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Abstract: Speech reflects people’s mental state and using a microphone sensor is a potential method
for human–computer interaction. Speech recognition using this sensor is conducive to the diagnosis
of mental illnesses. The gender difference of speakers affects the process of speech emotion recog-
nition based on specific acoustic features, resulting in the decline of emotion recognition accuracy.
Therefore, we believe that the accuracy of speech emotion recognition can be effectively improved by
selecting different features of speech for emotion recognition based on the speech representations
of different genders. In this paper, we propose a speech emotion recognition method based on
gender classification. First, we use MLP to classify the original speech by gender. Second, based
on the different acoustic features of male and female speech, we analyze the influence weights of
multiple speech emotion features in male and female speech, and establish the optimal feature sets
for male and female emotion recognition, respectively. Finally, we train and test CNN and BiLSTM,
respectively, by using the male and the female speech emotion feature sets. The results show that the
proposed emotion recognition models have an advantage in terms of average recognition accuracy
compared with gender-mixed recognition models.

Keywords: speech emotion recognition; gender classification; CNN; BiLSTM

1. Introduction

Speech emotion recognition is a computer simulation of the human emotion perception
and understanding process. It extracts the acoustic features of emotion from the collected
speech signals using a microphone sensor and identifies the mapping relationship between
these acoustic features and human emotion. Speech emotion recognition is widely used
in the field of human–computer interaction [1–4]. In the field of medicine, the effective
recognition of emotion in speech can be used to improve the intelligibility of speech for
people with speech disabilities and help listeners better understand the speech information
expressed by the speaker [5]. In the field of education, students who learn online should
be analyzed to identify their emotional states and improve the quality of teaching [6]. In
the field of criminal investigation, the automatic recognition of speech helps to discover
the real emotional state of criminal suspects and their attempt to hide their true emotions,
thus assisting in lie detection [7]. Currently, due to the impact of COVID-19, about 15.5%
of the global population suffers from some kind of mental illness [8], and speech emotion
recognition systems are gradually being applied to the field of mental health counseling.
The research on the automatic recognition of speech emotion not only promotes the devel-
opment of computer technology, but also provides an efficient diagnosis of mental illnesses.
Through the early detection, intervention and treatment of mental illness, people’s quality
of life can be improved.

In recent years, a lot of work has been carried out to automatically recognize emo-
tional information in speech [9–12], but the lack of significant improvement in recognition
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accuracy is still a major problem in the field of speech emotion recognition. Researchers
have attempted to explore the method to improve the accuracy of emotion recognition from
different perspectives. In the work developed in [10], N. Prombut et al. proposed a speech
emotion recognition model for Thai subjects. Mel spectrogram and mel-frequency cepstrum
coefficient (MFCC) are used for feature extraction, and emotions are classified by combining
a one-dimensional convolutional neural network (Conv1D) and two-dimensional convolu-
tional neural network (Conv2D). This study utilizes a dataset from the VISTEC-depa AI
Research Institute of Thailand, which includes 21,562 sound samples. The results show that
Conv2D with MFCC achieves the highest accuracy rate of 80.59%. In [13], S. Mirsamadi
et al. proposed to automatically distinguish emotion-related speech features using deep
learning methods. The authors combine bidirectional LSTMs with a novel pooling strategy.
This strategy uses an attention mechanism that enables the network to focus on parts of
sentences with high emotional salience. The experiments were carried out on the IEMOCAP
corpus, and the highest recognition rate reached 63.5%. In the study of Kwon et al. [14],
a lightweight deep learning-based self-attention module (SAM) for a SER system is pro-
posed to address the fact that a low recognition rate and high computational cost result
in a scarceness of datasets, model configuration, and pattern recognition. The proposed
method shows consistent improvements in experiments for the IEMOCAP, RAVDESS, and
EMO-DB datasets, and shows 78.01%, 80.00%, and 93.00% accuracy, respectively. Most
of the abovementioned studies aim to improve the accuracy of emotion recognition by
applying feature extraction, using model recognition or adding corpus, but they do not
obtain a satisfactory result.

At present, acoustic emotional features are widely used to represent emotional in-
formation, including rhythm features, quality features, and spectral features. Prosodic
features, also known as super segmental features [15], are phonetic features that can be
perceived by humans, such as intonation, pitch, sound length, and rhythm. Among the
most widely used prosodic features are fundamental frequency, speech energy, and dura-
tion. T. Iliou et al. proved that prosodic features can distinguish emotions with different
arousal well, but cannot distinguish emotions with the same arousal or valence well [16].
The spectral feature describes the correlation between the shape change of the vocal tract
and the vocal movement, and it reflects the short-term spectral characteristics of the signal.
Spectral features are obtained by transforming the time–domain signal into a frequency–
domain signal using Fourier transform. The most commonly used spectral feature is
MFCC. A previous study proposed a new auditory-based spectral feature, which is used
for dimensional emotion recognition to obtain temporal dynamic information [17]. The
experiment shows that better performance is achieved on the dimension of valence and
arousal. Quality features measure the purity, clarity, and intelligibility of speech. This
mainly includes bandwidth [18], formant frequency [19], amplitude perturbation [20], etc.
Another study utilized sound quality features, such as formants and harmonic-to-noise
ratio, distributed in different frequency bands, to conclude that voice features are more
suitable for distinguishing emotions with the same arousal and different valence [21].

Emotional expression is based on the acoustic characteristics of the speaker, and these
acoustic characteristics are highly influenced by the speaker’s gender. I Bisio et al. proposed
a speech emotion recognition algorithm combined with a gender classifier [22]. It builds a
gender recognition algorithm using fundamental frequency features, aiming to provide
prior information about the speaker’s gender. Further, it uses a support vector machine as
a classifier with gender information as input. Experiments on the EMODB dataset achieve
a recognition rate of 81.5%. Anish Nediyanchath et al. proposed a multi-head attention
deep learning network for speech emotion recognition (SER) based on log mel-filterbank
energies (LFBE) spectral features [23]. In addition to multi-head attention and position
embedding, multi-task learning with gender recognition as an auxiliary task is applied.
The experiments are conducted on the IEMOCAP dataset, and an overall accuracy of 76.4%
is achieved. In [24], the authors propose a new emotion recognition algorithm that does
not rely on any acoustic features and combines a residual convolutional neural network
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(R-CNN) with a gender information block. Utilizing the deep learning algorithm, the
network automatically selects important information from the original speech signal for the
classification layer to complete the emotion recognition. The results show that the proposed
algorithm achieves recognition rates of 84.6%, 90.3%, and 71.5% on the CASIA, EMODB,
and IEMOCAP datasets, respectively. Although the above studies consider the influence of
gender on speech emotion recognition, they only input gender as a characteristic parameter,
or manually distinguish different genders and then input the recognition model. The
recognition results do not improve significantly.

In this study, based on the differences in physiological and acoustic characteristic
parameters between genders, front-end and back-end models are designed to automatically
complete gender classification and speech emotion recognition. Our main contributions
are summarized in three phases:

First, the front-end model uses MFCC mean and spectrum contrast to extract the
features from the original speech, and automatically distinguishes male and female speech
through a multilayer perceptron neural network (MLP).

Second, the acoustic speech emotion features are traversed, and one feature parameter
is extracted each time. The recognition results are compared using the support vector
machine (SVM) to analyze the weight difference of various speech features in the speech
recognition of different genders.

Finally, combinations of the feature parameters of different genders are, respectively,
input into a convolutional neural network (CNN) and bidirectional long short-term memory
(BiLSTM) speech emotion recognition models established in the back-end to realize the
emotion recognition of different genders and improve its accuracy.

The following parts of this paper are organized into five sections. In Section 2, the
differences in the physiological and acoustic characteristics between male and female voices
are introduced. Section 3 presents related research work, gender classification methods,
the extraction of the speech feature parameters of different genders, and the structure of
the speech emotion recognition models. Section 4 presents the experimental design and
experimental results. Section 5 presents the discussion of the proposed technique. Finally,
the summarization of the study is presented in Section 6.

2. Background

The main problem of speech emotion recognition is that the acoustic performance of
speech signals is affected not only by emotional factors, but also by many other factors.
Among them, the discrepancy of acoustic characteristics caused by the difference in the
physiological characteristics of speakers is the main influencing factor that reduces the
accuracy of speech emotion recognition.

The vocal tract is the main organ that produces the voice. Its core function is to adjust
the timbre of the sound produced by the vibration of the vocal cords. Speech is produced
according to the shape of the vocal tract, which changes over time. The shape of the vocal
tract depends on the shape or size of the vocal organ, and different genders inevitably
show individual differences. Previous studies show that the ratio of the total length of the
vocal tract of adult females to that of adult males is about 0.87 [25]. Males and females
differ in the thickness of the larynx, angle of the thyroid tablet and shape of the glottis [26].
The vocal cords are part of the vocal tract. The tension or relaxation of the vocal cords
determines the pitch of the voice. People of different genders have different vocal cord
structures; thus, the pitch of the voice is also different. Adult male and female vocal cords
are different in length, thickness, tension, and other anatomical structures, as well as in the
physiological functions of respiratory organs and resonance organs, resulting in different
characteristics between adult males and females in vocalization and voice quality. The
main factor affecting the rate of vocal cord vibration is the length of the vocal cord, and
long vocal cords vibrate more slowly than short ones. Previous studies show that the ratio
of female vocal cord length to male vocal cord length is about 0.8 [27]; therefore, men’s
voices are lower than women’s in most cases. In addition, female voices have a higher
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base frequency or pitch in comparison with males’. The average formant frequency of
female speakers is higher than that of male speakers, and the slope of the female spectrum
is steeper than that of male speakers.

In conclusion, there are general physiological differences between genders; thus, men
and women may express the same emotion in completely different ways. Therefore, it
is necessary to classify emotions according to gender and carry out emotion recognition
according to the different acoustic characteristics of males and females to improve the
overall accuracy of the recognition system.

3. Methods

In this section, we establish the overall framework of speech emotion recognition. The
overall framework shown in Figure 1 is divided into two models: the front-end model
and the back-end model. The front-end model completes gender recognition and the
classification of speech data. The back-end model extracts emotional features from the
speech data of males and females, respectively, and provides the emotional recognition
results of different genders.
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3.1. Gender Recognition
3.1.1. Extraction of Speech Feature Parameters

MFCC is based on the characteristics of the human ear, cochlea, and basement mem-
brane, and has a nonlinear corresponding relationship with the actual frequency, which
makes its cepstrum more similar to the nonlinear human auditory system. Previous studies
show that MFCC and F0 classify gender well [28]. Spectrum contrast takes into account
the peak value, valley value, and the difference value of each sub-frequency spectrum
to show the relative characteristics of the spectrum. The spectrum contrast feature can
roughly reflect the corresponding distribution of the middle and morning harmonics in the
spectrum, retain more spectrum characteristic information, and better distinguish different
kinds of speech information. Therefore, MFCC mean, fundamental frequency F0, and
spectral contrast ratio are adopted in this study to classify the speech features of different
genders more accurately.
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3.1.2. Gender Recognition Model

In this study, MLP is used for the automatic gender recognition of detected speech.
MLP consists of an input layer, several hidden layers in the middle, and an output layer [29].
It has high parallelism, high nonlinear global function, and good fault tolerance and
associative memory function. The structure of MLP is shown in Figure 2.
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Let sample X ∈ Rn×d, where n denotes the batch size, and d represents the number of
inputs. Suppose the multilayer perceptron has just one hidden layer, where the number
of hidden units is h, and the output of the hidden layer is H ∈ Rn×h. Since the hidden
layer and the output layer are fully connected layers, the weight parameters and deviation
parameters of the hidden layer can be set as:

Wh ∈ Rd×h, bh ∈ R1×h (1)

The weight parameters and deviation parameters of the output layer are:

Wo ∈ Rh×q, bo ∈ R1×q (2)

Then, the output O ∈ Rn×q of a multilayer perceptron design with a single hidden
layer is calculated as follows:

H = XWh + bh, O = HWo + bo (3)

The output of the hidden layer is directly taken as the input of the output layer, and
the subsequent equation can be obtained:

O = (XWh + bh)Wo + bo = XWhWo + bhWo + bo (4)

In this study, MFCC mean, fundamental frequency F0, and spectral contrast are used
to extract the emotional features from the speech of different genders.

3.2. Speech Emotion Recognition
3.2.1. Extraction of Speech Emotion Feature Parameters

For all speech emotion recognition systems, a key problem lies in how to select the
best feature set to represent speech emotion signals. This section explores the differences in
speech emotion features among speakers of different genders. The rhythm features, quality
features, and spectral features are traversed. One feature parameter is extracted each time
and input into the SVM model for individual emotion recognition. The recognition results
are used to judge the weight of different feature parameters in male and female speech
emotion features. The ranking of male and female speech emotion feature parameters is
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shown in Table 1 (See Appendix A for details). According to the proportion of weight, the
feature parameters with a recognition rate greater than 50% are displayed in order from
high to low.

Table 1. Ranking of male and female speech emotion feature parameters.

Ranking Female Speech Emotion
Feature Parameters

Male Speech Emotion
Feature Parameters

1 mfccsmax mfccs
2 mfccsstd mfccsstd
3 mfccs mfccsmax
4 energy sound pressure level
5 mel energy
6 zero-crossing rate chroma cens
7 short-time energy shimmer abs
8 chroma cens mel

As can be seen from Table 1, the weight of male and female speech emotion feature
parameters in emotion recognition is significantly different: the male single feature param-
eter has the best MFCC effect in emotion recognition, followed by its maximum and mean
value. On the contrary, women have the best maximum MFCC, followed by the mean and
MFCC. For males, sound pressure level (SPL) is more important, followed by voice energy.
In the case of female voices, voice energy is more important, followed by Mayer spectrum.

The emotional characteristics of male speech include shimmer abs (absolute amplitude
perturbation) and SPL, both of which are not found in females. Female voice emotion
feature parameters include zero-crossing rate (ZCR) and short-time energy, while male
speech does not. Amplitude perturbation describes the variation of acoustic amplitude
between adjacent periods, which mainly reflects hoarseness. The male vocal tract is rougher
and hoarser than the female vocal tract; thus, the amplitude perturbation parameters
have a greater effect on the male voice. SPL is defined as the root mean square value of
the instantaneous pressure generated by a sound wave at a point. In general, women’s
vocalizations have more high-frequency components and men’s vocalizations have more
low-frequency components. Women speak louder than men at the same SPL. SPL fluctuates
more in men and less in women during mood swings. ZCR refers to the number of
times a speech signal passes through the zero point (from positive to negative or from
negative to positive) in each frame. The ZCR of unvoiced sounds is the highest, while
that of voiced sounds is the lowest, and the short-time energy can distinguish between
unvoiced and voiced sounds. Voiced sounds are produced by the vibration of vocal cords
and contain most of the energy in the sound. It shows obvious periodicity. Female vocal
cords are shorter than male vocal cords; therefore, female voices are crisper and male
voices are deeper.

3.2.2. Speech Emotion Recognition Models

The gender-based emotion detection method, which incorporates gender information
into the process of emotion recognition, has proved to be robust and successful. Studies
have shown that gender-mixed emotion recognition systems have a lower success rate
than gender-specific systems [24]. To further exclude the possible influence of classifiers on
emotion recognition results, CNN and BiLSTM emotion recognition models are established
in this study.

CNN and BiLSTM are representative algorithms of deep learning, which have achieved
great success in natural speech processing, such as speech recognition and language trans-
lation, and have shown excellent performance in speech emotion recognition. In this
experiment, these two classifiers are used for a comparative analysis.
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In [30], the authors proposed an improved CNN model that greatly enhance CNNs’
capability of modeling geometric transformations. CNN’s model formula is as follows:

Z(i, j) =
[

Zlw
]
(i, j) + b =

Kl
∑

k=1

f
∑

x=1

f
∑

y=1

[
Zl

k(s0i + x, s0 j + y)wl+1
k (x, y)

]
+ b

(i, j) ∈ {0, 1, · · · Ll+1} Ll+1 = Ll+2p− f
S0

+ 1
(5)

where b is the offset; Zl and Zl+1 represent the convolution input and output of the
l + 1 layer, which are known as the feature graph; Ll+1 denotes the size of Zl+1; Z(i, j)
corresponds to the feature graph; wl+1

k (x, y) represents the kth sub-convolution kernel
matrix of the convolution kernel; k is the number of channels of the feature graph; f is the
convolution kernel size; s0 is the convolution step size; and p is the number of filling layers.

CNN is composed of two convolution layers and a fully connected layer. The window
length of the convolution kernel is 5, the convolution step is 1, and the activation function
is “Relu”. For each convolution layer, the output of convolution is transferred to one
dimension for batch normalization, and the prediction results are obtained after the softmax
activation layer. Batch normalization reduces the internal covariance drift in the feature
graph by normalizing the output of the previous layer. The irregular effect can reduce the
overfitting. The structure of CNN is shown in Figure 3.
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The optimizer of CNN selects “Adam”, and the loss function is cross-entropy. In
order to prevent overfitting, input neurons are randomly disconnected with a probability
of 0.3 every time the parameters are changed during training. In the process of training
and testing, five-fold cross-validation is adopted, and 80% of the dataset is used as training
data and 20% as test data.

BiLSTM uses a layer of bidirectional LSTM to extract the features of the hidden layer,
and directly selects the 256-dimensional feature outputs of the hidden layer for batch
normalization [31]. By normalizing the output of the previous layer, the internal covariance
drift in the feature graph can be reduced, and the regularization effect caused can reduce
the overfitting. Then, a full connection layer is used to down sample the input features and
reduce the dimension of feature space. Finally, the prediction results are obtained after the
softmax activation layer. The optimizer selects “Adam”. The fixed learning rate is set to
0.001, and the loss function is cross-entropy. In order to prevent overfitting, the neurons are
randomly disconnected with a probability of 0.5 every time the parameters are changed
in the training process. In the process of training and testing, five-fold cross-validation is
adopted, with 80% of the dataset used as training data and 20% as test data. The structure
of BiLSTM is shown in Figure 4.
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4. Experiment Results 
4.1. Emotional Speech Dataset 

In this paper, the Ryerson Audio–Visual Database of Emotional Speech and Song 
(RAVDESS) and the CASIA Chinese emotional speech dataset are used for testing. The 
diversity of the data prevents the model from being applicable to only one dataset; there-
fore, the effect of the model can be fully validated. In the process of training and testing, 
five-fold cross-validation is adopted, 80% of the dataset is used as training data and 20% 
as test data. 

The RAVDESS is a multimodal dataset, which consists of 24 young and middle-aged 
actors (12 males and 12 females) uttering sentences that have matching words in neutral 
North American accents [32]. According to the analysis of speech features and the require-
ment of emotion recognition, the experiment selected 1440 audio recordings of emotional 
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4. Experiment Results
4.1. Emotional Speech Dataset

In this paper, the Ryerson Audio–Visual Database of Emotional Speech and Song
(RAVDESS) and the CASIA Chinese emotional speech dataset are used for testing. The
diversity of the data prevents the model from being applicable to only one dataset; therefore,
the effect of the model can be fully validated. In the process of training and testing, five-fold
cross-validation is adopted, 80% of the dataset is used as training data and 20% as test data.

The RAVDESS is a multimodal dataset, which consists of 24 young and middle-
aged actors (12 males and 12 females) uttering sentences that have matching words in
neutral North American accents [32]. According to the analysis of speech features and
the requirement of emotion recognition, the experiment selected 1440 audio recordings
of emotional speech as test samples which contain eight kinds of emotion: happiness,
sadness, anger, fear, calm, disgust, surprise, and neutral. The sampling rate of voice
data audio is 48 kHz, 16 bit, and the file is saved in an uncompressed waveform format.
A total of 1440 experimental samples, including 720 males and 720 females, are used
without gender classification.

The CASIA Chinese emotional speech dataset, released by the Institute of Chinese
Academy of Sciences, is composed of 1200 sentences vocalized by four young and middle-
aged professional orthoepists (two males and two females). Our research chooses six
emotions: happiness, sadness, anger, fear, surprise, and neutral. The sampling rate of voice
data audio is 16 KHz, 16 bit, and the file is saved in an uncompressed waveform format. A
total of 1200 test samples are used, which consist of 600 samples of men and 600 samples of
women. See Table 2 for details.

Table 2. Emotional speech dataset.

Dataset Method Total

RAVDESS
All genders 1440

Male 720
Female 720

CASIA
All genders 1200

Male 600
Female 600

The experiment is carried out on Windows 7, where the computer hardware is config-
ured as Intel i7 CPU at 2.80 GHz, with 16 GB of memory. The programming language is
Python 3.8. The running process of the program mainly relies on the CPU for calculation.
GPU is not used. The run-time is about 10 min.
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4.2. Gender Classification Results

The front-end model of this experiment automatically classifies the original speech
according to gender. MFCC mean and spectral contrast are used to extract gender features,
and the speech gender classification is completed through MLP. Through the test, the
accuracy of gender classification in the RAVDESS dataset reaches 100%, while the accuracy
in the CASIA dataset is 99.5%.

4.3. Speech Emotion Recognition Results

The back-end model of this experiment automatically completes the speech emotion
recognition process according to different genders. First, the male and female voices input
from the RAVDESS dataset are preprocessed. Acoustic speech feature parameters are ex-
tracted and integrated into overall feature vectors according to their respective dimensions
which are, respectively, sent into CNN and BiLSTM for speech emotion recognition. The
comprehensive recognition result in Table 3 is used to obtain the comprehensive recogni-
tion rate of the whole dataset by integrating the recognition rate of the identified males
and females.

Table 3. Results of speech emotion recognition.

Dataset Method
CNN BiLSTM

Male Female Comprehensive Male Female Comprehensive

RAVDESS
Mixed gender / / 75.00% / / 72.92%

Proposed 85.42% 84.03% 84.72% 79.86% 76.39% 78.12%

CASIA
Mixed gender / / 80.08% / / 80.00%

Proposed 90.83% 85.00% 87.91% 90.00% 80.83% 85.41%

After the RAVDESS dataset is tested, the procedure is repeated in the CASIA dataset.
The final recognition results are shown in Table 3.

As can be seen from Table 3, in the RAVDESS dataset, the comprehensive recognition
rate of CNN with gender classification is 9.72% higher than that of CNN without gender
classification, while that of BiLSTM is increased by 5.20%. In the CASIA dataset, the
comprehensive recognition rate of CNN with gender classification is 7.83% higher than
that of CNN without gender classification, while BiLSTM improves by 5.41%. The accuracy
is higher when CNN and BiLSTM recognize male and female speech, respectively, while
recognizing the speech of all genders together shows a lower accuracy. Moreover, the
average accuracy of speech recognition of males is significantly better than that of females.
The recognition accuracy of CNN for male speech is 1.39% and 5.83% higher than that
of female speech in RAVDESS and CASIA, respectively, while that of BiLSTM for male
speech is 3.47% and 9.17% higher. This result indicates that the emotional characteristics
of male speech are more significant than those of female speech, and are easier to be
recognized by models.

We also find that CNN shows a better performance in speech emotion recognition
than BiLSTM. This is because CNN mainly focuses on local features and has a high degree
of correlation with the maximum and minimum of speech features, pitch, and other
parameters. Local features of speech are more obvious than the overall features, which is
conducive to CNN, while BiLSTM focuses on timing features, and is relatively less sensitive
to local features.

The confusion matrix of CNN recognition results and the confusion matrix of BiLSTM
recognition results are shown in Figures 5 and 6, respectively.
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5. Discussion

Gender-based classification and analysis of the influence weights of multiple speech
emotion features in speech emotion recognition across genders are the main contributions
of the paper. The MLP model is used to recognize the gender of the original speech and
distinguish the male and female speech data. The differences between male and female
speech in terms of acoustics are analyzed. We further analyze the influence weights of mul-
tiple speech emotion features in male and female speech emotion recognition and establish
weight rankings. Then, we build the optimal feature sets for male and female emotion
recognition, respectively. Finally, we feed the set of speech emotion features into CNN and
BiLSTM models for training and testing. The value of this research approach is to reduce
the difficulty of model recognition by differentiating between genders. The establishment
of more targeted feature sets will help to further improve the recognition accuracy.

5.1. Comparison of Accuracy with Algorithm Based on Deep Learning

Table 4 compares the results of speech emotion recognition in previous studies [24,33–35]
and this study. Sun, T.W [24] proposed a novel emotion recognition algorithm that does
not rely on any speech acoustic features and combines speaker gender information with
the emerging R-CNN structure. Kwon, S et al. [33] proposed an artificial intelligence-
assisted deep stride convolutional neural network (DSCNN) architecture using the plain
nets strategy to learn salient and discriminative features from a spectrogram of speech
signals that are enhanced in prior steps to improve performance. Sajjad, M et al. [34]
proposed a new strategy for SER by using sequence selections and extraction via a non-
linear RBFN-based method to find a similarity level in clustering. Then, they proposed
a multilayer deep BiLSTM to learn and recognize long-term sequences in audio data for
recognizing emotions. The achieved accuracy for the RAVDESS dataset is 77.02%. None of
the abovementioned studies examine the weighting of speech emotion features for different
genders, nor do they create separate feature sets for different genders; thus, none of the
recognition accuracies are satisfactory.

Table 4. Comparison of recognition results between previous works and proposed methods.

Related Works Dataset Model Emotion Male
Recognition Rate

Female
Recognition Rate

Comprehensive
Recognition Rate

Sun, T.W [24] CASIA CNN
Anger, fear,

neutral, happiness,
sadness, surprise

/ / 84.60%

Kwon, S et al. [33] RAVDESS DSCNN

Neutral, calm,
sadness, happiness,

anger, fear,
disgust, surprise

/ / 79.50%

Sajjad, M. et al.
[34] RAVDESS CNN

Neutral, calm,
sadness, happiness,

anger, fear,
disgust, surprise

/ / 77.02%

Matin, R. et al.
[35] RAVDESS SVM

Neutral, calm,
sadness, happiness,

anger, fear,
disgust, surprise

/ / 77.00%

Proposed

RAVDESS CNN

Neutral, calm,
sadness, happiness,

anger, fear,
disgust, surprise

85.42% 84.03% 84.72%

CASIA CNN
Anger, fear,

neutral, happiness,
sadness, surprise

90.83% 85.00% 87.91%
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It can be seen from Table 4 that the method adopted in this study can significantly
improve the accuracy of speech emotion recognition, especially in the CASIA dataset,
where the results are improved by 3.31% compared with other algorithms.

5.2. Comparison of Accuracy with Algorithm Based on Gender Information

Table 5 shows a comparison of the proposed work with [36], in which S. Kanwal et al.
describe a feature optimization approach that uses a clustering-based genetic algorithm.
They use the gender information as an independent feature map to feed into CNN to
train the whole recognition network. The recognition rates of 82.59% for general speakers,
75.49% for male speakers, and 91.12% for female speakers on RAVDESS are obtained in
speaker-dependent experiments.

Table 5. Comparison of accuracy with algorithm based on gender information.

Related Works Dataset Model Emotion Male
Recognition Rate

Female
Recognition Rate

Comprehensive
Recognition Rate

Kanwal, S. et al.
[36] RAVDESS SVM

Neutral, calm,
sadness, happiness,

anger, fear,
disgust, surprise

75.49% 91.12% 82.59%

Proposed

RAVDESS CNN

Neutral, calm,
sadness, happiness,

anger, fear,
disgust, surprise

85.42% 84.03% 84.72%

CASIA CNN
Anger, fear,

neutral, happiness,
sadness, surprise

90.83% 85.00% 87.91%

In this study, the influence weight of emotional features of speech in male and female
speech emotion recognition is first analyzed. On this basis, the optimal feature sets for
male and female emotion recognition are established, respectively, and input into the CNN
model and BiLSTM model, respectively. Ultimately, the recognition rate of male speakers
is 9.93% higher, the recognition rate of female speakers is 7.09% lower, and the overall
recognition rate is 2.13% higher.

Although the proposed algorithm shows excellent recognition performance thus far, it
cannot operate in real time. In addition, the computing power of the proposed algorithm
is relatively large and cannot be integrated into mobile devices, which also narrows the
application scenarios.

In future work, we aim to add more modes, such as images and text, to improve its
accuracy. In addition, we intend to train and experiment in more conditions, including age
and identification.

6. Conclusions

This paper proposes a speech emotion analysis method based on gender recognition.
First, gender recognition and automatic gender classification are performed in the speech
dataset. Then, based on the different physiological characteristics of males and females, the
weight of acoustic emotion characteristic parameters in male and female voice emotions
is analyzed. Finally, CNN and BiLSTM are used to establish the speech emotion feature
analysis model to recognize the emotion of male and female speech in the RAVDESS and
CASIA datasets, respectively. The results show that the speech emotion recognition model
based on gender classification proposed in this paper effectively improves the accuracy of
speech emotion recognition. Moreover, the proposed model shows better performance in
the emotion recognition of male speech compared with female speech.
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Abbreviations

SAM self-attention module
MFCC mel-frequency cepstrum coefficient
R-CNN residual convolutional neural network
MLP multilayer perceptron neural network
SVM support vector machine
CNN convolutional neural network
BiLSTM bidirectional long short-term memory
SPL sound pressure level
ZCR zero-crossing rate
DSCNN deep stride convolutional neural network

Appendix A

mel
Mel spectrogram. The speech signal is converted into the corresponding
spectrogram, the data on which are utilized as the feature of the signal.

MFCC
Cosine transform is performed after the Mel spectrogram is obtained, and some of
the coefficients are taken.

mfccsmax the maximum value of MFCC.
mfccsstd the variance of MFCC.
mfccs the average value of MFCC.
Pitch the vibration frequency of the vocal cords.
Formants frequencies produced by physical vibrations of objects that do not change in pitch.
Spectral contrast the centroid of the spectrum.

Zero-crossing rate
the number of times the speech signal passes through the zero point (from positive
to negative or from negative to positive) in each frame.

Energy the loudness of the sound, also known as volume.
Short-time energy the sum of the squares of the amplitude values of the frame speech signal.

chroma_cens
the normalization of chromatographic energy, which converts the speech signal
into the corresponding spectrogram and performs normalization processing.

Sound pressure level
The pressure level of a sound. Take the common logarithm of the ratio of the
sound pressure to be measured p to the reference sound pressure p(ref) and
multiply it by 20. The unit is decibels.

Shimmer abs
The absolute value of shimmer. Shimmer describes the change of sound wave
amplitude between adjacent periods, mainly reflecting the degree of hoarseness.
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