs of the first layer (classification results
and probabilities) and classifies them as an advanced voting layer. The proposed model
starts by filtering given dataset columns using multiple feature selection methods, and
the selected features from that step continue for the rest of the pipeline. Results from the
proposed system show superiority over using a single machine learning model or using
traditional voting techniques or the classical stacking methodology. We concluded 96.3%
accuracy over the testing set with a 10 k-folding partitioning structure. The proposed
framework can operate in different modes, and it is neutral for input data quality because
the data pipeline is completely automated. Moreover, it has built a voting-based model
for input features prior to preprocessing, and a multistage classification step that employs
multiple feature selection techniques and adds a voting layer that considers the ranked
features and votes for the top common features. Consequently, the main impact of this
study comes from demonstrating the ability to dynamically select the best features based
on the input dataset. The model has been validated to ensure generalizability and has
outperformed other models in terms of accuracy thus proving its outstanding contribution
to heart diagnosis research.
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