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Abstract: This paper proposes an indoor location-based augmented reality framework (ILARF) for 

the development of indoor augmented-reality (AR) systems. ILARF integrates an indoor localiza-

tion unit (ILU), a secure context-aware message exchange unit (SCAMEU), and an AR visualization 

and interaction unit (ARVIU). The ILU runs on a mobile device such as a smartphone and utilizes 

visible markers (e.g., images and text), invisible markers (e.g., Wi-Fi, Bluetooth Low Energy, and 

NFC signals), and device sensors (e.g., accelerometers, gyroscopes, and magnetometers) to deter-

mine the device location and direction. The SCAMEU utilizes a message queuing telemetry 

transport (MQTT) server to exchange ambient sensor data (e.g., temperature, light, and humidity 

readings) and user data (e.g., user location and user speed) for context-awareness. The unit also 

employs a web server to manage user profiles and settings. The ARVIU uses AR creation tools to 

handle user interaction and display context-aware information in appropriate areas of the device’s 

screen. One prototype AR app for use in gyms, Gym Augmented Reality (GAR), was developed 

based on ILARF. Users can register their profiles and configure settings when using GAR to visit a 

gym. Then, GAR can help users locate appropriate gym equipment based on their workout pro-

grams or favorite exercise specified in their profiles. GAR provides instructions on how to properly 

use the gym equipment and also makes it possible for gym users to socialize with each other, which 

may motivate them to go to the gym regularly. GAR is compared with other related AR systems. 

The comparison shows that GAR is superior to others by virtue of its use of ILARF; specifically, it 

provides more information, such as user location and direction, and has more desirable properties, 

such as secure communication and a 3D graphical user interface. 
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1. Introduction 

An indoor location-based augmented reality framework (ILARF) that combines in-

door localization (IL) [1] and augmented reality (AR) [2] is proposed to facilitate the de-

velopment of indoor AR systems for mobile devices, such as smartphones and tablets. IL 

is a technique to locate a device or user in an indoor environment. The location infor-

mation provided by IL is indispensable in many applications, e.g., indoor navigation, 

tracking, and path planning [3–5]. AR is a technique to offer extra information about phys-

ical environments. It can provide users with an expansion of their unaided perception of 

the physical world. Many studies have applied AR in different areas such as training, 

digital learning, industrial design, and entertainment [6–8]. 

Several IL-AR studies [9–14] were conducted using different methods. Baek et al. [9] 

proposed AR for facility management with image-based IL computation. This system uses 

a Microsoft Hololens to perform AR and a high-end server to perform the deep-learning 

computations for image-based IL. Mobile IL-AR that uses a pyramidal beacon landmark 

was proposed by An et al. [10]. The system uses YOLO v3 to perform IL and AR simulta-

neously but is only capable of performing IL when a landmark is captured by the mobile 

device’s camera. An IL-AR method based on pedestrian tracking in subway stations was 
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also proposed [11]. This system uses a smartphone to perform marker-based AR and hy-

brid IL using marker images and an inertial measurement unit (IMU). The challenge of 

this system is defining the marker location and the use of high-quality materials to mini-

mize marker damage. Verde et al. [12] proposed an IL-AR architecture based on content 

delivery in museums. They implemented AR using Immersal AR and Easy AR and IL 

using Bluetooth Low Energy (BLE). The use of IL-AR was also proposed for use in navi-

gation [13,14]. Both IL and AR were implemented using only a smartphone camera and 

2-D visual markers [13]. Zhou et al. [14] used the ARCore software development kit (SDK) 

to implement AR and a combination of pedestrian dead reckoning (PDR) and BLE to im-

plement IL. However, these IL-AR systems are mostly standalone systems and do not 

provide rich and secure context-aware information. Moreover, to the best of our 

knowledge, no IL-AR system supports two or more displaying modes and their associated 

user interactions at the same time. 

ILARF primarily consists of three units: an indoor localization unit (ILU), a secure 

context-aware message exchange unit (SCAMEU), and an AR visualization and interac-

tion unit (ARVIU). The ILU runs on a user device, such as a smartphone, to provide user 

location information in an indoor environment. The SCAMEU is responsible for exchang-

ing context-aware information between ambient sensors and users. The unit also employs 

a web server to manage user profiles and settings. The ARVIU uses AR creation tools to 

display context-aware information at the appropriate screen positions on a mobile device, 

such as a smartphone or head-mounted display (HMD). This unit also processes interac-

tions of users who use a smartphone or HMD. ILARF, thus, simultaneously supports the 

device screen displaying mode and the HMD displaying mode, as well as their associated 

user interactions. 

The ILU uses device sensors and markers to determine the user’s location (or posi-

tion). The device sensors, such as an accelerometer, gyroscope, and magnetometer, are 

used to determine the direction of the user. The markers are used as references to perform 

indoor localization [15]. The ILU employs two types of markers: invisible markers (e.g., 

Wi-Fi, BLE, and NFC signals) and visible markers (e.g., images and text). Indoor localiza-

tion methods, regardless of whether they are inertial-based, fingerprint-based, multilater-

ation-based, centroid-based, or marker-based, can all be adopted by the ILU to perform 

indoor localization. 

The SCAMEU deals with data exchange between all units in ILARF via the ILARF 

server and the message queuing telemetry transport (MQTT) server [16]. The ILARF 

server provides the web connection service along with the database service. It is the core 

component of ILARF with regard to maintaining communication with user devices (e.g., 

smartphones) and managing user information (e.g., user profiles and settings). The MQTT 

server is used to publish context-aware information about the sensors and users. Possible 

sensor information includes the temperature, illuminance, and humidity, whereas possi-

ble user information includes the user’s location and personal profile. To make the com-

munication of SCAMEU secure, a transport layer security (TLS) protocol [16] is employed 

to secure the exchanged data. 

The ARVIU is responsible for displaying appropriate augmented information in the 

appropriate areas of a screen, and interacting with users to offer rich user experiences. 

This unit has three functions: context perception, information visualization, and user in-

teraction. The context-perception function gathers contextual data from the surrounding 

environment to determine the augmented information to be displayed or visualized. The 

information visualization function then displays the augmented information with specific 

visualization effects overlaid atop appropriate images or appropriate areas of the screen. 

The user interaction function processes user interaction. ARVIU has two modes: device 

screen mode and HMD mode. In device screen mode, the user holds the device in hand 

and interacts with the system by pressing buttons shown on the device screen with visual 

information or effects overlaid on top of the view of the real scene. In HMD mode, the 

user wears an HMD device to perceive information atop scene views with immersive 3D 
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effects. The user can interact with the system by gazing for a specific period of time at 

virtual buttons, gesturing at virtual buttons, and/or issuing voice commands. 

Various methods that fit into ILARF will be discussed in a subsequent section. Using 

different methods can result in AR systems that offer different features. Based on ILARF, 

an AR system called Gym Augmented Reality (GAR) is developed as an Android app for 

use in gyms. Before using GAR, users must register their profiles and related information 

as GAR members. GAR can then help users locate equipment in a gym based on their 

workout programs and favorite exercise. For example, if a user wants to lose weight and 

likes to run, then GAR can show navigation information for reaching one of the available 

treadmills and show information about how to use it properly. Some gyms have course 

sessions such as yoga and dancing in dedicated rooms. For such cases, GAR can also guide 

the user to attend sessions that they are interested in. Furthermore, GAR also allows gym 

users to socialize with each other, which may help motivate them to go to the gym regu-

larly and exercise consistently. 

Numerous indoor AR systems have been proposed in the literature [17–21]. Of these 

systems, Endure [19], Climbing Gym [20], and Jarvis [21] are closely related to GAR. These 

three systems will be reviewed to understand today’s state-of-the-art AR systems for the 

use in gyms. These systems will be compared with GAR to demonstrate the superiority of 

GAR and show that using ILARF leads to the development of desirable indoor AR sys-

tems. 

The contribution of this paper is five-fold. First, it proposes the ILARF framework 

that integrates IL and AR techniques to facilitate the development of indoor location-

based AR systems. Second, ILARF provides rich and secure context-aware information 

exchanges. Third, ILARF simultaneously supports the device screen displaying mode and 

the HMD displaying mode, as well as their associated user interactions. Fourth, a practical 

AR system, GAR, to be used in gyms is developed based on ILARF. Fifth, GAR is com-

pared with related AR systems to demonstrate its superiority, which in turn, will show 

that ILARF can indeed facilitate the development of desirable AR systems. 

The rest of the paper is organized as follows. Section 2 presents an overview of ILARF 

and discusses schemes that can fit into the framework. Section 3 describes the implemen-

tation of GAR, which is developed on the basis of ILARF. GAR is compared with other 

related AR systems in Section 4. Finally, the paper is concluded in Section 5. 

2. ILARF 

This section presents the ILARF architecture, possible technologies that fit into the 

architecture, and related background knowledge. Figure 1 depicts a diagram of the ILARF 

architecture, showing that it comprises three key units: ILU, SCAMEU, and ARVIU. The 

units are elaborated on below. 
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Figure 1. Diagram of ILARF architecture. 

2.1. Indoor Localization Unit (ILU) 

The ILU employs device sensors and markers to perform indoor localization. This 

subsection discusses some indoor localization methods that are suitable for the ILU. Gen-

erally speaking, the methods use various data, such as sensor readings, radiofrequency 

(RF) signals, and images, to perform IL in order to determine the location of the user de-

vice (UD) with or without the help of landmark devices (LD), which are deployed in ad-

vance at known locations. They are classified as inertia-based, fingerprint-based, multilat-

eration-based, centroid-based, and marker-based, each of which are described below in 

separate subsubsections. 

2.1.1. Inertia-Based IL Methods 

Some UDs, such as mobile smartphones, are equipped with a variety of sensors. Cer-

tain sensors can be used to locate the UD. For example, the accelerometer, gyroscope, and 

magnetometer of a device can constitute an IMU and be used to determine the inertial 

state of the device [22]. An accelerometer is useful for determining the movements of a 

device. It provides 3D readings of acceleration in meters per second squared (m/s2) for the 

x, y, and z directions [23]. A gyroscope calculates the device’s angular movement in the x, 

y, and z directions. It can help determine the heading of a moving device using the meas-

urement unit of radians per second (rad/s). The combination of an accelerometer and gy-

roscope is frequently used to determine the short-term location of a device. It can then 

determine the location of the user of the device, e.g., the location of a pedestrian. A mag-

netometer measures the value of the ambient geomagnetic field in the x, y, and z directions 

at a certain location. It helps reduce errors in the gyroscope readings by identifying a spe-

cific reference direction (usually North). Along with an accelerometer, a magnetometer 

can be used to determine a device’s rotational vector. 

The localization method called pedestrian dead reckoning (PDR), which uses the 

above-mentioned IMU sensors, is suitable for an ILU. With IMU sensors, the PDR method 

estimates the step length and the heading of the device user or pedestrian. It can then 

obtain pedestrian-relative locations based on the previous position or a known position 

[24]. The advantage of the PDR method is that it has a low cost of installation and does 

not require extra UD sensors [25]. Figure 2 shows an illustration of the PDR IL method. 

Typically, a PDR system consists of three routines: (1) step detection, (2) step length esti-

mation, and (3) heading estimation. IMU sensors can help the PDR method achieve a lo-

cation accuracy of approximately several meters. 
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Figure 2. Illustration of the PDR-based IL method. 

Particle filters [26] and zero-velocity detectors [27] are extensively used for step de-

tection in PDR, but thresholding-based approaches are most commonly used in practice. 

Numerous algorithms are described in the literature that are based on thresholding using 

accelerometers [28,29], gyroscopes [30,31], or both. Furthermore, accelerometers, gyro-

scopes, and magnetometers can be combined as a sensor fusion value for step detection 

[32,33]. A step is assumed to be detected when the fusion value exceeds a predefined 

threshold or when a peak value is found in the time series of the fusion values. The above-

mentioned methods are shown to be able to improve PDR localization accuracy. 

2.1.2. Fingerprint-Based IL Methods 

Fingerprinting (or fingerprint-based) methods are widely used in IL. They are sim-

ple, easy to configure, and can localize a UD with high accuracy and without pricy hard-

ware. Microsoft RADAR [34] is a famous Wi-Fi fingerprinting IL method that was pro-

posed in 2000, and it has since been developed and improved by many researchers [35,36]. 

Figure 3 shows an illustration of a fingerprinting IL method [22] using LDs (e.g., 

Wi-Fi access points (AP)) deployed in advance at known locations to locate the UD. The 

fingerprinting IL method has two phases: offline training and online positioning, as 

shown in Figure 3. During the offline training phase, fingerprint data are collected and 

stored in a fingerprint database. Specifically, received signal strength indicator (RSSI) val-

ues are measured at indexed reference points (RPs) at fixed locations to create a radio map 

of the environment. Multiple signals of an LD are received and their RSSI values are meas-

ured and averaged at every RP. The RP’s location and the averaged RSSI value for every 

LD whose signals can be received at the RP are stored in the fingerprint database. In ad-

dition to original RSSIs, Gaussian models [37], histograms [38] of RSSIs, and other com-

plex distributions [35] were also investigated to serve as the representations of RSSIs. 

Moreover, since RSSIs may vary in magnitude from one UD to another for the same loca-

tion, other measurements or their derivatives were also used in place of RSSIs as 
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fingerprints, namely, hyperbolic location fingerprinting (HLF) [39], the difference in 

phase [40], and the ordered RSSI [41]. The use of a Wi-Fi AP coverage area was reported 

to mitigate the impact of RSSI changes over time [42]. 

 

Figure 3. Illustration of the fingerprint-based IL method. 

In the online positioning phase, a UD collects RSSIs from signals sent from various 

LDs to form a UD fingerprint. The UD fingerprint is then matched with those stored in 

the fingerprint databases to determine the UD location. Specifically, a matching process 

is employed to determine the similarity between the UD fingerprint and the RP finger-

prints in the database according to various criteria, such as the Euclidean distance, Man-

hattan distance, and cross-correlation. The nearest-neighbor (NN) mechanism and its var-

iants, including k-nearest neighbors (KNN) and weighted KNN mechanisms, are used to 

select RPs whose fingerprints are most similar to the UD’s [43]. Finally, the maximum 

likelihood estimator (MLE) [44], machine-learning techniques [45], and deep neural net-

works [46] can be applied to determine the UD location based on the selected RPs. 

2.1.3. Multilateration-Based IL Methods 

The multilateration localization method is a geometric model primarily based on the 

e.g., information carried by received LD signals to determine the UD location. Its basic 

concept is described as follows. It first uses the strength measurements of signals sent 

from LDs (Wi-Fi APs) to estimate the distance between the UD and every LD. All the 

estimated distances are then employed to locate the UD. In this method, n (n ≥ 3) LDs are 

deployed at specific locations for 2D IL. The relationship between the UD location and the 

n LD locations is formulated as: 

(𝑥 − 𝑥1)2 + (𝑦 − 𝑦1)2 = 𝑑1
2 

(𝑥 − 𝑥2)2 + (𝑦 − 𝑦2)2 = 𝑑2
2 

  

. .. 

(𝑥 − 𝑥𝑛)2 + (𝑦 − 𝑦𝑛)2 = 𝑑𝑛
2 

(1) 

Here, (𝑥, 𝑦) are the location coordinates of the LD; (𝑥1, 𝑦1), (𝑥2, 𝑦2), …, and (𝑥𝑛, 𝑦𝑛) are 

the location coordinates of the n LDs; and 𝑑1, 𝑑2, …, 𝑑𝑛 are, respectively, the distances 

from the UD to the n LDs. Figure 4 illustrates the multilateration method setting with 
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three LDs. In practice, the distance d from the UD to an LD can be estimated by the Friis 

equation or other similar equations. The Friis equation is as follows: 

𝑃𝑟 =  𝑃𝑡 𝐺𝑟𝐺𝑡 (


4𝜋𝑑
)

2

, (2) 

where 𝑃𝑟 is the signal power received by the receiver (i.e., the UD), 𝑃𝑟 is the transmitting 

power of the transmitter (i.e., the LD), 𝐺𝑟 is the gain of the receiver antenna, 𝐺𝑡 is the 

gain of the transmitter antenna,  is the signal wavelength, and d is the distance between 

the transmitter and the receiver. Some studies assume the transmitting power 𝑃𝑟, the re-

ceiver antenna gain 𝐺𝑟, the transmitter antenna gain 𝐺𝑡, and the signal wavelength  are 

fixed. The distance d is, thus, a function of the received signal power or strength and can 

be easily derived using RSSI values. With Equations (1) and (2) and the linear least-squares 

(LLS) mechanism, the location coordinates of the UD can then be obtained. 

 

Figure 4. Illustration of the multilateration-based IL with n LDs. 

One problem of multilateration-based methods is that the distance estimation based 

on signal power (i.e., strength) is influenced by many factors, such as noise, multipath 

fading, shadowing effects, and the attenuation of signals [47]. Wang et al. [48] proposed a 

novel Wi-Fi-based scheme using curve fitting (CF) and location search techniques to con-

struct a fitted RSSI distance function for each AP (i.e., LD), and Yang et al. [49] proposed 

preprocessing the RSSI raw data with a Gaussian filter to reduce the influence of meas-

urement noise. 

In addition to the mechanism that estimates the distance using signal power, there 

exist other distance-estimation mechanisms, such as time of arrival (TOA) [50] and time 

difference of arrival (TDOA) [51]. Moreover, the angle of arrival (AOA) [52] mechanism 

and its extended variants [53,54] use the angular relationship between the UD and every 

LD to calculate its location coordinates. Note that each of the above-mentioned mecha-

nisms [46–52] are regarded as a multilateration-based IL method or one of its variants in 

this paper. 

2.1.4. Centroid-Based IL Methods 

In centroid-based IL methods, the UD location can be estimated simply by the cen-

troid of the locations of the detected LD. However, some centroid-based IL methods also 
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employ RSSIs of different LDs to improve localization accuracy. For example, Subedi et 

al. [55] proposed a weighted centroid localization (WCL) method using BLE beacon de-

vices. The method assigns a specific weight to a detected LD to calculate the weighted 

centroid (WC) based on the RSSI associated with the LD. Equations (3)–(5) are used to 

calculate the WC [55], which in turn, is regarded as the location of the UD: 

𝑥𝑤 =
∑ 𝑥𝑖

𝑛
𝑖=1 𝑤𝑖

∑ 𝑤𝑖
𝑛
𝑖=1

 (3) 

𝑦𝑤 =
∑ 𝑦𝑖

𝑛
𝑖=1 𝑤𝑖

∑ 𝑤𝑖
𝑛
𝑖=1

 (4) 

𝑤𝑖 =
1

𝑑𝑖
𝑔  (5) 

In Equations (3)–(5), (𝑥𝑤 , 𝑦𝑤) are the location coordinates of the WC, (𝑥𝑖 , 𝑦𝑖) are the loca-

tion coordinates of the ith detected LD, 𝑑𝑖 is the estimated distance between the UD and 

ith LD, 𝑔 is the weighting, n is the total number of detected LDs, and 1 ≤ 𝑖 ≤ 𝑛. Similarly, 

𝑑𝑖 can be derived from the Friis equation. Depending on how far apart the deployed LDs 

are, the weighting 𝑔 can be set accordingly. A smaller value (closer to zero) of 𝑔 corre-

sponds to a WC approaching the geometrical centroid of the n detected LDs, whereas a 

greater value (e.g., 3) of 𝑔, corresponds to a WC closer to the LD with the strongest signal 

strength, as shown in [56]. Figure 5 illustrates the WCL method with three LDs. 

 

Figure 5. Illustration of the WCL method with three LDs. 

2.1.5. Marker-Based IL Methods 

Marker-based IL methods [15,57] utilize markers as references to perform IL. Two 

major types of markers are used in such IL methods: invisible markers (e.g., Wi-Fi, BLE, 

and NFC signals) and visible markers (e.g., QR codes, images, and text) [15]. Note that the 

methods that use invisible markers to obtain the UD location can also be classified as fin-

gerprint-based, multilateration-based, or centroid-based. Therefore, this paper mainly de-

scribes IL methods that use visible markers, such as Engfi-Gate [15] and Romli et al.’s 

method [57]. 

Engfi-Gate [15] uses invisible and visible markers to perform IL. BLE beacon packets 

sent by BLE beacon devices are used periodically as invisible markers and QR codes are 

used as visible markers. Engfi-Gate can determine the UD location using the WCL method 

when three or more BLE beacon devices are detected. Furthermore, when a QR code is 

)

)

)

)

=1/
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recognized, its location information is decoded and the UD is assumed to have the same 

location as the QR code marker. Using both invisible and visible markers, Engfi-Gate can 

achieve sub-meter localization accuracy. 

Romli et al. [57] developed a prototype AR mobile app for smart campus navigation 

within the library at their university. They took photos at key locations in the library to 

serve as visible markers. These photos or images were then registered to the Vuforia soft-

ware to localize the UD and serve as triggers for pop-up AR augmented information or as 

AR objects when the UD detects registered photos or images. 

2.2. Secure Context-Aware Message Exchange Unit 

The SCAMEU handles context-aware data exchanges in ILARF. In order to collect 

and exchange context-aware data in real-time, a variety of devices, such as smartphones, 

tablets, wearable devices, smart bands, smart sensors, cameras, smart speakers, and GPS 

devices, can be connected using different protocols [58]. This subsection discusses four 

protocols suitable for SCAMEU to exchange the data of devices and users: the MQTT pro-

tocol [59,60], the Hypertext Transport Protocol (HTTP) [61,62], the Constrained Applica-

tion Protocol (CoAP) [63,64], and the Advanced Message Queuing Protocol (AMQP) [65–

67]. Moreover, the Transport Layer Security/Secure Socket Layer (TLS/SSL) protocol [68] 

is also discussed in the subsection for securing the exchanged data. 

2.2.1. MQTT 

MQTT is a messaging protocol based on the publish–subscribe model. The first ver-

sion of the MQTT protocol was introduced in 1999 [59]. MQTT v3.1 was released in 2013 

and MQTT v5.0, announced in 2019, is the latest version. It was developed for resource-

constrained devices with the aims of low cost, open-source, reliability, and simplicity [60]. 

The MQTT publish-subscribe model is depicted in Figure 6, where the MQTT broker 

(or server) is the center of the model. Depending on the implementation, a broker can 

simultaneously manage up to thousands of connected MQTT clients. Data are organized 

into a hierarchy of topics. A client can send subscribe messages to the broker to subscribe 

to different topics and can send publish messages to the broker to publish data for differ-

ent topics. The broker is responsible for receiving and filtering every message, determin-

ing which clients have subscribed to the message, and sending the message to the sub-

scribers. 

 

Figure 6. The MQTT publish–subscribe communication model. 

For different application requirements, the MQTT protocol has three levels of quality 

of service (QoS): at-most-once, at-least-once, and exactly once. For the at-most-once 
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service, the message is sent only once without acknowledgement. For the at-least-once 

service, two-way handshaking is employed and the message is resent by the sender sev-

eral times until acknowledgement is received. For the exactly once service, the sender and 

the receiver use four-way handshaking to ensure only one copy of the message is received. 

MQTT transmits data based on the TCP/IP, which in turn, can be secured with the TLS/SSL 

protocol, as will be described later. A message can have a size of up to 256 MB and a 

header of 2 bytes according to the application. There are currently many MQTT platforms, 

such as Amazon Web Services, Microsoft Azure IoT, Adafruit, Facebook Messenger, and 

so on [61]. 

2.2.2. HTTP 

Tim Berners-Lee, a British scientist, initially proposed HTTP as a text-based online 

messaging protocol in 1989. The Internet Engineering Task Force (IETF) and the World 

Wide Web Consortium (W3C) then worked together to improve it. After several years of 

developing and improving HTTP, the IETF and W3C agreed to make it a standard proto-

col in 1996 [61]. 

HTTP supports the request–response model in client–server communication and 

uses a universal resource identifier (URI) to identify network resources. A client sends a 

message to a server requesting a resource with a specified URI. The server then sends back 

the resource associated with the specified URI to the client. HTTP is a text-based protocol 

and does not define the size of headers and message payloads. The default transport pro-

tocol for HTTP is TCP for connection-oriented communication, whereas TLS/SSL is used 

to ensure security. HTTP is a globally accepted web messaging standard that offers a va-

riety of features such as persistent connections, request pipelining, and chunked transfer 

coding [61,62]. 

2.2.3. CoAP 

CoAP is a lightweight machine-to-machine (M2M) protocol from the IETF CoRE 

(Constrained RESTful Environments) Working Group [63,64]. This protocol supports both 

the request-response and the publish-subscribe models. CoAP was primarily created so 

that resource-constrained internet devices could interoperate. 

Similar to HTTP, CoAP utilizes URI to identify resources. Unlike HTTP, CoAP is a 

binary protocol that has a header of 4 bytes along with short message payloads. CoAP 

employs the User Datagram Protocol (UDP) as its transport protocol for connectionless 

communication and uses Datagram Transport Layer Security (DTLS) to ensure security. 

CoAP offers two distinct degrees of QoS by employing “confirmable” and “non-confirm-

able” messages. Confirmable messages require receivers to acknowledge the messages, 

whereas non-confirmable messages do not. 

CoAP has an extension to add a broker to offer publish–subscribe communication 

between subscribers and publishers. A subscriber sends a message with a URI to subscribe 

to a specific resource that is identified by the URI. When a publisher sends a message to 

update the information associated with the URI, the broker notifies all the subscribers that 

subscribed to the RUI of the updated information. 

2.2.4. AMQP 

AMQP was created as a corporate messaging protocol for interoperability, provision-

ing, security, and dependability in 2003 [61]. Both the request-response and the publish–

subscribe models are supported by AMQP [65]. It has many message-related capabilities, 

including topic-based publish-subscribe messaging, reliable queuing, flexible routing, 

and transaction [61]. 

In AMQP, either the publisher or the subscriber is required to build an “exchange” 

with a given name and to broadcast that name. By using the given name of this exchange, 

the publisher and the subscriber can find each other. After that, the subscriber creates a 
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“queue” and attaches it to the exchange at the same time. The “binding” procedure is used 

to match received messages to a queue. AMQP is a binary protocol having several ways 

for exchanging messages: directly, in fanout form, by subject, and based on headers. 

AMQP has a header of 8 bytes and a short message payload of the maximum size depend-

ing on the programming technology [66,67]. Communication in AMQP is connection-ori-

ented and TCP is used as the default transport protocol. Two QoS levels are provided by 

AMQP: the unsettle format (unreliable) and the settle format (reliable). Security in AMQP 

is provided via TLS/SSL or the Simple Authentication and Security Layer (SASL) protocol 

[65]. 

2.2.5. TLS/SSL 

SSL and TLS are both cryptographic protocols that encrypt and authenticate data 

transmitted between two entities, such as a web server and a web browser [68]. SSL was 

originally designed by Netscape in 1994 and became TLS in 1999. Since SSL is the prede-

cessor of TLS, they are sometimes used interchangeably and referred to as TLS/SSL. 

TLS/SSL uses a four-way handshaking procedure based on a public-key cryptosystem 

such that the two communicating entities agree on a symmetric key to encrypt sensitive 

data in order to protect them. 

MQTT, HTTP, and AMQP can apply TLS/SSL atop TCP for the purpose of ensuring 

data authentication, integrity, and confidentiality, whereas CoAP adopts DTLS atop UDP 

for the same purpose. The X.509 certificate can be used in TLS/SSL or DTLS to authenticate 

communicating entities in order to avoid many types of attacks, such as the man-in-the-

middle attack, which can cause very significant damage. It is, thus, crucial to apply 

TLS/SSL to MQTT, HTTP, and AMQP and apply DTLS to CoAP. 

2.3. AR Visualization and Interaction Unit 

The ARVIU is responsible for displaying appropriate augmented information in ap-

propriate areas of a device screen to offer a rich user experiences and for user interaction. 

This unit has three functions: context perception, information visualization, and user in-

teraction. The context-perception function gathers contextual data from the surrounding 

environment to determine the augmented information to be displayed or visualized. The 

information visualization function then displays the augmented information with specific 

visualization effects overlaid atop appropriate images or appropriate areas of the UD 

screen. The user interaction function captures the UD user’s actions from UD sensors (e.g., 

the touch screen, camera, and microphone), interprets the actions as commands, and then 

performs the corresponding routines. 

ARVIU has two modes: device screen mode and HMD mode. The following section 

describes the two ARVIU modes. 

2.3.1. ARVIU Device Screen Mode 

In device screen mode, the 2D graphical user interface (GUI) and environmental im-

ages are displayed on the device screen. They are created with AR creation tools, e.g., the 

Google ARCore SDK and the Unity 3D game engine. Figure 7 shows an example of device 

screen mode, where context-aware information is displayed on the device screen and the 

user interacts with the system by tapping GUI buttons. 
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Figure 7. Demonstration of device screen mode (adapted from [69]). 

2.3.2. ARVIU HMD Mode 

In HMD mode, the 3D GUI and environmental images are displayed on the device 

screen, which is divided into a left half and a right half. They are created with 3D AR 

creation tools, e.g., Google VR SDK, along with AR creation tools, e.g., Google ARCore 

SDK and the Unity 3D game engine. The left and right screen halves display images for 

the left and right eyes of the user, respectively. The two halves have slightly different 

images so that the user experiences the illusion of 3D. Figure 8 shows the HMD [15]. 

 

Figure 8. The HMD mode [15]. 

A binocular HMD, such as ASUS VIVE, or a head-mounted device in which a 

smartphone is embedded, such as the VR Box, is required for the HMD mode to induce a 

3D immersive sensation in the user. When users wear a binocular HMD or insert their 

smartphones into head-mounted devices, they experience 3D objects with depth infor-

mation. This is due to the fact that the 3D AR creation tool calculates the slightly different 

views required for each of the user’s eyes to produce the illusion of 3D. This mode em-

ploys virtual buttons to enable users to interact with the system because they are unable 

to tap the phone screen or the HMD screen. To interact with a virtual button, the user 

needs to place his or her finger in front of the camera and keep it stationary for a specific 

period of time. This is to simulate the finger remaining for a sufficient time over the virtual 

button to trigger the routine associated with the button. Alternatively, users can also in-

teract with the system by hand gestures or voice commands. 

3. Gym Augmented Reality 

ILARF is a framework that facilitates the development of AR systems. In this re-

search, a prototype AR app to be used in gyms, Gym Augmented Reality (GAR), is 
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developed based on ILARF. The implementation of the GAR prototype makes the follow-

ing assumptions about the gym: there are four treadmills in Room 1, six stationary bicycles 

in Room 2, four barbell sets in Room 3, the yoga course in Room 4, and the dancing course 

in Room 5. Users can register their profiles and configure appropriate settings when they 

use GAR for the first time. GAR can then help the users locate gym equipment based on 

their workout programs or the favorite exercise listed in their profiles. For example, if a 

user wants to lose weight and likes to run, then the app will show the locations of available 

treadmills. For another example, if a gym has course sessions such as yoga and dancing 

in dedicated rooms, then GAR can also guide the user to attend sessions that they are 

interested in. It provides instructions on how to properly use the gym equipment and 

makes it possible for users to socialize with each other, which may help motivate them to 

go to the gym regularly. The GAR implementation architecture is illustrated in Figure 9. 

 

Figure 9. GAR implementation architecture. 

3.1. Hardware and Software Specifications 

This subsection describes the hardware and software requirements of GAR imple-

mentation. GAR is implemented on an Android-based UD and, in this paper, a Samsung 

Note 20 smartphone running on Android OS version 12, and supporting Bluetooth 4.0 

was used. In the ILU, QR codes are used as the visible marker and BLE beacon signals (or 

messages) issued by Seekcy BLE devices are used as the invisible marker for determining 

the UD location and speed. The UD sensors, such as the accelerometer and the magne-

tometer, help obtain the UD direction. GAR uses the HTTP protocol for users to communi-

cate with the ILARF server in the SCAMEU. The ILARF server is built on the basis of the 

Laravel PHP web server and the MySQL database. Some Raspberry Pi B+ devices, 

equipped with temperature, humidity, and light intensity sensors, are deployed in the 

areas surrounding the user to sense environmental data about the physical world. In order 

to enable context-aware communication between the sensors and ILARF server, the 

MQTT messaging protocol is employed. Furthermore, the Google ARCore SDK is used 

for AR creation in both device screen mode and HMD mode. Additionally, the Google VR 

SDK is employed in HMD mode. 
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3.2. ILU Implementation 

Visible markers, invisible markers, UD sensors, and combinations of the first two are 

used in the ILU to determine the UD location. Below is a description of the ILU imple-

mentation. 

3.2.1. ILU Using Visible Markers 

QR codes are used as the visible markers. GAR can determine the user’s location im-

mediately by retrieving the location information encoded in the QR code once it is scanned 

by the UD camera and decoded successfully. Thus, only one QR code is needed to deter-

mine the UD location accurately. The localization accuracy depends on the distance from 

which a QR code image can be scanned and decoded successfully. 

3.2.2. ILU Using Invisible Markers 

BLE beacon messages or signals sent by the BLE beacon devices are used as the in-

visible markers. The Seekcy BLE device is employed as the BLE beacon device. The loca-

tion of the BLE beacon device is embedded into the BLE beacon messages. On receiving 

beacon messages sent by a beacon device, the UD can then determine the location of the 

beacon device. It can also measure the signal strengths of the beacon messages and esti-

mate the UD location using the WCL method described earlier. 

An experiment was set up to apply the WCL method in the ILU using invisible mark-

ers. The experimental setup is shown in Figure 10. Four LDs were placed in the corners of 

the 5 × 8 m experimental area. In addition, several gym equipment locations are prede-

fined. The estimated UD location returned by the WCL method can be used to determine 

which gym kit is closest to the UD to help differentiate multiple kits. Moreover, the direc-

tion information provided by the method mentioned in the next sub-subsection, and the 

information derived from the QR code, if any, attached to the gym kit can also help dif-

ferentiate multiple kits. 

 

Figure 10. The locations of LDs and gym equipment in the experimental area coordinate system. 

The UD speed can be calculated based on the history of the UD locations. By calcu-

lating the distance d between the current location and the previous location of the UD, the 

speed of the UD is calculated as d/t, where t is the time elapsed between the time associ-

ated with the previous location and the time associated with the current location. 
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3.2.3. ILU Using UD Sensors 

UD sensors, such as the accelerometer and the magnetometer, are used in GAR ILU 

implementation to determine the UD direction or orientation. The UD direction is calcu-

lated via the steps described below. The first step is to obtain reading values from the 

accelerometer and the magnetometer. This can be done effectively by using the Android 

sensor API [70]. The second step is to use the reading values to calculate the UD direction 

of three components in radians. As shown in Figure 11, the three components are the azi-

muth, pitch, and roll, which are the rotation around the z axis, x axis, and y axis, respec-

tively. The third step is to convert the azimuth from radians between 0 and 2  to degrees 

between 0° and 360°. The UD direction can then be determined according to the azimuth 

in degrees. Specifically, the north is between 350° and 10°, the west is between 80° and 

100°, and so on. Based on inertial sensors, the WalkCompass system [71] utilizes three 

modules, the human walk analysis, local walk direction estimator, and global walk direc-

tion estimator, to estimate the UD (i.e., smartphone) direction. The research in [71] con-

ducted experiments for different users walking on various types of surfaces (e.g., carpet 

and tiled floor) with different holding positions of smartphones (e.g., portrait, landscape, 

and raising up for a call). It has shown that a median error of direction deviation of less 

than 8° can be achieved for the scenarios mentioned above. This demonstrates that using 

inertial sensors can be used to accurately estimate the direction of the UD for different 

environments. The ideas of the WalkCompass system can help GAR estimate UD direc-

tion for different environments. 

 

Figure 11. Illustration of the roll, pitch, and azimuth compared to the north direction. 

3.2.4. ILU Using Both QR Codes and Invisible Markers 

GAR ILU combines IL methods using QR codes and invisible markers to perform 

localization calibration to improve localization accuracy. When a UD uses GAR and goes 

through the gym area, the WCL method using invisible markers (i.e., BLE beacon device 

signals) starts calculating the UD location. On receiving a signal from a BLE beacon device 

that acts as an LD, the UD can use the RSSI value to estimate the distance from itself to the 

beacon device according to the Friis equation, as shown in Equation (2). 

In practice, the RSSI value of an LD signal is calculated according to: 

RSSI = 10  log
𝑃𝑟

𝑃𝑟𝑒𝑓 
, (6) 

where the RSSI value is in decibel-milliwatts (dBm) and equal to 10 times the logarithmic 

value of the ratio of the received power 𝑃𝑟 to the reference power Pref, which is usually 

taken as 1.0 mW. Therefore, the power 𝑃𝑟 of the received signal can be derived from the 

RSSI value. 
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Putting 𝑃𝑟 , 𝑃𝑡 , 𝐺𝑟 , and 𝐺𝑡 of the Friis equation in decibels (dB) (with Pr and Pt in dBm, 

and Gr and Gt in dBi) yields: 

𝑃𝑟 = 𝑃𝑡 + 𝐺𝑡 + 𝐺𝑟 + 20 log (
 λ

4𝜋𝑑
) = 𝑃𝑡 + 𝐺𝑡 + 𝐺𝑟 + 20 (log  λ − log 4 − log 𝜋 − log 𝑑), (7) 

where Pt, Gt, Gr, and  are often fixed and known in advance. Hence, the distance d be-

tween a UD and an LD can be derived using Equation (7). 

Based on the simplified WCL method introduced earlier, a UD can determine its lo-

cation L = (Lx, Ly) according to Equation (8) after receiving signals from n LDs, where (Lx, 

Ly) are the coordinates of the UD location L and n is usually taken as an integer greater 

than or equal to 3: 

𝐿 =
∑ 𝑤𝑖𝐿𝑖

𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

, (8) 

where Li represents the coordinates of the location of the ith LD, 𝑤𝑖 =
1

𝑑𝑖
; and 𝑑𝑖 is the 

estimated distance between the UD and the ith LD. As suggested in [72], 𝑤𝑖 =
1

𝑑
𝑖
𝑔 can be 

set with 𝑔 being a large value (e.g., 3) to weight longer distances marginally lower for the 

case when LDs have a long transmission range. However, 𝑔 is set as 1 in the GAR ILU, 

and thus, 𝑤𝑖 =
1

𝑑𝑖
 in Equation (8). 

As mentioned in [73], a UD can estimate the distance between itself and an LD when 

the WCL method is applied according to the RSSI value of the LD’s signal received on the 

basis of the Friis equation. This is under the assumption that the values of Pt, Gt, Gr, and  

in the Friis equation are known. These values, however, are usually not known and are 

set to default values when the WCL method is applied. Moreover, even if the values are 

measured and set accordingly, they may change over time, owing to the instability of the 

signals and noise in the environment. Consequently, the values need to be calibrated if 

possible. 

GAR performs WCL calibration based on the mechanism of the PINUS IL method 

[73], as described below. When a UD detects a QR code that is embedded with location 

information, the UD can take its location as the embedded location, which is a very accu-

rate method. The UD can then calculate an accurate distance d between itself and an LD. 

By letting C represent the term (𝑃𝑡 + 𝐺𝑡 + 𝐺𝑟 + 20 (log  − log 4 − log )) in Equation (7), 

the following can be derived: 

𝑃𝑟 = 𝐶 −  20 𝑙𝑜𝑔 𝑑  (9) 

𝐶 = 𝑃𝑟 +  20 𝑙𝑜𝑔 𝑑 (10) 

Pr can be obtained by Equation (6). For a fixed and already known distance d (e.g., d 

= 1 m), the constant C can be calculated according to Equation (10) and regarded as the 

calibration constant associated with the LD. Afterwards, an unknown distance between 

the UD and the LD can then be estimated according to Equation (11); it is called the cali-

brated distance below. 

𝑑 = 10
𝐶−𝑃𝑟

20   (11) 

The UD can derive the calibration constant associated with every detected LD and 

store the constant locally in the UD to perform localization calibration in the future, as 

described below. When the UD receives signals from various LDs, it can use the RSSI 

value to derive Pr based on Equation (6) and search locally for the calibration constant C 

associated with every LD to derive the calibrated distance between itself and every LD. 

With all the calibrated distances, the UD can derive more accurate weightings for all LDs. 

Consequently, the UD can derive its estimated location with higher accuracy based on 

Equation (8). 
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This study has conducted experiments using the Samsung Note 20 smartphone as a 

UD and the Seekcy BLE device as an LD to estimate the calibrated distance according to 

Equation (11) for two scenarios. The first is the 1-m scenario where the UD and the LD are 

within a practical distance of 1 m, whereas the second is the 2-m scenario where the UD 

and the LD are within the practical distance of 2 m. The box plot in Figure 12 shows the 

calibrated distance estimation results of the two scenarios based on experimental data. 

There are 100 data pieces for either scenarios. Based on the box plot, the mean and the 

median of the estimated distances are very close to the practical distances. However, there 

still exist a few extreme values in the estimated results. Thus, it is suggested to gather a 

limited number (e.g., five) of estimated results and use their median to represent the final 

calibrated distance. 

 

Figure 12. Box plot of the calibrated distance estimation. 

After the calibrated distance from the UD to every LD is obtained, the UD location 

can be determined by the WCL method. The localization error statistics of GAR WCL are 

shown in Figure 13. The y axis is the localization error and the x axis represents different 

testing location coordinates. The blue color represents the results of WCL using invisible 

markers without calibration (WCL w/o CAL), whereas the orange color represents WCL 

using invisible markers with QR code calibration (WCL w/CAL). Based on Figure 13, WCL 

w/CAL exhibits smaller localization errors than WCL w/o CAL. 
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Figure 13. Localization error statistics of GAR WCL. 

3.3. SCAMEU Implementation 

The GAR SCAMEU utilizes a secure cloud MQTT broker (or server) to exchange in-

formation from ambient sensors and user information to achieve context-awareness. This 

unit also employs an ILARF server, a PHP-based web server, to manage user profiles and 

settings. 

3.3.1. Secure Cloud MQTT Broker 

In the GAR SCAMEU implementation, ambient sensors such as temperature, light 

intensity, humidity, and air-quality sensors, are employed to sense the physical phenom-

ena of the surrounding environment. The sensors are connected to a Raspberry Pi B+ de-

vice equipped with a Wi-Fi USB dongle, as shown in Figure 14. The sensed data are gath-

ered by the Raspberry Pi B+ device, which acts as an MQTT publisher to embed sensed 

data into a packaged MQTT publisher message to be sent to the secure cloud MQTT bro-

ker. That is to say, the Raspberry Pi B+ device publishes the sensed data as context-aware 

information to the MQTT broker. Afterwards, the MQTT broker further publishes the 

sensed data to the ILARF server, which plays the role of an MQTT subscriber and, in turn, 

forwards the data to the UD. The implementation of the ILARF server will be described 

in Section 3.3.2. The implementation of the MQTT broker is described below. 
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Figure 14. A Raspberry Pi B+ device equipped with Wi-Fi dongle USB and ambient sensors. 

The MQTT broker used by GAR is operated and maintained by the EMQX MQTT 

Cloud, which is the MQTT cloud service platform released by EMQ. It provides the ser-

vice of accessing MQTT 5.0 as an all-in-one operation together with maintenance in a 

unique isolation environment. EMQX has built-in support for TLS/SSL that can ensure the 

security of transmission in data communication. The TLS/SSL implementation will be dis-

cussed in Section 3.3.3. 

3.3.2. ILARF Server 

The tasks of the ILARF server in the GAR SCAMEU implementation are to manage 

user profiles and settings and to forward data sent by the MQTT broker to the correspond-

ing UD. The ILARF server is built based on the Laravel 8 PHP web server framework and 

the MySQL relational database management system. Before using GAR, users must reg-

ister their information on the ILARF server. Two types of user roles are implemented in 

GAR: a general user who visits the gym and an administrator user who manages all users 

and the whole GAR system. A screenshot of the user administration management page of 

the ILARF server is shown in Figure 15. 

 

Figure 15. Screenshot of the ILARF server web interface. 
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3.3.3. TLS/SSL Implementation 

In the GAR SCAMEU implementation, both MQTT and HTTP protocols use TLS/SSL 

to ensure the security of the data communication. The data communication can be mainly 

classified as four types: (1) communication between the MQTT broker as the server and 

the Raspberry Pi B+ device as the client (publisher), (2) communication between the 

MQTT broker as the server and the device as the client (subscriber), (3) communication 

between the MQTT broker as the server and the ILARF server as the client (subscriber), 

and (4) communication between the ILARF server as the HTTP web server and the UD as 

the HTTP client. For all four types of data communication, messages sent between the 

server and the client are simple plain texts. Therefore, attackers can very easily tap into 

the communication, giving rise to the threats of data theft, data eavesdropping, message 

forgery, etc. To remove these threats, TLS/SSL is adopted combined with MQTT and 

HTTP to ensure data authentication, integrity, and confidentiality. Figure 16 shows a com-

parison between data communication without TLS/SSL and with TLS/SSL. 

 

Figure 16. Data communication without (left) and with (right) TLS/SSL. 

3.4. ARVIU Implementation 

The ARVIU uses AR and VR SDKs to display context-aware information in the ap-

propriate device screen areas and handle user interaction. There are two operation modes 

in the ARVIU: device screen mode and HMD mode. The following describes how GAR 

implements the two modes. 

3.4.1. GAR Device Screen Mode 

The Unity3D game engine and the Google ARCore SDK are both used in GAR to 

synthesize scenes and display the 2D GUI on the phone screen. Figure 17 shows screen-

shots of the GAR GUI in device screen mode. The user interacts with GAR by tapping the 

buttons displayed on the GUI. Users can register their personal information or profile data 

on the ILARF server by filling in their username, email, password, member type, and their 

favorite sports activities when they use GAR for the first time. After registration, users can 

use GAR to move around a gym. The GAR ILU uses the BLE-based WCL method to locate 

a user who uses a UD running GAR. The ILU also uses UD sensors, such as the accelerom-

eter and magnetometer, to determine the UD direction. Moreover, it performs localization 

calibration to improve the localization accuracy of WCL once the UD scans a QR code 

embedded with a known location. The UD location is used by GAR to show appropriate 

data from the sensors closest to the UD. Notably, the sensed data are published by the 

SCAMEU MQTT broker and sent to the ILARF server, which in turn forwards the sensed 

data to the UD according to the UD location and the locations of the sensors generating 

the data. Then, user-related information and context-aware information can be displayed 

at appropriate areas on the phone screen. The displayed information includes the humid-

ity, temperature, light intensity, and air quality of the surrounding environment of the 

With TLS/SSLWithout TLS/SSL
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UD and the direction to the location of the user’s favorite sports activity or equipment, as 

well as the total number of visitors currently participating in the activity or using the 

equipment, as shown in Figure 17. In this mode, users can interact with the system by 

tapping buttons shown on the screen. 

 

Figure 17. Device screen mode: screenshots of the registration page (left), main page when far from 

gym equipment (middle), and main page when near gym equipment (right). 

3.4.2. GAR HMD Mode 

In addition to the Unity 3D game engine and the Google ARCore SDK, the Google 

VR SDK is used in GAR HMD mode to split the phone screen into left and right halves for 

the left and right eyes of the user, respectively. Figure 18 shows a screenshot of GAR HMD 

mode. A head-mounted device, such as the VR Box, is required to use this mode. The user 

inserts their smartphone into the head-mounted device to experience the sensation of see-

ing 3D objects with depth information. This is because the Google VR SDK calculates the 

slightly different views required for each eye to produce the illusion of 3D. In GAR HDM 

mode, user-related information and context-aware information are displayed. The dis-

played information includes the humidity, temperature, and light intensity of the sur-

rounding environment of the user, as well as the direction of the location of the user’s 

favorite sports activity or equipment. This mode employs virtual buttons for users to in-

teract with as they are unable to tap the screen of their phone once it is placed within the 

head-mounted device. The user needs to place their finger in front of the camera and keep 

it stationary for a specific period of time to simulate their finger pressing a virtual button 

to trigger specific routines. 
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Figure 18. Screenshot of GAR HMD mode. (The left arrow in the upper left corner indicates the 

“EXIT” button to exit the app.) 

4. Comparison of GAR and Related Systems 

GAR is built based on the ILARF framework. To show that ILARF can indeed facili-

tate the development of desirable AR systems with multiple advantages, three related 

gym AR/VR (virtual reality) systems are reviewed, namely, Endure [19], Climbing Gym 

[20], and Jarvis [21], as described in Section 4.1. After that, GAR is compared with these 

related systems in Section 4.2. 

4.1. Overview of Related Systems 

Endure [19] is an AR-based fitness application that incorporates gaming with gym 

activities. A flowchart for Endure is shown in Figure 19. Its purpose is to increase user 

motivation to do more exercise, and it can be used indoors or outdoors. It does not offer 

indoor localization but does employ the global positioning system (GPS) outdoors to cal-

culate user travel distance. The calculated distance is logged daily and shown on the 

phone screen for the user to track their exercise progress. 

 

Figure 19. Flowchart of the Endure system. 

Climbing Gym [20] is an AR application for teaching indoor climbing techniques via 

AR visualization. A flowchart for Climbing Gym can be seen in Figure 20. Initially, Climb-

ing Gym acquires a climbing wall image using the Kinect ONE v2 RGB video camera and 

then preprocesses it. After that, image detection is used to obtain the coordinates of the 
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climbing holds. Climbing Gym uses an HTTP connection to exchange messages to trans-

mit the coordinates of detected climbing holds between the web server and the applica-

tion. Climbing holds that form a route to climb are then selected and visualized onto the 

climbing wall by a projector or onto the phone screen for various training programs cus-

tomized for different users. 

 

Figure 20. Flowchart for the Climbing Gym system. 

Jarvis [21] is a VR application that runs as a virtual fitness assistant. A flowchart of 

the Jarvis system is shown in Figure 21. It uses a 3D GUI with an HMD to provide the 

users with an immersive and engaging workout experience in the gym. Miniature sensors 

are attached to exercise machines to send sensed data via BLE communication to track 

exercise information such as exercise type, repetition counts, etc. Jarvis relies on the 

tracked exercise information to derive and show the best way to perform the exercise for 

users to achieve their exercise goals (e.g., improving a target muscle group). 

 

Figure 21. Flowchart of the Jarvis system. 
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4.2. Comparison of GAR and Related Systems 

Table 1 shows the comparison results by which it can be observed that GAR has some 

advantages over the related systems, as described below. First, GAR provides indoor lo-

calization information, whereas the others do not. GAR employs an invisible marker (i.e., 

the BLE beacon signal), a visible marker (i.e., the QR code), and UD sensors (i.e., the ac-

celerometer and magnetometer) to provide accurate UD location and direction infor-

mation. Suitable and useful information can then be derived accordingly and be displayed 

on appropriate areas of the screen. The accurate location and direction information are 

also useful for GAR to navigate users to certain points of interest. 

Table 1. Comparison of GAR and related systems. 

Systems 

 

Properties 

Endure  

[19] 

Climbing Gym  

[20] 

Jarvis  

[21] 
GAR 

Indoor  

localization 
No No No 

BLE Beacon Signals + QR 

Code + UD Sensors 

Secure message  

exchange 
No No No 

TLS/SSL for MQTT and 

HTTP 

Context-aware  

Information 

Travel  

Distance 

Climbing  

Holds  

Sensor  

Data 

Sensor Data + Nearby 

User Profiles 

AR Interface 2D GUI 2D GUI 3D GUI + HMD 2D GUI + 3D GUI + HMD 

Second, GAR is more secure than the other systems and the privacy of GAR users is, 

thus, highly protected. GAR uses TLS/SSL to secure MQTT and HTTP to ensure data au-

thentication, integrity, and confidentiality. In contrast, no other systems consider the se-

curity aspect of data communication. Therefore, they are more vulnerable to cyberattacks, 

loss of user privacy, and leaks. 

Third, GAR has richer context-aware information than the other systems. The infor-

mation provided by GAR includes the data from ambient sensors and the public profile 

data of nearby users. In contrast, only limited information is provided by the other sys-

tems. For example, only the travel distance, the climbing holds of a climbing route, and 

sensor data are displayed in Endure, Climbing Gym, and Jarvis, respectively. 

Fourth, Endure and Climbing Gym use a 2D GUI, whereas Jarvis and GAR provide 

a 3D GUI and the HMD mode. Compared to the 2D GUI, the 3D GUI provides more intu-

itive forms of user interaction. Moreover, the projector visualization of Jarvis and the 3D 

GUI in the HMD mode of Jarvis and GAR also give users additional hands-free interaction 

experiences. 

The limitations of GAR implemented based on ILARF are that GAR is still a proto-

type and that its ILU is realized in a room instead of a practical gym environment. Fur-

thermore, ILU, SCAMEU, and ARVIU have only partial functions specified in ILARF. De-

spite these limitations, GAR is shown to be comparably good when compared with related 

systems, which in turn, demonstrates that ILARF is a good framework. 

5. Conclusions 

This paper proposed an indoor location-based augmented reality framework 

(ILARF) for developing superior indoor augmented-reality (AR) systems. ILARF has three 

major units: the indoor localization unit (ILU), the secure context-aware message ex-

change unit (SCAMEU), and the AR visualization and interaction unit (ARVIU). The ILU 

runs on a mobile device such as a smartphone and utilizes visible markers, invisible mark-

ers, and device sensors to localize the user device (UD). The SCAMEU utilizes a MQTT 

server for clients to subscribe and publish data, such as ambient sensor data and user in-

formation, for context-awareness. It also employs a web server to manage user profiles 

and settings via the HTTP protocol. ARVIU uses AR/VR creation tools to display context-
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aware information in appropriate areas of the device screen. It has two modes: device 

screen mode and HMD mode, both of which have their own manner of user interactions. 

In summary, the novelties of ILARF are as follows. First, it combines IL and AR tech-

niques to facilitate the development of indoor location-based AR systems. Second, it 

adopts the MQTT, HTTP, and TLS protocols to provide users with rich and secure context-

aware information exchanges. Third, ILARF uses AR/VR creation tools to easily support 

both device screen mode and HMD mode, as well as their associated user interactions, at 

the same time. 

To show that ILARF can indeed facilitate developers to create novel and superior 

indoor location-based AR systems, one prototype AR app for gyms, Gym Augmented Re-

ality (GAR), is developed based on ILARF. Users can register their profiles and configure 

the settings when they use GAR for the first time. Afterwards, GAR helps users locate 

gym equipment based on their workout programs or favorite exercise by showing direc-

tions and also provides instructions on how to properly use the gym equipment. Further-

more, GAR also enables users to socialize with each other, which may help motivate them 

to go to the gym regularly. GAR is compared with other related systems, namely, Endure, 

Climbing Gym, and Jarvis, to show that it is superior by virtue of ILARF. In addition to 

gyms, ILARF can be used to realize AR systems in other domains, for example in classes, 

factories, warehouses, farms, kitchens, museums, etc. In practice, ILARF can be applied to 

environments that require visualization using AR, IL, and data communication at the 

same time. Typical environments include the smart manufacturing [74], smart city [75], 

smart home [76], and smart campus [77], etc. 

Currently, GAR is still in prototype form and, thus, has some limitations. Its ILU was 

implemented in a room instead of a real gym environment. Moreover, ILU, SCAMEU, 

and ARVIU have only partial functions specified in ILARF. Despite these limitations, GAR 

was shown to be better than related AR systems. In the future, more functionality for GAR 

is planned to be added. The scope for future improvement includes the interaction and 

information provided for users. For example, a path planning function will be created to 

construct paths for users to go to specific locations of interest. A function for showing 3D 

views of exercise moves so that users can receive information about how to exercise 

properly and efficiently is also planned. Moreover, more novel AR systems based on 

ILARF will be developed. Specifically, an AR system for smart classes and an AR system 

for smart factories are both planned. 
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