
Citation: DeMedeiros, K.; Hendawi,

A.; Alvarez, M. A Survey of AI-Based

Anomaly Detection in IoT and Sensor

Networks. Sensors 2023, 23, 1352.

https://doi.org/10.3390/s23031352

Academic Editors: Richard Chbeir

and Taoufik Yeferny

Received: 25 December 2022

Revised: 13 January 2023

Accepted: 17 January 2023

Published: 25 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Survey of AI-Based Anomaly Detection in IoT and
Sensor Networks
Kyle DeMedeiros , Abdeltawab Hendawi * and Marco Alvarez

Department of Computer Science and Statistics, College of Arts and Sciences, University of Rhode Island,
1 Upper College Road, Kingston, RI 02881, USA
* Correspondence: hendawi@uri.edu

Abstract: Machine learning (ML) and deep learning (DL), in particular, are common tools for anomaly
detection (AD). With the rapid increase in the number of Internet-connected devices, the growing
desire for Internet of Things (IoT) devices in the home, on our person, and in our vehicles, and the
transition to smart infrastructure and the Industrial IoT (IIoT), anomaly detection in these devices is
critical. This paper is a survey of anomaly detection in sensor networks/the IoT. This paper defines
what an anomaly is and surveys multiple sources based on those definitions. The goal of this survey
was to highlight how anomaly detection is being performed on the Internet of Things and sensor
networks, identify anomaly detection approaches, and outlines gaps in the research in this domain.

Keywords: sensors; IoT; anomaly detection; graphs; machine learning; neural networks

1. Introduction

Machine learning (ML) and deep learning (DL), in particular, are common tools for
anomaly detection [1–6]. With the rapid increase in the number of Internet-connected
devices, the growing desire for Internet of Things (IoT) devices in the home, on our person,
and in our vehicles, and the transition to smart infrastructure and the Industrial IoT (IIoT),
anomaly detection in these devices is critical. This paper is a survey of anomaly detection
in the IoT/sensor networks. This paper defines what an anomaly is and surveys multiple
sources based on those definitions.

The following resources were searched:

• ACM Digital Library;
• arXiv;
• IEEE Xplore;
• Google Scholar.

The selection criteria focused primarily on the last few years of anomaly detection
research (2019–2022). Papers were discarded from the final survey if they did not meet the
criteria of performing anomaly detection or performed AD, but did not do so on sensor
networks. Some of these papers are still referenced here for their usefulness in highlighting
graph-based data representation, IoT use, or analyses of ML techniques.

Depending on the source, the definition of an anomaly varies. In [7], an anomaly was
defined as “unexpected incidence significantly deviating from the normal patterns formed
by the majority of the data-set”. In [8], an anomaly was defined as “a data object that
deviates significantly from the majority of data objects”, while [9] defined an anomaly as
“a mismatch between a node and its surrounding contexts”. In [2], anomalies were broken
down into three types: point, contextual, and collective. In addition, [10] laid out eight
types of anomalies using more specific, task-based definitions: denial of service, data type
probing, malicious control, malicious operation, scan, spying (all of these are attack types),
and wrong setup (non-attack).

In each of these cases, anomalies generally arise from the following causes:

Sensors 2023, 23, 1352. https://doi.org/10.3390/s23031352 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23031352
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-3157-8385
https://doi.org/10.3390/s23031352
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23031352?type=check_update&version=2

Sensors 2023, 23, 1352 2 of 33

• Malicious attack;
• Sensor fault;
• A significant environmental change, which is registered as an abnormal state by

the sensor.

What causes each of these anomalies can be distinct, but it is not required to be so. A
malicious attack can be performed to leverage the computing power of an IoT network, as
seen in [11], or it can be performed to damage a system by producing false data, as seen
in [12]. For the former, this could manifest as extra erroneous network traffic; for the latter,
this can manifest as false messages being passed off as legitimate.

In addition, anomalies can be instantaneous or within some window of time. A rapid
temperature change in a temperature sensor from one time step to another could indicate
a severe environmental change or a sensor fault, but a gradual change over the course of
hours or days could be normal operating behavior. For instance, in [13], NASA’s Turbofan
data-set was used. As any motor runs, its temperature gradually changes. This would be
nominal behavior, but a rapid increase in temperature or a temperature exceeding some
threshold would be anomalous. How an approach handles the data over time can affect the
success of the approach. There are specific approaches surveyed here, such as [14], which
focus on anomaly detection in time series data.

In order to capture these different nuances for anomalies in the IoT and sensor net-
works, we define an anomaly in line with [8], while also partitioning anomalies into the
following groups (similar to [2]):

• Point-based anomaly;
• Collective anomaly;
• Continuous anomaly.

A point-based anomaly is defined as a specific datum that contains anomalous informa-
tion. A collective anomaly is a series of records (based on some window size) that contain
anomalous data when compared to the remaining data sensed. A continuous anomaly is
a collective anomaly with the window size approaching infinity from some starting point.
Each paper in this survey focuses on specific types of anomalies; therefore, additional
information on how a particular paper defines an anomaly will be given when appropriate.

This survey focuses on anomaly detection for sensor networks/the IoT. A sensor
network is any collection of devices that sense information and report that information
either to a centralized node or to other members of the network. The IoT is a network of
(usually small) Internet-connected devices that perform some set of tasks. These devices
may report their status to a central node or communicate with other devices connected
to the network. Because the IoT and sensor networks perform largely the same job (to
sense something, then report it), this survey treats these terms interchangeably. However,
it should be noted that sensor networks are not strictly composed of IoT devices and IoT
devices do not just sense things.

The performance analysis of anomaly detection is very subjective. The vast majority
of approaches seen here attempt to rectify this issue by measuring the performance across
commonly used metrics in machine learning. The works surveyed here utilize multiple
performance metrics. All are reported in Tables A1–A3. Each of the metrics used relies on
four basic measures:

• True positives: the number of data points classified as anomalous that were
truly anomalous;

• False positives: the number of data points classified as anomalous that were truly
non-anomalous;

• True negatives: the number of data points classified as non-anomalous that were truly
non-anomalous;

• False negatives: the number of data points classified as non-anomalous that were
truly anomalous.

Sensors 2023, 23, 1352 3 of 33

Here, we highlight the most-popular metrics, each of which relies on the above four
basic measures:

• precision = TP/TP + FP;
• recall = TP/TP + FN;
• F1 = 2 ∗ ((precision ∗ recall)/(precision + recall)).

Precision is useful for determining how well what you detect is really there. The closer
to 1 (100%), the better. Recall is useful for determining how well you capture detections and
avoid misses. The closer to 1 (100%), the better. The F1-score is a combination metric that
leverages these two metrics together and is a universal scorer for performance evaluation.
ROC curves are a measure of how the true positive rates and false positive rates are
compared. The TPR captures all actual positives in the system as a metric. The TPR is also
known as recall. The FPR captures the number of actual negatives in the system as a metric.
The FPR can be calculated as 1-recall.

Since this survey covers multiple applications and data-sets involving anomaly
detection in sensor networks, a direct comparison of how well one approach compares
to another is not always viable. However, one important aspect in any machine-learning-
based approach to anomaly detection is generality to the application. Some methods,
such as [15], were developed for specific applications, while other approaches, such
as [14], were tested and trained on multiple data-sets. This cross-testing can help make
the approach more generalizable to different applications, potentially at the expense
of performance for a specific approach. This is a well-known trade-off between under-
fitting and over-fitting an ML approach to a data-set or group of data-sets. Those
approaches that utilize multiple data-sets in their research can be seen in Table A3.
For those approaches that perform AD on the same data-sets, a comparison of the
performance between approaches will be given.

In general, the best approaches seen in this survey rely on some combination of a
neural network, with some attention mechanism to capture dependencies in time series
data. Applications that utilize graph-based deep learning approaches are able to capture
potential dependencies between IoT devices when compared to those that either ignore the
natural graph-based layout of sensor networks or treat all data as coming from a single
sensor. The breakdown of each approach, the methods used, and the applications the
methods were used against will be seen in the following sections.

The rest of the paper is organized as follows: Section 2 focuses on related surveys
in anomaly detection. Section 3 breaks down the surveyed works by application (the
task they performed). Section 4 breaks down the surveyed works by the AD approaches
used. Section 5 compares the performance of the AD approaches surveyed against one
another if AD was performed on the same data-set, with an overview of the performance by
application type. Section 6 outlines remaining problems and opportunities for AD in sensor
networks and provides a synopsis of potential future work. Finally, Section 7 provides a
recap and conclusion to this survey. An Appendix is available, which includes detailed
tables for the models surveyed here, as well as the data-sets used by these models and a
brief introduction to the structures and uses for various GNNs provided for context and as
an illustrative reference.

2. Related Work
2.1. Related Surveys

Here, we highlight other surveys in the field of anomaly detection and IoT/sensor
networks. We consolidated these related surveys into a quick-reference based on the
problem focus of each survey in Table 1.

The work in [6] focuses on cloud computing in cloud computing environments. The
paper highlights the length of time anomaly detection has been performed, with the earliest
reference of anomaly detection (on facial recognition) being performed in 1990 [16,17].
This survey looked at research from arXiv, SpringerLink, and Web of Science. It focused
on which AD methods were used, what purposes AD was used for, and how research

Sensors 2023, 23, 1352 4 of 33

has evolved over time. It breaks application areas into the following: intrusion detection,
performance monitoring, failure detection, and root cause analysis. The vast majority of
the data-sets from this study are related to intrusion detection.

The work in [1] focuses on anomaly detection using graph-based approaches with deep
learning. It lists graph-based anomaly detection as “frontier research”. Technical challenges
listed include a training objective for anomaly detection, anomaly interpretations, high
training costs, and hyperparameter tuning (especially for unsupervised learning). This
survey is broken down by anomaly detection type. This survey does not focus on the IoT,
just graph-based data with deep learning.

The work in [3] refers to anomalies as “the discovery of outlying data/events in
the data-set”. It also references determining anomalies by recognizing data that deviate
from anormal patterns. It further defines anomalies as “an exceptional, abnormal, or
unusual event”, and “rare, isolated, and/or surprising”. The paper labels two types
of anomaly detection: proactive (for real-time data) and reactive (for post-processing
data). It further splits anomalies into point, collective, and contextual types. This work
focuses on non-time series data, so these definitions relate to the clustering of data. The
authors split AD techniques into seven classes: classification, statistical distribution,
graph, nearest neighbor, information theoretic, clustering, and spectral. For classifica-
tion, they list the NN, SVM, Bayes network, and rule-based techniques. For nearest
neighbor techniques, the KNN and relative density were mentioned. For clustering
techniques, density-based clusters were mentioned (k-means and DBSCAN were pop-
ular in this set). For statistical techniques, parametric (such as linear regression) and
non-parametric techniques (such as histogram-based techniques) were mentioned. The
difference between the two is that parametric techniques rely on a statistical model
to fit the data to and non-parametric techniques rely on real-world data to generate
a model to fit test instances to. Information theoretic techniques focused on informa-
tion gain and entropy-based techniques. Spectral techniques listed were primarily
principal-component-analysis-based techniques. These techniques attempt to lower the
dimensionality of the data to better separate nominal and anomalous data. For graph-
based ADTs, outlier nodes (either highly connected or highly disconnected nodes) are
focused on. Techniques in this group vary across the board from ML, such as SVM, to
iForest and random forest techniques. This paper does not focus on any type of AD in
particular and only contributes a small section to AD on graphs.

The work in [2] is a survey of anomaly detection in the IIoT and the GNNs used
to perform the detection. It defines three types of anomalies: point, contextual, and
collective. It gives examples of data-sets that exhibit that type of anomaly based on
different problem domains. This work also has a good breakdown of GNN types, such
as the GCN method for context-specific fault detection [18], a GCN for fault detection
with collective anomalies [19], a combination of the GCN and LSTM into the RGCN to
solve collective anomalies [20], a one-class GNN, which is a generalization of a one-class
SVM [21], and AddGraph [22], which is an extended temporal GCN with attention used
for capturing temporal patterns in dynamic graphs. In addition, this work explains the
need for multiple GNNs to solve spatial and temporal anomalies. Finally, this work
proposes an STGNN for collective anomalies in traffic data; a GCN is proposed for point
anomalies in power Transformers; a GCN is proposed for collective anomalies in smart
factory data.

The work in [23] focuses on anomaly detection for time series data. It focuses on
multiple DL methods. Anomalies are listed as outliers, and it splits them into four cat-
egories: innovative, which affects data at and after some time T by some interference,
additive, which only affects data (via interference) at time T, but not after, level shift, which
permanently changes the structure of the data starting at time T, and temporary change,
which affects the structure of the data at time T, but then drops off. This work surveys
methods in the CNN, LSTM, AE, graph attention network (GNN), Transformer, global
adversarial network (GAN), and DNN domains. A comparison of multiple DNNs on

Sensors 2023, 23, 1352 5 of 33

three datasets was also performed. It notes that the graph structure has great research
significance in anomaly detection in time series. It also notes that base GNNs have a hard
time adapting to dynamic graphs.

Table 1. Breakdown of application types for AD from related surveys.

Reference Application Focus

[6] cloud computing IDS
[5] computer networks IDS
[24] malicious actor space and information networks
[2] IIoT GNNs
[23] attention-based AD -
[4] attention-based AD -
[1] non-IoT graph-based AD deep learning
[3] general AD -

The work in [24] uses security and anomaly detection of space information networks
(SINs), which are highly dynamic networks noticeably different in structure than traditional
terrestrial networks as its focus. The anomalies focused on are mainly based on attacks
on the network, although it lists other issues such as environmental and natural threats.
The work surveys routing techniques in addition to anomaly detection techniques used
in SINs. For AD, it is defined as finding exceptional patterns in a network that do not
conform to the expected normal behavior. This work classifies an SIN as a dynamic network
and, therefore, groups AD techniques for it in the same realm as social networks, citation
networks, electric power grids, and global financial systems. It lists four types of anomaly:
vertices, edge, subgraph, and event. Of these, it lists the subgraph and event types as
unique to dynamic networks. This work proposes an anomaly detection scheme using a
cybersecurity knowledge graph, with a GCN to encode the data. Decoding is performed in
parallel for the structure and attributes using sigmoid and ReLU, respectively. These values
are then aggregated into a D-value for the anomaly score. The survey points out that, while
this looks promising, SINs are very complicated, and this is an active area of research. This
work lists many future directions where SIN-based AD can go, including a uniform SIN
security architecture and modeling, secure space–air–ground computing, blockchain-based
applications, and lightweight crypto algorithms and protocols. This work also lists several
SIN simulation platforms.

The work in [5] defines AD as “finding patterns in a data-set whose behavior is not nor-
mal or expected”. This work’s motivation is a robust IDS for computer networks. It focuses
on data mining techniques, and defines four classes of technique for AD: association-rule
learning, clustering, classification, and regression. The clustering algorithms mentioned
are K-means, K-medoids, EM clustering, and outlier detection (distance-based (nearest
neighbor) and density-based). The classification algorithms are the classification tree (ID3
and C4.5), fuzzy logic, naive Bayes, genetic algorithm, neural network (MLP), SVM, as well
as hybrid approaches (cascading supervised techniques (NB + ID3, and DT + SVM) and
supervised + unsupervised (KM + ID3, ANN + SVM)). This work has a good breakdown
of non-DL AD techniques.

The work in [4] focuses on understanding AD using LSTM approaches. The motivation
was the lack of studies with these approaches. It defines an anomaly as “a deviation from
a rule, or an irregularity that is not part of the system behavior”. It uses this definition
as a common ground across multiple AD research areas. It calls out network security,
IoT, medicine, and manufacturing as AD research areas. It does not focus on a particular
AD type, but rather, how LSTMs are used in AD. This paper characterizes anomalies
as either focus points, some measured event, or some linearity/nonlinearity in the data
and further lists that focus points can be on individual sensors, up to a whole system’s
dynamics, and that the measurability of an anomaly can either be direct or indirect. The
focus being on LSTMs, this work deals with time-dependent anomalies and specifies that
anomalies are either long- or short-term and either stationary or non-stationary. This

Sensors 2023, 23, 1352 6 of 33

paper further elaborates on both collective and contextual anomalies mentioned in other
literature. This paper highlights the benefits of LSTM models in modeling multivariate
time series and time-variant systems. It also provides a good explanation of the LSTM cell.
The work specifies how graph-based approaches using LSTMs improve the representation
of contextual information.

2.2. Graph-Based Data Use

Here, we highlight some work that, while not on anomaly detection, highlights the
usefulness of graph-based representations of data and IoT devices. The work in [25]
highlighted a useful use-case of IoT-based data: water monitoring using low-cost multi-
sensor IoT devices. The work in [26] expanded on the LMST algorithm [27] for determining
the topology of an IoT network at the node level and finding the minimum power required
to do so. The paper highlighted the usefulness of looking at an IoT (sensor) network as a
graph. The work in [28] also highlighted the usefulness of viewing IoT data as a graph. It
utilized Gumbel sampling on the IoT data. In [29], device fingerprinting using IAT graph
plots was performed. Image classification using a CNN on those plots was then performed.
The work in [30] looked at the “Heterogeneous Graph of Things” (HGoT). The authors
treated nodes as heterogeneous. Then, the paper focused on node-level representation
learning of the HGoT. They used an encoder–decoder to learn the relationships between
heterogeneous nodes in the HGoT. The work in [31] used graph-based methods to detect
patterns in IoT networks. The work in [32] involved the management of applications
living on the IIoT. The work in [33] is a critique of the usefulness of GNNs (in particular,
RouteNet) in the generalization of graph sizes. RouteNet is used to predict delay in a
network topology. In [34], an IoT network was used to construct DNNs to perform ML.
In [35], the focus was on the creation of a graph recovery model using a gated GCN, which
sends information from available sensors to missing sensors in order to reconstruct their
features. This work presented a useful breakdown of GCNs and GRUs. This work did not
perform anomaly detection, but rather recovered data from missing sensors using GCNs.
The work in [36] is a practical tutorial of GNNs with example applications. The work in [37]
focused on utilizing differentiable network architecture search (DNAS) in order to find ML
models suitable for small architectures such as the IoT.

3. Anomaly Detection by Application

The IoT and sensor networks are used for multiple different applications, most of
which revolve around monitoring of some kind, whether that be monitoring on personal
health devices, monitoring an entire city, monitoring the weather, monitoring an industrial
system, etc. Anomaly detection in this context can fall into the following categories:

• Malicious actor AD;
• Sensor performance AD;
• Time series data AD;
• Other AD.

Some works cite more than one application type as a motivation. However, they are
labeled by their primary motivation. A primary concern for most users of networks of
devices, malicious actor detection, is an incredibly popular topic of research. Malicious
actor AD can range from general-purpose intrusion detection systems (IDSs), to malware
analysis, to specific malicious actors such as botnets. In addition, sensor network data can
be heavily reliant on historical readings; for instance, a gradual increase in temperature
may be normal, but a rapid increase may indicate an issue. This is colloquially referred to
as time series data. Sensor performance AD is defined here as fault detection in a sensor
network, as well as the performance in the detection of uncommon environmental changes.
For instance, if a sensor network is trained to learn the normal operating characteristics of
a system (such as nominal operating temperatures) and some environmental effect causes
the system to fall outside of those operating ranges, the AD approach should be able to
detect this anomaly successfully. Here, the difference between time series data AD and

Sensors 2023, 23, 1352 7 of 33

sensor performance AD relies explicitly on the need for attention mechanisms in the former
case in order to find dependencies between data points.

Other problems for AD range from damage assessment in fuel pipelines, to distributed
AD (on edge networks), to general-purpose anomaly detection. All works surveyed in this
section have their application, primary focus, and secondary focus (if applicable) listed in
Table 2.

The work [38] performed the detection of malicious attacks on a sensor network. In
particular, the authors were looking at the detection of denial of service attacks on a network
of IP cameras.

The motivation for [39] was intrusion detection in the IoT. As a result, the focus was
on low-level sensor anomalies and application-level data (rather than network packet
information). The authors built a framework due to the lack of available IoT data (the
framework allows a user to generate a custom data-set), as well as the ability to test anomaly
detection algorithms safely; most malware detection research relies on working with files
and executables, which may contain active malware.

The work in [40] focused on DDoS attacks. Every IoT device was treated as an
aggregate host device. As a result, this work did not look at the potential additional
influence the different, individual IoT devices may have on DDoS-like anomalies (for
instance, devices closer to the edge of the network, device type, etc.).

The work in [41] focused on SYN attacks on the IoT. All of the data were randomly
generated from a virtual network composed of an unspecified number of nodes. Spatial
position in the network was considered as well.

The work in [11] used graph-theoretic approaches to produce printable string informa-
tion graphs (PSIGs) for IoT botnet detection. A PSIG is a trimmed function call graph that
only relies on functions using string data. These PSIGs are made from IoT device executa-
bles. The inspiration for this work was using graph-based approaches for the detection of
botnet attacks on IoT devices. The authors relied on static approaches (producing PSIGs
from executables), rather than dynamic approaches (executing the malware IoT device
in a sandbox) due to their view that, because IoT devices themselves are unsophisticated
(limited power, storage, and computation), the botnets running on these devices are not
sophisticated either.

The work in [42] used network-based malicious attacks on IoT devices as their inspira-
tion. It used sample IP flows to obtain sparse data for anomaly detection. This technique
explicitly calls out that it does not use the packet’s payload (i.e., the message sent from one
IoT device to another). The goal of this work was to utilize a “transfer learning” technique
by normalizing the losses of the DL network of each client network they train on using a
training baseline, the goal being a network-agnostic anomaly detection approach.

The work in [14] focused on multi-variate time series anomaly detection. This
work assumed anomalies will occur in contiguous windows and classified a whole win-
dow as anomalous if an anomaly is detected anywhere in the window. Their moti-
vation was the protection of vital IoT networks such as smart power grids and water
distribution networks.

For the work performed in [43], malware detection was the primary driver. The source
code of different IoT architectures was converted into function call graphs (FCGs), so
anomaly detection using deep learning methods could be performed.

In [12], the motivation was the protection of IoT and IIoT systems from attacks. The
authors pointed out that, as more and more devices become Internet-connected and connect
to one another, an additional risk for malicious attack is presented. In addition, as more of
these devices connect to the Internet, they begin to produce larger and larger quantities of
data. This exponential increase in data makes it impossible for a human to efficiently process
it all. The authors utilized directed graphs, where the edges represent the dependency
between sensors to show the context between IoT devices to assist in anomaly detection.

The work in [44] focused on the detection and prevention of attacks and intrusions
on IoT devices. This work also mentions the lack of available data-sets for IoT devices.

Sensors 2023, 23, 1352 8 of 33

This study treated all IoT devices as a single large IoT device, rather than leveraging the
graph-based nature of IoT networks.

For [10], the motivation was also attack detection in IoT networks. System errors were
not listed as a type of anomaly in this paper. If data were missing from a row (represented
by NaN values), each NaN was converted into a malicious value and that row was labeled
an anomaly. This work also removed the timestamp column from the data-set used and,
therefore, was not interested in time series data. In [45], the focus was on utilizing deep
learning to develop an attack detection model for the IoT using network data. This work
utilized the same data-set as [10], and the data-set was pre-processed to fill in missing data
with meaningful information as well.

In [46], the authors pointed out that, as IoT device usage rises, malicious attacks on
these devices will also rise. Their goal was to provide an efficient AD mechanism for IoT
devices regardless of the ML model used. As such, they focused more on the selection of
features from a data-set rather than the ML model itself. The data-set they utilized in their
research was the Bot-IoT data-set.

The work in [47] worked with the IoT in water systems. Their motivation was the
global water crisis low-income communities are facing. The goal was to utilize time series
data from smart water systems to detect anomalies such as leaks, meter failures, illegal
water use, warning situations, and peak water use.

The work in [48] looked at anomaly detection in a network of charging stations.
Overall, there were 10 charging stations, 1 faulted and 9 normal, with 24hr logs over
20 days (plus a random bot sending OCPP-compliant messages). The logs contained
requests and responses from a central server. Multiple different message types were
present in the logs. The goal was to attempt to detect faults from these messages.

In [49], anomalies occurring in nuclear power plants was the focus. In addition, this
work referenced [50], which is a 2009 anomaly detection survey, further showing the interest
anomaly detection has received in the last 20 years. The data for this work were simulated
using the SIMULATE-3K tool.

The work in [51] focused on fault detection in the structure of a network of sensors
utilizing non-heterogeneous fault alarms. Bi-partite graphs were used to process the data.
When multiple faults in a sensor network occurred at the same time, the resultant alarms
that sounded (at the monitor stations) were not heterogeneous (meaning the sets of alarms
that went off did not always designate the same set of faults). As a result, when multiple
faults occur at the same time, the destination of the fault cannot always be found.

The motivation of [52] was real-time, efficient anomaly detection in edge networks for
the IoT. This work pointed out the need for real-time AD in large sensor networks while
avoiding large numbers of false alarms and large numbers of undetected anomalies. It also
pointed out the pitfalls of using traditional NN approaches due to their inefficiency for
detecting new anomalies in real-time.

In step with [52], the work in [53]focused on distributed anomaly detection, citing the
incredible increase in IoT devices over the last few years and subsequent increase in load
on cloud computing systems. The primary motivation in [53] was to handle anomalies in
real-time, rather than wait for an analysis to occur at the cloud level. The Internet of Vehicles
(IoV) (a subset of IoT) producing anomalous sensor data was used as a motivating example.

The work in [54] focused on the Industrial IoT (IIoT). The application focused on time
series data produced by industrial devices. Specifically, the focus was on dynamic, normal
(drift) operations in the IIoT. In situations such as these, what defines “normal” changes
over time. As such, this work aimed to detect anomalies during “drifts” from stable (or
“normal”) windows of time.

The motivation of [7] was industrial devices that rely on and produce multivariate
time series data. Time series data are defined here as sensors producing data regularly
over time. The multivariate component comes into play when multiple systems produce
multiple data streams (i.e., from different sensors in the system). This work looked at
multivariate time series data on a per-entity basis (many entities in the network and many

Sensors 2023, 23, 1352 9 of 33

sensors per entity). These entities produced large sets of data, which can have per-sensor
anomalies, with some events (such as overloads) causing anomalies across all sensors in an
entity. This work defines an anomaly as an unexpected incidence significantly deviating
from the normal patterns formed by the majority of the data-set.

The work in [13] focused on multi-sensor time series data where the data do not always
conform to a fixed input size. Their goal was to produce a model that enhances anomaly
detection (compared to other techniques) in cases where sensors may not be available at
particular time instances in some cases, but available in others.

The work in [55] focused on time series in the IIoT. Their motivation was the complexity
and inter-connectedness of sensor data in IIoT systems. Their goal was to derive an efficient
outlier detection framework that can handle time series data and detect anomalies with
long-term, short-term, and weak time dependence. The data in this work was down-
sampled for dimension reduction.

For [56], the motivation was to provide a robust anomaly detection capability for
connected and automated vehicles (CAVs), namely to do so despite the lack of anomalous
data present in the data. In addition, this work defines the following anomaly types: instant,
constant, gradual drift, and bias.

Table 2. Breakdown of application types for IoT-based AD.

Reference Application Primary Focus Secondary Focus

[38] malicious actor IDS -
[39] malicious actor IDS -
[40] malicious actor DDoS -
[41] malicious actor SYN attack -
[11] malicious actor botnet -
[42] malicious actor - -
[14] malicious actor - time series data
[43] malicious actor malware detection -
[46] malicious actor feature selection -
[12] malicious actor - -
[44] malicious actor IDS -
[10] malicious actor IDS -
[45] malicious actor IDS -
[47] sensor performance water systems time series data
[48] sensor performance charging system -
[49] sensor performance nuclear power plant -
[51] sensor performance edge connection fault detection -
[15] sensor performance emergency detection -
[54] time series data IIoT sensor drift -
[7] time series data - -

[13] time series data multivariate time series data -
[55] time series data - -
[57] general AD time series data multi-class detection
[56] general AD automated vehicles -
[58] general AD time series data energy efficiency
[52] distributed AD - -
[53] distributed AD time series data -

The work in [15] utilized the IoT in the detection of emergencies in coal mines. It
utilized environmental sensors connected in a network, including wind speed, Ch4, and
CO sensors. It attempted to classify anomalous states in the network within the mine.
The paper listed four “situations”, three of which are dangerous, thereby making this a
multi-class classification problem.

The motivation for [57] was understanding anomaly detection in IoT networks. Their
main focus was on multi-class anomaly detection utilizing time series data in the IoT. They
pointed out that, due to the limited availability of labeled data-sets and the disproportion-
ate occurrences of anomalous data in IoT devices versus nominal data, fully supervised

Sensors 2023, 23, 1352 10 of 33

approaches to general AD are not as successful as unsupervised approaches. On the other
hand, the benefits of supervised approaches are missed when using purely unsupervised
approaches. As a result, they utilized a hybrid semi-supervised approach to perform AD
on a network of IoT sensors.

The motivation for [58] was trustworthiness, energy efficiency, and explainability for
anomaly detection in the IIoT. They pointed out that there has been some progress toward
explaining how AD is performed, but little to no work on making AD in ever-growing IIoT
networks more energy efficient. This work relied on the trade-off between energy efficiency
and accuracy. As such, applications that rely on more energy-efficient environments and
that can handle less accurate results can utilize this approach by leaning more toward the
energy efficiency side of this balance. The opposite is also possible. For the data-sets used,
the authors relied on deductive imputation (using the mean of the feature column) to fill
in missing values, and categorical data were converted from text to numerical data using
LabelEncoder from SKLearn. SKLearn was also used to standardize the data. This was
done so the results of the training were more generalizable.

4. Anomaly Detection by Approach

In addition to applications, anomaly detection can be performed with different ML
(and non-ML) approaches, or combinations of approaches. Here, we break down our
survey by approach used.

In [38], the authors relied on a symptomatic approach to anomaly detection. Using the
logic that, when an attack is occurring on an IoT device, the device’s power consumption
will rise, the approach used relies on recording the amperage of each IoT device (IP cameras
in this work) during nominal use and during an attack. The authors ran their IoT network
with normal operations, then began denial of service attacks on the nodes in the network,
recording the amperage used by the nodes being attacked.

The work in [39] used the K-means algorithm for anomaly detection as a test case for
a custom-designed framework for testing anomaly detection algorithms. In their test case
with K-means, they built a 24 h simulated data-set to mimic a smart home network. The
metrics included true and false negative/positive counts and the true positive rate (TPR).
Cluster sizes in the K-means algorithm were varied, as was the cluster initialization criteria.

To perform the work in [40], an autoencoder was utilized. Since the data were viewed
as a single sensor, rather than a network of sensors, the data were fed into the autoencoder
to learn its signature, then decoded. Once training was complete, any new data fed into
the autoencoder that looked like deviations from the trained model were considered as
an anomaly.

The work in [41] looked at AD using two different types of networks, an LSTM and a
Gelenbe network (also known as a random neural network or RANN). The LSTM model
used was standard. The random neuron model used deviated from a standard perceptron
in that, rather than a simple data input, the random neuron takes both an excitation signal
and a inhibition signal (which are mapped to the input data). Both models were used
as regressors to detect the normal state of the network. Then, as the test data, a dataset
containing anomalous data was fed into the model, and the regressor’s prediction model
would be off from nominal, resulting in the detection of an anomaly. In [41], node-level
anomaly detection was performed. This was performed by utilizing the packet information
about the IoT network. The goal was to detect SYN attacks, so this work utilized regression
to predict the number of half-open TCP ports on the IoT device. If the number predicted
deviated by some threshold, an anomaly was reported.

The work in [11] used multiple ML-based approaches such as Gaussian regression,
SVM, decision trees, random forest approaches, and an MLP. Their approach relied mostly
on the generation of PSIGs, rather than a new or novel classification model. The authors
pulled 12 attributes from the ELF files of IoT devices, some at the graph level and some
at the sub-graph level. At this point, this 12-dimensional information was passed into
the listed classifiers to perform anomaly detection. The work in [11] examined data at

Sensors 2023, 23, 1352 11 of 33

the graph and sub-graph level of the ELF files of IoT devices themselves, not the IoT
network. Information on how these devices were connected and may or may not be sharing
information with one another was not considered. As such, their anomaly detection
approach, while performing sensor-level classification, did so without consideration of the
graph structure of the network, rather this was performed using the graph structure of the
IoT device’s executable.

An autoencoder was chosen as the AD network in [42]. The justification for using
an autoencoder here was due to the large reconstruction loss when seeing anomalous
data when trained on strictly non-anomalous data. This justification was similar to other
unsupervised techniques seen in this survey. This work claimed robustness against ad-
versarial ML attacks due to how the DNN was implemented and the sparsity of the data
collection. Normalization in the autoencoders was based on tasking (anomaly detection
versus classification). For the former, min–max scaling was used, and for the later, norm
scaling was used. This normalization of autoencoder loss was used to aid transfer learning
across client networks.

The work in [14] used a connection learning policy based on the Gumbel softmax
sampling trick (https://towardsdatascience.com/what-is-gumbel-softmax-7f6d9cdcb9
0e (accessed on 24 January 2023)) to overcome the quadratic complexity challenge and
limits of this work. To perform their AD, they used a Transformer for its usefulness in
capturing long-distance contextual information. Like other unsupervised approaches in
this survey, their training was performed only on non-anomalous data, with prediction on
data with anomalies.

The work in [43] used GraphSAGE and an MLP to perform malware detection on the
IoT. The node features along with the FCGs generated from the IoT device architectures
were fed into a GNN (GraphSAGE) to obtain the graph embeddings. This was then fed into
an MLP for binary classification. The authors used multiple layers of GraphSAGE, summing
the graph embeddings from each layer and using this as the input to the classification
layer. Additional tests also included a GCN and hierarchical graph pooling with structure
learning (HGP-SL) in place of GraphSAGE. For [43], function call graphs were used to
represent source code on different IoT architectures. FCGs were extracted, and natural
language processing was performed on blocks of opcode to obtain the embeddings, which
were then used as the node features. Node-level classification using GNNs was then
performed with the node features and FCGs.

In [12], unsupervised AD using a graph deviation network (GDN) was performed,
with training only on non-anomalous data. The goal of the GDN was to detect patterns
in the relationships between nodes on the network and report when there was a devia-
tion from these relationship patterns. One-class classification on each tick of the time
series data was performed. This work used embedding vectors based on the data-sets
tested, whose weights were randomly set, then learned to represent unique features of a
sensor. The attention coefficients were normalized using softmax. The anomalousness
scores were normalized to avoid bias. The graph attention feature extractor used ReLU.
The focus in [12] was anomaly detection on multivariate time series data. A sensor
embedding containing the time series data and the number of sensors in the network
was provided to two models: a relationship detection model and an attention-based
forecasting model. Once the relationship model had run, that output was also fed into the
forecasting model. The result was a graph deviation score, which was the determination
whether any particular moment in time was anomalous or not. As a result, this work
focused on whole system anomaly detection rather than anomaly detection on the sensor
(node) level.

To perform AD in [44], both a standard MLP and logistic regression were used. To
handle time series data, multiple time windows were added as parameters in the data-set.
As all the data were treated as coming from one sensor rather than a network of sensors,
potential information was lost due to ignoring the graph structure of the network.

https://towardsdatascience.com/what-is-gumbel-softmax-7f6d9cdcb90e
https://towardsdatascience.com/what-is-gumbel-softmax-7f6d9cdcb90e

Sensors 2023, 23, 1352 12 of 33

The authors in [10] performed a comparison between multiple ML models and pro-
vided good explanations of some ML types and potential data-sets. Only one DL model
was used (a standard MLP). Comparisons were against logistic regression, random forest,
support vector machines, and decision trees. Label encoding was used to convert data
into feature vectors. This kept the dimensionality of the data-set the same (rather than
increasing the dimensionality, like other embedding vector functions often do). Like [10],
the work in [45] also utilized a standard MLP for AD.

The authors in [46], rather than focusing on the ML model for anomaly detection,
instead focused on data-set feature extraction. The motivation for this was to mitigate the
cases where inaccurate features may cause misclassification of anomalies and to speed up
the performance of AD models. To perform more accurate feature extraction, the authors
expanded upon their work in [59] and utilized a combination of correlation attribute
evaluation (CAE), and the AUC metric to select features from the data-set, they verified
the importance of those features using the integration of TOPSIS and the Shannon entropy
metric. This algorithm is referred to as CorrAUC. To perform AD, the features chosen
by CorrAUC were fed into multiple different ML models and evaluated. Those models
included the C4.5 decision tree, naive Bayes, random forest, and an SVM, with the C4.5
decision tree model performing best.

Rather than using NNs for anomaly detection, the work in [47] focused on the ARIMA
and HOT-SAX algorithms. ARIMA used association rule learning for classification, and
HOT-SAX used random forest. Both classification (anomaly and non-anomaly), as well as
discrimination (anomaly type) were performed. The models without discrimination had
high rates of false positives. The association rule discriminator was inconclusive due to the
lack of available data. The data used were a custom data-set based on IIoT water meters
and time series data, but they were treated independently (graph-based approaches were
not used). The metrics used included accuracy, sensitivity specificity, and AUC-ROC.

In [48], a standard MLP was used for anomaly detection on the messages from the
charging network. This was one of the few papers surveyed here that focused on fault-based
AD, rather than malicious actor detection.

To perform AD, the data in [49] were pre-processed by applying the discreet wavelet
transform (DWT) to the signals in the data, before feeding the output into a CNN. The
DWT was chosen for its ability to capture both frequency and location information. This
introduced an optimization problem into the mix, since a DWT relies on a “mother wavelet”
in order to transform the data. The choice of this wavelet determines how the data are
transformed. Detrending techniques [60] were also used on the signals prior to running
through the DWT. There were in total 56 sensors used in the experiment.

To perform AD in [51], a custom Hopfield neural network (HNN) was used. An HNN
has its neurons run in parallel (synchronously), as opposed to by layer (asynchronously),
which helps reduce the computational complexity of fault detection as the number of faults
and alarms in the problem increases. Because non-heterogeneous fault detection mechanisms
were present, the work in [51] focused on multiple-fault detection in the network structures
themselves, rather than the specific IoT devices (i.e., edge connection fault detection). As a
result, whole graph detection was the focus in this work. When multiple faults occur at the
same time, the destination of the fault cannot always be found, but [51] was made to detect
that a fault has occurred. This was performed by generating a bi-partite graph between
faults and detections, pre-processing the graph to remove obvious non-faults, then running
the resultant graph through the custom HNN.

In [52], a cloud-based deep learning approach was used to generate graphs of both
normal and anomalous patterns, and edge computing was performed for feature vector
comparisons against both anomalous and normal patterns. This was performed by uti-
lizing a threshold technique first with anomalous patterns, then with normal patterns. If
neither passed a threshold, the resultant new data point went into the cloud for additional
training. If normal and anomalous patterns were detected, aside from reporting the nor-
mal/anomalous pattern, the resultant patterns were stored in the cache on the edge node

Sensors 2023, 23, 1352 13 of 33

to be used as an additional comparison for future data inputs until the cloud platform
can aggregate those patterns into new graphs. Anomaly detection was performed both
on the edge nodes and the cloud using a heuristic that compared the feature vector of the
input data to lists of known anomalous and non-anomalous data, as well as graphs of
normal and anomalous data. These graphs seemed to contain nodes comprised of feature
vectors. In [52], convolution was performed on sets of feature data, which seemed to
consist of n-dimensional time series data, producing a 2D input. Then, linear classification
was performed on the output of the convolver. Exactly how graphs were used was not
explained in detail. In addition, how feature vectors were generated was not specified.

In [53], a distributed approach was utilized, where the analysis using a CNN-inspired
rule-based classifier was used to update an anomaly rules database (ARB). This ARB was
used by the edge nodes to detect anomalies in univariate and multivariate time series data.
Training was performed using multiple real-world data-sets, as well as a synthetically
generated data-set.

In [54], a recurrent neural network (RNN) was utilized, and the network was trained
incrementally and was capable of detecting (using prediction error) sudden, incremental,
gradual, periodic, and aperiodic drifts. This work used local window normalization (which
is useful for non-stationary time series). In [54], because an RNN was used, the approach
to AD was regression (prediction). As such, the RNN was used ot predict the next few
time steps of time series data passed into the network. If the prediction was off, the data
were anomalous. Anomalous data were data seen as independent of drift, so incremental
training was only performed during drift, which can be seen as a gradual change in the
stat of data over time, rather than a localized change.

In [7], an unsupervised AD model was used due to the anomaly diversity and lack of
labels for training. This paper also took a look at anomaly interpretation, by looking at a given
entity’s univariate time series data and choosing the data with the lowest reconstruction
probabilities. To perform AD, this work utilized a custom DNN, OmniAnomaly, which is
a stochastic RNN (GRU + VAE). The work in [7] also relied on an unsupervised regression
to perform AD. They analyzed reconstruction probabilities in both the multivariate and
univariate cases for each entity in the network to determine what was an anomaly and what
was not. As such, anomalies were decided on a per-entity bases, rather than on the network
as a whole.

AD in [13] was performed using a “Conditioning” GNN, fed into a GRU “core”. The
time series data were pre-processed to obtain a sensor availability embedding, then run
through the conditioning GNN. The result of that process produced a sensor availability
vector, which was fed into the GRU as additional input along with the multivariate time
series data (which were mean-imputed to fill in gaps where there was missing sensor data).
In [13], the goal was anomaly detection on multivariate time series data. The authors
allowed for classification (anomalous/non-anomalous) and regression to be used. The
classification utilized a softmax output layer to the GRU, while a sigmoid function was
used for regression. Since a GRU is made to handle data of a fixed input size, the sensor
network was summed into a single IoT node. As such, the work in [13] provided anomaly
detection based on a window of time, rather than a particular sensor (node).

An LSTM was used in [55] to both handle time series data and deal with vanishing
and exploding gradients, which can arise with longer time windows in standard RNNs.
Specifically, a stacked LSTM with Gaussian naive Bayes processing was used. This paper
went into detail on how LSTM networks are constructed and work and can be a good
reference material for models using LSTMs. Because time series data were the focus in [55]
and an LSTM was utilized, each row in the data-set was one moment in a time window used
in the LSTM processing. The anomaly detection model ran the data-set through the LSTM,
ran the results through a Gaussian distribution (using maximum likelihood estimation),
then, along with the LSTM results, passed the results of the Gaussian distribution through
a naive Bayes model and reported on the presence of an anomaly.

Sensors 2023, 23, 1352 14 of 33

The work in [56] focused on an ensemble approach for anomaly detection. This was
performed by utilizing a CNN and LSTM for regression on the sensor data, then using
an ensemble approached called WAVED, enhanced using this prediction for classification.
WAVED is a combination of random forest, AdaBoost, and an SVM. In [56], multi-class
classification was performed. The anomalies of interest were instant, constant, gradual drift,
and bias. Because this work focused on a sensor network in a vehicle, the classification of
anomalies was defined at the vehicle level, not the sensor level. The CNN extracted features
from the sensor network, and the LSTM took those features to predict a signal. This was
then fed into WAVED, which performed a majority voting rule from each of its ensemble
classifiers, then this, along with the data prediction, determined the class of anomaly (or if
the data were nominal).

To perform the anomaly detection in [15], an MLP was utilized. The authors called
this a “BP” network for back-propagation, which is the standard function of an MLP.
Only a single hidden layer was used in the MLP. In [15], the authors were interested in
four classes for detection: no anomaly and Risk Grades 1, 2 and 3. To do this, the output
layer of their MLP used two neurons. Their results (which were 1 or 0) indicated 1 of the
4 classes. The classification performed wassystem classification. Since the goal was safety
detection in a coal mine, any anomaly detected anywhere in the system resulted in an
alert to the whole system.

To perform AD in [57], the authors utilized a combination of an temporal convolu-
tional network (TCN) and a variational autoencoder (VAE) on the DS2OS data-set. Their
approach was called SS-VTCN, which was a semi-supervised approach taking into con-
sideration partially labeled data during training, as well as an anomaly prediction score
passed on to the VAE. In addition, this approach utilized rectification parameters when
each side of the NN did not agree. Since the work performed in [57] was semi-supervised,
it was a combination between sensor classification and regression, with the labeled training
data being used to enhance the anomaly prediction. In order to avoid leakage from “future
data”, the authors only allowed the NN to train on data that had gone through the trainer
previously. In other words, the test data-set became “fresher” than the training data-set.
The amount of labeled data was increased from 10% to 50% during the analysis of this
approach. In addition, because this approach was semi-supervised, the anomaly detection
performed by the VAE portion of SS-VTCN can be enhanced by utilizing the reconstruction
probabilities of the labeled training data. Interestingly, because the labeled portion of
SS-VTCN performed dimensionality reduction and because VAEs generally create lower-
dimensional representations between the input and the reconstruction, the authors here
modified their VAE to do the opposite: create a higher-dimensional intermediate layer to
reconstruct lower-dimensional inputs.

In [58], feature extraction was performed using a standard autoencoder, with AD
using a VAE and feature selection using DeepExplainer. A standard autoencoder’s
encode and intermediate layers were used to extract features to perform AD on. This
reduced the dimensionality of the data. From here, a VAE was used to perform AD,
then DeepExplainer was used to perform feature selection for a re-run through the
VAE. Regression-based anomaly prediction was performed in [58]. This work extracted
the features using an autoencoder, predicted “first level” anomalies using a VAE, then
utilized DeepExplainer (which is a modification of the Shapley additive explainer, which
is a linear function of binary variables that helps determine which features used in
an ML model are contributing toward the model output and Bayesian local explana-
tions to capture the uncertainty from the explainer). The autoencoder was used for
feature extraction (the encode and intermediate layer), as well as for the reduction of
the computational complexity of the AD model. It was this reduction in complexity
that contributed to the energy efficiency. To select the features of highest importance
to re-run through the VAE to determine anomalous output, DeepExplainer works on
concepts from game theory. In order to ensure good computational importance, rather
than random sampling of perturbations, focused selection was used. DeepExplainer

Sensors 2023, 23, 1352 15 of 33

iterates from the two most-important features, to all extracted features, and re-runs the
VAE, tracking the F1-score each time. The run with the highest F1-score was utilized.
This was how this work handled the trustworthiness of the model.

5. Comparison of Performance

This survey focused on anomaly detection across multiple applications, methods, and
approaches. However, the data-sets used in this survey were not all unique to each work.
As such, there was some overlap in the AD methods surveyed and the data-sets they used.
Here, we compare the performance of any AD approach that utilizes the same data-set.

Of all the works surveyed, eight papers used at least one data-set that was the same as
at least one other paper. Table 3 breaks down the works surveyed and the similar data-sets
between them.

Table 3. Data-sets and the surveyed AD works that used them. An ’X’ indicates if a work utilized a
data-set.

Dataset/Cited Paper [12] [14] [7] [45] [10] [57] [52] [44]

SWaT X X - - - - - -
WaDI X X - - - - - -
MSL - X X - - - - -

SMAP - X X - - - - -
DS2OS - - - X X X - -
BaIoT - - - - - - X X

SWaT is the Secure Water Treatment data-set and is a water treatment data-set collected
across 11 days, which simulates cyber attacks on a water treatment system in the last 4 days
of running. WaDI is a water distribution data-set, which is an extension of SWaT. WaDI
contains 16 days of data with 2 days of simulated attacks.

The work in [12,14] utilized both of these data-sets and provided their results using the
precision, recall, and F1-score. The work in [12] utilized a graph deviation network (GDN)
composed of an embedding function, graph structure learning relying on directed graphs
to capture the dependencies between sensors, an attention mechanism to forecast future
values of the sensors, and a deviation scoring mechanism. The work in [14] also leveraged
a directed graph structure learning policy and did so using the Gumbel softmax sampling
strategy inspired by the policy learning network used in some reinforcement learning
methods. In addition, the work in [14] leveraged techniques from graph convolutional
networks (GCNs) and a customized multi-branch attention Transformer to capture time-
related dependencies in the data.

The work in [14] reported multiple different versions of their metrics based on their
best runs as defined by the recall (represented by *) and F1-score (represented by **). Metrics
for each work for the SWaT data-set are reported in Table 4. Table 5 reports metrics for the
WADI data-set.

Table 4. Comparison of cited works using the SWaT data-set. * Indicates reported results based on
recall. ** Indicates reported results based on F1 score.

Reference Precision Recall F1

[12] 99.35 68.12 0.81
[14] * 74.91 96.41 0.84
[14] ** 94.83 88.1 0.91

Sensors 2023, 23, 1352 16 of 33

Table 5. Comparison of cited works using the WaDI data-set. * Indicates reported results based on
recall. ** Indicates reported results based on F1 score.

Reference Precision Recall F1

[12] 97.50 40.19 0.57
[14] * 74.56 90.50 0.82
[14] ** 83.91 83.61 0.84

In [14], more weight was given to the recall and F1-score. Their justification was that,
in a real-world scenario, the tolerance of false alarms is preferable if better performance in
detecting real anomalies is shown. If we use this as the context for comparison, the work
in [14] significantly outperformed [12] in both recall and F1-score. This indicates that the
GTA method of [14] provided a significant improvement over the state-of-the-art. The
work in [12] was referenced in [14] for comparison purposes against these two data-sets
and performed second-best when compared to the other comparison methods used by [14].

SMAP is a soil moisture data-set generated by satellite imagery, and MSL is a sensor
data-set from the Mars Rover. Both of these data-sets are provided by NASA and contain
labeled anomalies.

SMAP and MSL were used to evaluate the performance of [7,14]. In [7], a custom
approach called OmniAnomaly was developed utilizing a vast array of optimization meth-
ods. It first starts with a gated recurrent unit (GRU), which is a simpler (but equivalently
performing) attention network based on an LSTM. This was used to capture temporal
dependencies in the data. Secondly, it utilizes a variational autoencoder (VAE) to map
observations on input data to the resultant output. This VAE utilized a linear Gaussian state
space model to model temporal dependencies in the latent space and planar normalizing
flows to help capture complex distributions in the data. OmniAnomaly is split into an
encoding (qnet) and decoding step (pnet) and uses reconstruction probability to determine
if an anomaly is present.

Like the previous data-sets, the work in [7,14] utilized the precision, recall, and F1 as
their reporting mechanisms. Unlike the previous data-sets, the work in [14] only reported
their best scores based on the F1. Metrics for each work based on the SMAP data-set are
reported in Table 6. Table 7 reports metrics on the MSL data-set.

Table 6. Comparison of cited works using the SMAP data-set.

Reference Precision Recall F1

[14] 89.11 91.76 0.9041
[7] 74.16 97.76 0.8434

Table 7. Comparison of cited works using the MSL data-set.

Reference Precision Recall F1

[14] 91.04 91.17 0.9111
[7] 88.67 91.17 0.8989

For the SMAP data-set, taking into consideration the context that it is generally better to
accept false positives than have false negatives, the work in [14] outperformed [7], although
the margins compared to the previous data-sets and the comparison between [12,14] were
much smaller. This was even further seen when looking at the MSL data-set. The work
in [7,14] were within 2% of one another for the F1 and were identical for the recall. The
work in [7] was also used as a comparison in [14] against the MSL and SMAP data-sets
and either tied with [14] (for recall), was second-best (for precision), or came within 1%
of second-best (for F1-score). This led us to believe that the GTA method of [14] was only
marginally better than the existing OmniAnomaly method.

Sensors 2023, 23, 1352 17 of 33

The determination of the complexity between these two methods is subjective, but
each is generally more complex compared to more traditional deep learning methods such
as MLP, LSTM, or CNN. Interestingly, the work in [14] compares itself to many less complex
methods for SWaT and WaDI and more complex methods for SMAP and MSL. This led
us to believe that SMAP and MSL may require more complex ML mechanisms to more
accurately perform anomaly detection.

For [10,45,57], the only similar metric between them that was reported was the F1-
score. For [45], an MLP was used to perform AD on the DS2OS data-set. For [10], multiple
approaches, including logistic regression, decision tree, random forest, support vector
machine, and an MLP were tested against DS2OS. For [57], multiple custom approaches
were compared against a proposed semi-supervised variational temporal convolutional
network (SS-VTCN), which is a TCN + VAE, on the DS2OS data-set. Since SS-VTCN is semi-
supervised, different levels of data were labeled prior to training/testing. Here, we show
the best performance of SS-VTCN against the MLP from [45] and all the ML approaches
used in [10].

The DS2OS data-set has six different classes. All three works grouped those classes in
different ways, and the only work that reported any information on the grouping was [57].
As a result, we treated the reported F1-scores as an average across all class groupings.
MEtrics are reported in Table 8.

Table 8. Comparison of cited works using the DS2OS data-set.

Reference Approach F1

[45] MLP 0.98
[10] LR 0.98
[10] SVM 0.98
[10] DT 0.99
[10] RF 0.99
[10] MLP 0.99
[57] SS-TCVN 0.9616

The work in [45] compared its proposed approach to other well-known approaches
such as SVM, SGD, LDA, RF, LR, DT, and Gaussian NB, with its proposed approach
performing comparatively similar to the other approaches. The work in [10] confirmed
this, showing all of its ML approaches to be close in performance. For [57], a much more
complex ML approach was used, and at best, it performed within a margin of error to more
simpler approaches seen here on the same data-set.

We believe that this shows that data-sets like DS2OS do not need to rely on overly
complex anomaly detection mechanisms for good performance.

In [52], an edge+cloud-based method was used called AdaGUM. At the edge level,
anomalies were compared to a lookup table, as well as a graph-based representation of all
known anomalies seen in the network. This was performed first for anomalous patterns,
then for normal patterns. If no matches were found in either case, the data were sent to
the cloud and a convolutional neural network (CNN) was used to perform the anomaly
detection. The results of the CNN were used to update the nominal and anomaly records
in the edge nodes.

In [44], a general MLP and logistic regression were used independently of one another
and in parallel to perform anomaly detection.

For [44,52], the only comparison between the two of them was their ROC curves. As
such, these figures were pulled from each paper and combined. Figure 1 shows the results.
For [44], the proposed MLP performed worse than the logistic regression model used, so
here, we show the logistic regression model of [44] against the AdaGUM model of [52], with
related comparisons from [52] shown as well. As we can see, all models performed fairly
well compared to one another, with [44,52] showing nearly identical performance. We believe
this indicates that the BaIoT data-set is fairly easy to classify for machine learning models.

Sensors 2023, 23, 1352 18 of 33

In addition to the direct comparisons we made earlier in this section, here, we show
the general performance of each surveyed work based on their application type. This is
not a direct comparison, as each work did not necessarily use the same data-set. We report
(where applicable) the accuracy, precision, recall, and F1-score for each work surveyed in
the tables based on the application. For any metric not available, a “-” is present. This is
indicated where the data were averaged over multiple results. Papers without any of those
metrics or papers that did not fall into a specific application category were omitted.

As we can see in Table 9, for the malicious attack application, very little (if any)
performance is gained by producing highly complex models. In addition, how a model
is connected can greatly effect the performance. This can be seen in the performance of
the MLPs used in multiple works and the autoencoder in [40], where the combination
of the two, as seen in [45], performed markedly worse. It should be noted here that a
direct comparison between these works was not performed since the data processing and
data-sets used differed.

Figure 1. Comparison of ROC curves from [44,52].

Table 9. Performance of surveyed works for malicious attack application. An * indicates averaged
data.

Reference Approach Accuracy Precision Recall F1

[40] autoencoder - 0.994 0.941 0.967
[10] MLP 0.994 0.99 0.99 0.99
[41] LSTM 0.627 - - -
[41] Gelenbe Network 0.807 - - -
[11] Gaussian (regression) 0.91 - - -
[11] Gaussian (classification) 0.9418 - - -
[11] Decision Tree 0.9418 - - -
[11] Random Forest 0.9484 - - -
[11] SVM 0.9314 - - -
[11] MLP 0.939 - - -
[44] MLP 0.964 0.939 0.951 0.9913
[44] Logistic Regression 0.9998 0.999 0.9996 0.9992
[12] GDN (SWaT) - 0.9935 0.6812 0.81
[12] GDN (WaDI) - 0.9750 0.4019 0.57
[42] autoencoder + MLP - 0.58 0.15 0.24
[43] GraphSAGE + MLP 0.9961 - 0.9971 -
[45] MLP 0.9828 0.97 0.98 0.98

[46] * C4.5 0.9998 0.9711 0.9428 0.9567

The data for the time series application had performance ranges from the mid 80%
to the high 90% ranges (based on the F1-score). This would indicate that there was some
marginal improvement from more recent approaches such as SS-VTCN from [57] and GTA

Sensors 2023, 23, 1352 19 of 33

from [14]; however, the improvements seemed to be data-set dependent. Metrics can be
seen in Table 10.

Each of the works in Table 11 performed anomaly detection on completely different
networks of sensors. Interestingly, their accuracy was similar. Each model in Table 11
becomes more and more complex with little to no significant improvement. This may
indicate that, like Table 9, more complex models do not necessarily produce better anomaly
detection. Again, since each of these models was used on a different data-set with different
data processing, a direct comparison is not wholly accurate, and these results should be
used as a reference.

Table 10. Performance of surveyed works for time series data application. An * indicates averaged
data.

Reference Approach Accuracy Precision Recall F1

[7] (SMAP) OmniAnomaly - 0.7416 0.9776 0.8434
[7] (MSL) OmniAnomaly - 0.8867 0.9117 0.8989
[7] (SMD) OmniAnomaly - 0.8334 0.9449 0.8857

[47] HOT-SAX 0.76087 0.57143 0.85714 0.68571
[55] * LSTM-GNB 0.9637 0.9547 0.956 0.9523

[14] (SWaT *) GTA - 0.8487 0.9226 0.875
[14] (WaDI *) GTA - 0.7924 0.9156 0.83
[14] (SMAP) GTA - 0.8911 0.9176 0.9041
[14] (MSL) GTA - 0.9104 0.9117 0.9111

[57] SS-VTCN - - - 0.9616

Table 11. Performance of surveyed works for sensor performance application. Values were averaged
due to multiple results being reported.

Reference Approach Accuracy Precision Recall F1

[48] MLP 0.9383 - - -
[49] CNN + MLP 0.9687 - - -
[56] MSALSTM-CNN 0.9377 0.9207 0.9846 0.9512

6. Research Directions and Opportunities

While this survey laid out the research being performed in anomaly detection, it also
outlined gaps in the research. The availability of robust data-sets for sensor networks is
hard to come by. Recent work on benchmarks such as Stanford’s Open Graph Benchmark
(OGB) (https://github.com/snap-stanford/ogb, (accessed on 24 January 2023)) [61] are
assisting with this deficiency. A future direction in the area of data-set generation can focus
on the collection of IoT sensor data similar to what was done with Chicago’s Array of Things
(https://arrayofthings.github.io/, (accessed on 24 January 2023)).

A practical concern for anomaly detection in the IoT is performing AD on the IoT
devices themselves. The vast majority of ML approaches surveyed did not consider the
execution restrictions of very small devices such as those used in the IoT. Of all the papers
surveyed, only three were found to address this issue as a primary concern. Two of these
approaches [52,53] were surveyed here. Another of these approaches [62], did not meet
the criteria of this survey, but is worth mentioning here due to the unique nature of the
research. In [62], a distributed anomaly detection network was created in order to perform
node- and neighborhood-based AD in a network. Larger, edge AD systems performed the
neighborhood anomaly detection, while smaller, node AD systems performed the node-
level AD. This was done utilizing various sizes of MLPs at each layer. For a more robust AD
framework for the IoT, the research being performed in mobile and edge machine learning,
such as Voghoei et al’s “Deep learning at the edge” [63], can be useful.

A more theoretical concern in anomaly detection that needs more study is understand-
ing what is going on between hidden layers in these neural networks related to the specific
tasks of anomaly detection in the IoT. All the approaches surveyed here focused on some

https://github.com/snap-stanford/ogb
https://arrayofthings.github.io/

Sensors 2023, 23, 1352 20 of 33

performance gain against a specific data-set compared to other AD approaches. Rather
than focusing on iterative performance gain, understanding how a data point is being
transformed and using that understanding to find better approaches to AD in IoT is an
open area of research.

With regard to performance-driven AD in the IoT reviewed in this survey, the majority
of ML used for anomaly detection relies on techniques that are not graph-based. This
is due in part to the relative newness of graph-based techniques and also provides an
opportunity for those wanting to perform research in this area. In particular, how graph-
based anomaly detection techniques work on independent sensors is an open problem.
Sensors in a network such as this may interact with one another, but are not explicitly
required to. How they are connected (spatially, physically, through communications, etc.)
is an area of active research.

Furthermore, most research being performed is on attack-based anomaly detection.
While attack prevention in networks is extremely important, it is only part of anomaly
detection. This provides an opportunity for more research to be performed in the areas of
general AD for detecting multiple types of anomalies across the space or on performance-
based AD, where a network’s anomalies are based on faulty equipment or abnormal
environmental conditions, rather than malicious attack.

Furthermore, most network-based machine learning leverages the TCP-IP nature of
Internet-connected devices. This usually means information being acted upon takes the
form of packet data. This strict adherence to a TCP-IP structure may bias the data-sets in
ways not currently studied. An open question is how/if the structure of the data being
collected in a sensor network have an effect on the performance of a DL network, and both
additional study using raw sensor output and the study of how strictly formatted sensor
network data biases the results of DL networks (whether IoT data, network data, or not)
are potential future avenues of study in the area of anomaly detection.

Lastly, work focusing on distributed AD in IoT similar to [52,53] and edge computing
AD similar to [64] in the IoT is scarce. With the proliferation of the IoT at home, on our
person, in the workplace, and in the environment, research on the efficiency/performance
of distributed AD and edge-computing AD are in a prime position for expanding the
state-of-the-art and improving AD overall in the area of the IoT.

7. Conclusions

For a complete breakdown of all the hyperparameters, each deep learning approach
used, and the data-sets, please see Tables A1–A3.

Anomaly detection in the IoT over the past few years has been leveraging multiple
different approaches. Surveyed here were 10 non-DL AD approaches, 10 approaches
that utilized an MLP to perform AD, 6 approaches that used graph-based techniques,
4 approaches that utilized attention-based techniques such as LSTM and GRU, 7 approaches
that used encoder approaches such as the autoencoder or VAE, 4 approaches that utilized a
CNN, and 6 approaches that used custom neural networks. This indicates the usefulness
of deep learning and other machine learning techniques across multiple applications for
anomaly detection in the IoT, despite the approach used. Many approaches utilized either
an MLP or GNN as the base for the network, then utilized some other component (such as
an encoder or RNN) for additional performance.

The approaches surveyed here were also varied: 9 approaches were concerned with
time series data (attention-based AD), 6 on sensor performance, 2 on distributed AD, 13
on malicious attacks in the IoT, and 3 on general AD. Notice that the vast majority of
sensor network and IoT AD focuses on malicious actor detection as a primary applica-
tion/motivation.

Multiple data-sets across different focuses were cited by the papers in this survey.
Table A4 lists all readily available data-sets referenced by works cited in this survey. They
are grouped by problem focus. Good resources for additional ML/DL and AD data-sets can
be found at Papers With Code (https://paperswithcode.com, (accessed on 24 January 2023)),

https://paperswithcode.com

Sensors 2023, 23, 1352 21 of 33

Kaggle (https://www.kaggle.com/datasets, (accessed on 24 January 2023)), and UCS
Datasets (https://archive.ics.uci.edu/ml/datasets.php, (accessed on 24 January 2023)).

To conclude, this survey covered anomaly detection (AD) techniques for sensor net-
works, with a primary focus on the IoT and graph-based data representation. Most works
surveyed fell between 2017 and 2022 due to the large increase in both ML techniques during
that time, as well as a large interest in AD using deep learning. As seen here, much of the
work utilized more “standard” ML approaches such as MLPs, RNNs, or encoders or non-
deep learning approaches such as logistic regression, SVM, or tree-based techniques, while
newer approaches have been attempting a fusion of these approaches and incorporating
graph-based learning techniques.

Author Contributions: K.D. was the principle writer of this paper. A.H. was the principle advisor to
DeMedeiros and secondary writer of this paper. M.A. was a co-advisor to DeMedeiros. Both advisors
provided context, structure and style changes, as well as content suggestions to the principle writer.
The principle writer performed the survey, wrote the drafts, and edited based on the advisors and
reviewers comments, suggestions and direction. The secondary writer provided writing support
to the principle writer and was the corresponding author on this paper. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Dataset and Breakdown of Approaches

Tables A1–A3 are a breakdown of the anomaly detection approaches, their hyperpa-
rameters, and their metrics. If a hyperparameter or NN component was not specified, the
respective cell is left blank. Table A4 lists all the data-sets used in the works surveyed here.

Table A1. Breakdown of ML types surveyed.

Reference Source Year NN Type(s) Layers

[38] ACM 2017 NOT NN: amperage recording
[39] ACM 2020 NOT NN: K-means
[12] AAAI 2021 GDN 30 (max)
[48] ACM 2017 MLP 3
[54] ACM 2018 RNN-AD 4 (max)
[40] ACM 2019 autoencoder 5
[49] ACM 2019 CNN + FC 6
[7] ACM 2019 OmniAnomaly (GRU + VAE) 4
[11] ACM 2021 Gaussian regression, SVM, decision tree, random forest, MLP 5
[42] ACM 2021 normalized autoencoder (local), MLP (global) 9 (max)
[41] ACM 2020 LSTM,Gelenbe Network 4,3
[57] ACM 2022 SS-VTCN (TCN + VAE) 8
[58] ACM 2022 AE+VAE 5 (VAE: 2enc, 2dec +1)
[13] arXiv 2020 GNN with GRU 5
[15] IEEE Xplore 2013 MLP 3
[51] IEEE Xplore 2019 Custom Hopfield NN 5
[28] IEEE Xplore 2019 MLP encoder/decoder with Gumbel sampling
[47] IEEE Xplore 2019 NOT NN, NOT graph-based
[56] IEEE Xplore 2020 MSALSTM-CNN 5
[55] IEEE Xplore 2020 Stacked LSTM with Gaussian naive Bayes processing 4
[65] IEEE Xplore 2020
[3] IEEE Xplore 2020
[44] IEEE Xplore 2021 NN and logistic regression (ensemble) 5
[2] IEEE Xplore 2021 STGNN, GCN 3+N (max)
[14] IEEE Xplore 2021 GTA l5
[43] IEEE Xplore 2021 GraphSAGE, MLP K+1
[23] Journal of Physics 2021
[24] Nature 2021 GCN (encoder)
[10] Science Direct 2019 MLP
[45] Wiley 2021 MLP 6 (max)
[52] Wiley 2021 CNN, MLP

https://www.kaggle.com/datasets
https://archive.ics.uci.edu/ml/datasets.php

Sensors 2023, 23, 1352 22 of 33

Table A2. Breakdown of hyperparameters in surveyed works.

Reference Largest Layer Activation Function Classifier/Regressor Training Epochs

[39] 24 h of data
[12] 128 Leaky ReLU 50
[48] 5 threshold
[54] 40 sigmoid and tanh
[40] 14 ReLU 100
[49] 256
[7] sigmoid, ReLU, softplus GRU
[11] 12 SeLU
[42] 60 ReLU LSTM, sigmoid, softmax
[41] 50
[57] 8 softmax/regression 8
[58] 50–100 leaky ReLU (AE), ReLU+Lin (VAE enc), ReLU+Sig (VAE dec) Regression 100
[13] 128 leaky ReLU, max, ReLU max, softmax, sigmoid 150 (trn), 50 (f-t)
[15] 15 logarithmic 7
[51] 10 tanh, sigmoid 5–80
[28] 500
[56] 64 ReLU, tanh 200
[55] varies sigmoid, tanh
[44] 40 ReLU sigmoid 100
[2] ReLU softmax
[14] 128 50 (5x mean)
[43] varies avg pooling, ReLU, max pooling Softmax
[23]
[24] sigmoid, ReLU
[10] sigmoid, ReLU, Leaky ReLU, tanh softmax
[45] 35 ReLU softmax 300
[52] ReLU linear 1-class

Sensors 2023, 23, 1352 23 of 33

Table A2. Cont.

Reference Learning Rate Batch Size Regularization Loss Function Optimizer

[12] 0.001 MSE Adam
[48] 0.005
[54] 0.0005 0.02 dropout min avg pred err
[40] keras default 32 MSE Adam
[49] 0.0001 0.35, 0.3 dropout cross-entropy Adam
[7] Kullback–Leibler loss negative reconstruction err + reg
[42] grid search opt dropout (grid search opt) MAE, cross-entropy (binary, categorical) Adam
[41] MSE Adam
[57] 0.005 modified log (TCN), reconstruction loss with KLD (VAE) Adam
[58] mini batch reconstruction loss using MSE and KLD Adam
[13] 0.0005, 0.0001 64, 32(trn), 32(f-t) 0.2 dropout cross-entropy, squared error SGD, Adam
[15] 0.1 MSE MATLAB trainlm
[28] KL-divergence+ MSE
[56] 0.025 200 L2 w/ 0.2 dropout Adam
[55] varies varies dropout, varies MSE GD
[44] log log GD
[2] batch GD
[14] 0.0001 window size = 6 0.05 dropout MSE Adam
[43] 0.001 cross-entropy Adam
[24] D-value (anomaly score)
[10] cross-entropy coordinate descent, GD
[45] 0.4 dropout negative log likelihood Adam
[52] batch norm w/ rand dropout

Sensors 2023, 23, 1352 24 of 33

Table A3. Breakdown of data-sets and metrics used by surveyed works.

Reference Data-Set(s) Metrics

[38] IP camera amperage amperage
[39] 24 h of data from custom smart home TN, FN, TP, FP counts and associated TPR
[12] SWaT, WaDI precision, recall, F1
[48] charging station logs accuracy, F1
[54] NAB, and yahoo variants, real-world server job AUC
[40] benign IoT traffic, generated DDoS precision, recall, F1
[49] nuclear power plant data (from SIMULATE-3K) weighted accuracy
[7] SMAP, MSL, SMD, custom (server dataset) precision, recall, F1

[11] IoTPOT, VirusShare, custom GitHub (benign), IoT ELF files (benign) accuracy, FNR, FPR
[42] proprietary real-world set, UNB2018, UNB2019, UNB2012 precision, recall, F1
[41] custom SYN attack for virtual IoT network accuracy, FPR
[57] DS2OS F1, class-based average F1
[58] SECOM, wafer manufacturing, APS failure precision, recall, F1, FPR, wall clock time (for energy consumption)
[13] DSADS, HAR, Turbofan classification error, RMSE
[15] coal mine data (private)
[51] custom fault location rate
[28] air conditioning (private)
[47] custom water meter accuracy, AUC, sensitivity, specificity
[56] Wyk et al. 2020 reference accuracy, precision, F1, sensitivity
[55] power, loop sensor, land sensor accuracy, precision, recall, F1, ROC, AUC
[3] many, including KDDCup99

[44] BaIoT accuracy, recall, F1, FPR, TPR, specificity
[2] multiple

[14] SWAT, WaDI, SMAP, MSL recall, precision, F1
[43] IoT malware/benignware accuracy, recall, ROC, AUC, classification time per sample
[23] WaDI, SWaT, MSL precision, recall, F1
[24] accuracy, precision,AUC, FPR
[10] DS2OS accuracy, precision, recall, F1, ROC
[45] DS2OS (distributed smart space orchestration system) accuracy, precision, recall, F1, FPR, specificity, ROC-AUC
[52] BaIoT, El Niño FPR, TPR

Sensors 2023, 23, 1352 25 of 33

Table A4. Breakdown of data-sets used.

Data-Set Application

LANL cybersecurity

ToN-IoT IoT/IIoT cybersecurity

HAI 1.0 ICS system attack

VirusShare malware analysis

UNB2012 IDS

UNB2018 IDS

UNB2019 IDS

UNSW-NB15 IDS

KDD Cup (1999) IDS

Bot-IoT IoT botnet

N-BaIoT IoT botnet

IoTPOT IoT DDoS

CMU CERT insider threat

CERT insider threat

fraud fraud detection

yelpChi fraud detection

ECG medical imaging

EEG medical imaging

thyroid disease classification

PPI protein interactions

Flickr image classification

mnist-100 image classification

celeba image classification (facial)

Reddit social network

Digg social network

Bitcoin-alpha social network

Bitcoin-otc social network

ACM citation network

CORA citation network

KDD 2014 citation network

CiteSeer citation network

PubMed citation network

SWaT IoT soil and water assessment

WaDI IoT water distribution

MSL sensor (rover) anomaly

DS2OS traffic IoT AD

Turbofan sensor AD (jet engine)

APS Failure Scania Trucks sensor AD (Trucks)

SECOM sensor AD (semiconductor construction)

https://csr.lanl.gov/data/
https://research.unsw.edu.au/projects/toniot-datasets
https://www.kaggle.com/datasets/icsdataset/hai-security-dataset
https://VirusShare.com/
https://www.unb.ca/cic/datasets/index.html
https://www.unb.ca/cic/datasets/index.html
https://www.unb.ca/cic/datasets/index.html
https://paperswithcode.com/dataset/unsw-nb15
https://www.kaggle.com/datasets/galaxyh/kdd-cup-1999-data
https://research.unsw.edu.au/projects/bot-iot-dataset
https://www.kaggle.com/datasets/mkashifn/nbaiot-dataset
https://sec.ynu.codes/iot/available_datasets
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=508099
https://kilthub.cmu.edu/articles/dataset/Insider_Threat_Test_Dataset/12841247/1#:~:text=The%20Insider%20Threat%20Test%20Dataset%20is%20a%20collection,a%20collection%20of%20synthetic%20insider%20threat%20test%20datasets.
https://www.kaggle.com/datasets/ranjeetshrivastav/fraud-detection-dataset
http://odds.cs.stonybrook.edu/yelpchi-dataset/
https://www.kaggle.com/datasets/devavratatripathy/ecg-dataset
https://www.kaggle.com/datasets/samnikolas/eeg-dataset
https://www.kaggle.com/datasets/yasserhessein/thyroid-disease-data-set
https://paperswithcode.com/dataset/ppi
https://www.kaggle.com/datasets/hsankesara/flickr-image-dataset
https://www.kaggle.com/code/jedrzejdudzicz/mnist-dataset-100-accuracy
https://www.bing.com/ck/a?!&&p=04cf198cb4c01f54JmltdHM9MTY2ODcyOTYwMCZpZ3VpZD0xNjE0MWQ2NS1hODQ2LTZmODctMDlkNC0xMmUwYTljOTZlMTMmaW5zaWQ9NTE3OQ&ptn=3&hsh=3&fclid=16141d65-a846-6f87-09d4-12e0a9c96e13&psq=celeba+dataset&u=a1aHR0cDovL21tbGFiLmllLmN1aGsuZWR1LmhrL3Byb2plY3RzL0NlbGViQS5odG1s&ntb=1
https://paperswithcode.com/dataset/reddit
http://datasets.syr.edu/datasets/Digg.html
https://www.kaggle.com/datasets/boneacrabonjac/bitcoin-alpha
https://snap.stanford.edu/data/soc-sign-bitcoin-otc.html
https://paperswithcode.com/dataset/acm
https://graphsandnetworks.com/the-cora-dataset/
https://www.kaggle.com/c/kdd-cup-2014-predicting-excitement-at-donors-choose/
https://paperswithcode.com/dataset/citeseer
https://deepai.org/dataset/pubmed
https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/
https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/
https://pds-geosciences.wustl.edu/missions/msl/
https://www.kaggle.com/datasets/francoisxa/ds2ostraffictraces
https://www.kaggle.com/datasets/behrad3d/nasa-cmaps
https://archive.ics.uci.edu/ml/datasets/APS+Failure+at+Scania+Trucks
https://archive.ics.uci.edu/ml/datasets/SECOM

Sensors 2023, 23, 1352 26 of 33

Table A4. Cont.

Data-Set Application

Wafer AD sensor AD (wafer construction)

El Niño IoT weather anomaly detection

REALDISP IoT activity recognition

HAR IoT activity recognition

DSADS IoT activity recognition

HAR IoT activity recognition

MHEALTH IoT human behavior analysis

NAB IoT time series

SMD server time series

pwr consumption time series data

SMAP soil moisture

news20 text recognition

SIMULATE-3K dataset generator

Yahoo multiple

CAIDA 2018 BG traffic

donors N/A

Appendix B. Graph-Based Neural Networks

This section highlights the basic structure of GNNs, theories on their usefulness, their
uses, and some common NN configurations. All GNNs work on the principal assumption
that the data being analyzed by an NN may have hidden information present within it,
which, when analyzed by a network designed to view connections between units producing
that data (i.e., a graph), may produce more useful insight into a problem. Most GNNs utilize
as the input two sets of data: an adjacency matrix A, composed of 1’s and 0’s corresponding
to edges connecting nodes, and a matrix X composed of attributes. If the graphs are directed,
A only contains a value of 1 in the direction of the edge. For attributes, X can contain
attribute information for nodes and/or edges, depending on the type of problem being
solved by the graph. The GNN itself is composed of blocks, which may repeat, containing
graph transformations. Each block performs graph transformations (generally in the form
of matrix multiplication), followed by some down-sampling. How these blocks and/or
down-sampling techniques work is the basis of all the different types of GNNs available. As
can be seen in Figure A1, a basic GNN is nearly identical to a standard MLP, with the main
difference being the encoding of the graph matrix information into a large vector. Techniques
such as concatenation and flattening of the matrices can be used to generate the vector.
Other techniques, such as convolutional graph neural networks (GCNs), do not require this
flattening and concatenation, as they are capable of working directly on matrix data.

Figure A1. An example of a basic GNN.

Most graph-based problems can be broken down into the following categories [66]:

https://www.kaggle.com/datasets/himanshunayal/waferdataset
https://www.kaggle.com/datasets/uciml/el-nino-dataset
https://archive.ics.uci.edu/ml/datasets/REALDISP+Activity+Recognition+Dataset
http://har-dataset.org/
https://archive.ics.uci.edu/ml/datasets/Daily+and+Sports+Activities
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition#:~:text=Abstract%3A%20The%20Heterogeneity%20Human%20Activity%20Recognition%20%28HHAR%29%20dataset,sensing%20heterogeneities%20to%20be%20expected%20in%20real%20deployments.
http://archive.ics.uci.edu/ml/datasets/mhealth+dataset
https://paperswithcode.com/dataset/nab
https://paperswithcode.com/dataset/smd
http://www.cs.ucr.edu/~eamonn/discords/
https://smap.jpl.nasa.gov/data/
http://qwone.com/~jason/20Newsgroups/
https://www.bing.com/ck/a?!&&p=868ae41422f7923aJmltdHM9MTY2ODcyOTYwMCZpZ3VpZD0xNjE0MWQ2NS1hODQ2LTZmODctMDlkNC0xMmUwYTljOTZlMTMmaW5zaWQ9NTE5Ng&ptn=3&hsh=3&fclid=16141d65-a846-6f87-09d4-12e0a9c96e13&psq=simulate-3K&u=a1aHR0cHM6Ly93d3cuc3R1ZHN2aWsuY29tL2RlL1dhcy13aXItdHVuL3Byb2R1Y3RzL3NpbXVsYXRlMy1rLw&ntb=1
https://webscope.sandbox.yahoo.com/?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuYmluZy5jb20v&guce_referrer_sig=AQAAAJlB5J5npPsK3RPSRDUhCgbqUxEKiXKBz_q_Saw92kq-WW304LcqyGiYUx9Wu_vfkGPtFsTKmgzGKGEpPsfvCHoB6_4cuKZIaUpM0zPHM3Cd-oJfbZoXy-HcI9oqPIEOtE_qmJZynSoy2JgMGu6uIZMCHvHqob96SzCDcTH_F-qz
https://www.caida.org/catalog/datasets/bgp-communities/
https://www.kaggle.com/datasets/harshavarshney/donors-dataset

Sensors 2023, 23, 1352 27 of 33

• Node classification, where each node is a component of a system (sensor, basic block
of source code, location, person, etc.). The goal is to perform labeling of these nodes to
determine their class (what type of sensor a node is, a person’s role in a social network
or organization, if a basic block of code contains an error or malware, etc.)

• Node clustering: a regression/prediction technique where nodes in a network are
grouped (clustered) together based on similar attributes. The goal is to be able to
derive useful information about a graph’s (or network’s) nodes to have an idea of their
role without having the aid of labeled classes.

• Edge classification, where an edge is defined as a connection between nodes. Edge
classification is used to understand and label connections between nodes. Just how
nodes can have attributes explaining something about the node’s identity, edges can
also have attributes explaining something about the connection between nodes. Edge
classification is used to understand how two nodes interact. An example of this is
trying to classify the relationship of two people in a social network.

• Link prediction: a regression technique used to predict whether a pair of nodes will
have a connection between them. Link prediction is used in order to predict how
nodes may interact in the future. An example of this is a recommender system trying
to predict the purchasing habits of a person on a sales website.

• Graph classification: a classification technique where, instead of the individual nodes
being classified, the whole system (represented as a graph) is classified. Graph classifi-
cation is useful when the pertinent information needed is at the higher system/network
level, rather than the lower node or edge levels. Examples of graph classification are
the determination of the type of network something is or the determination of the
function of a particular program. Graph classification can also occur at the sub-graph
level. This sub-graph classification can be used to determine unique sub-structures
within a graph that may allow for the identification of useful components of a network.

• Graph generation: an encoding technique that is useful for training other neural
networks, as well as for producing new information. Graph generation can be used to
do things such as increase the amount of data to feed into other GNNs for training or to
increase the robustness of adversarial networks and can be used to produce potential
new data for practical use (for example, using a graph generator to produce a program).

• Spatial–temporal graph forecasting: a regression technique that takes into account the
shifting nature of dynamic graphs in order to predict the future state of a graph. Spatial–
temporal graph forecasting is particularly useful when you are dealing with graphs that
can add or lose edges and/or nodes, for example the prediction of traffic patterns.

• Graph partitioning: a technique related to node clustering where the goal is to seg-
regate graphs into sub-graphs for the purposes of grouping portions of sub-graphs
with interesting properties. This is usually a regression technique, but is related to
sub-graph classification.

• Network embedding: a technique used to “graphitize” data for use by GNNs. All
of these other problems leverage data represented as a graph; however, GNNs can
also be used to generate these graph embeddings. An example of this is taking time
series data produced by sensors on a network, running them through a GNN, and
outputting an embedding for use in another GNN for node classification.

In order to solve these types of problems, multiple different types of GNNs have been
proposed. Each of these GNNs can be categorized into four major categories [66]:

• Recurrent GNNs (RecGNNs);
• Convolutional GNNs (ConvGNNs);
• Graph Autoencoders (GAEs);
• Spatial–Temporal GNNs (STGNNs).

RecGNNs are defined as recurrent, due to their nature of repeating a set of applications
over nodes in a graph. As Figure A1 illustrates, the core component of the RecGNN is a
repeating (recurring) set of layers, where the output of one layer is fed into the input of

Sensors 2023, 23, 1352 28 of 33

another. The goal of this approach is to gain a high-level representation of the nodes in
a graph. RecGNNs are some of the first GNNs created to solve graph-based problems.
One of the major contributions of RecGNNs is the concept of message passing between
nodes. RecGNNs work on the premise that connected nodes will have their node states
passed to their neighbors in each successive recurrence block. This allows each node in the
graph to learn something about its neighbors (and its neighbors’ neighbors, etc.). This state
information can contain further insights into a node’s relationship with the graph at large
and can aid in classification and regression problems.

ConvGNNs utilize the concept of convolving information from block to block. How
these convolutions are performed depends on the type of ConvGNN used, as well as
the overall class of ConvNet. In [66], ConvGNNs were broken down into two categories:
spatial and spectral. Spectral ConvGNNs use the concept of noise removal and graph-based
signal processing. Spatial ConvGNNs take a page from RecGNNs and utilize the concepts
of message passing between nodes to perform their convolutions. Some ConvGNNs (such
as GCN [67]) can be modeled as both a spectral and spatial ConvGNN. A key difference
between RecGNNs and ConvGNNs is that ConvGNNs usually do not utilize recurrence.
Each block in a ConvGNN generally performs with different weighting parameters and/or
convolution functions, compared to a RecGNN, which repeats the RecGNN blocks. See
Figure A2 for an example of a ConvGNN. ConvGNNs are very popular for their increased
efficiency compared to RecGNNs, as well as their increased convenience in combining
them with other NN techniques.

Figure A2. An example of a convolutional graph neural network.

The core difference between most ConvGNNs is the actual convolution function. For
spectral ConvGNNs, this boils down to how the filter function (used in a convolution) is
defined. For spatial ConvGNNs, this boils down to how to combine the state informa-
tion in the messages from a node’s neighbors and itself. Some popular ConvGNNs are
ChebNet [67], GCN [68], GIN [69], GraphSAGE [70], and GAT [71]; each have different
convolution functions and have acted as the bases for spin-off ConvGNNs. While spectral
models allow different ConvGNNs to be produced by designing new signal filters, spatial
ConvGNNs tend to be more general, efficient, and flexible [66].

GNNs at times need to work on very large graphs. In order to do this, some type
of down-sampling is generally needed. Just as convolutions are related to CNNs, the
commonly used down-sampling technique of pooling (also related to CNNs) is used
in GNNs, particularly in ConvGNNs. Some of the most-common pooling techniques
used are min–max and average pooling. The purpose of these techniques is to reduce the
dimensionality of the embeddings read by the GNN layers in order to avoid things such as
over-fitting and computational complexity (which can increase the memory and/or time
needed to train GNNs). In addition, pooling techniques can be used to generate graph
representations for graph generation problems. This is known as a readout operation and
is used by GAEs.

GAEs are particularly useful in generating embeddings for other GNNs or to produce
graphs for increased training data or to solve problems such as drug discovery (which is a

Sensors 2023, 23, 1352 29 of 33

form of molecular graph generation problem). Comparison between a generated graph and
an original (nominal) graph can be used as a type of anomaly detection. GAEs leverage
other NN techniques such as multi-layer perceptron (MLP), ConvGNNs, and attention
networks (such as GRU and LSTM) in order to generate graph embeddings or produce
new graphs. See Figure A3 for an example of a GAE.

Figure A3. An example of a graph autoencoder (GAE).

Spatial–temporal GNNs (STGNNs) are useful when the network that is being analyzed
is dynamic, whether this dynamism is due to the loss of nodes or edges or has a major
tie to time series information. Most STGNNs utilize convolutions in order to gain insight
into the spatial–temporal nature of the graph. This is performed using either an RNN
approach (where some level of historical information from a previous GNN block is used
in the calculation of the current GNN block) [72] or a CNN approach (where 1D CNN
layers sandwich ConvGNN layers to learn spatial and temporal information) [73]. RNN
approaches tend to be more time consuming than CNN approaches [66].

The concept of a neighbor in a GNN is generally defined by how many layers are
present in a GNN. Each layer acts as an additional ring of neighbor state information
being sent to a node [74]. How this neighborhood information is aggregated is a topic
of current study and affects all types of GNNs. In [74], positional encodings and graph
modifications to link more nodes together to rely on fewer layers was performed. The
goal in [74] was to alleviate the dangers of under-reaching (too few GNN layers, resulting
in a failure to pass node state information to distant nodes) and over-squashing (certain
nodes acting as bottlenecks for the flow of node information), while avoiding the practice
of converting a graph into a fully connected graph, such as as performed in [75,76], which
also used positional encodings to retain the original connectivity of the graph, but resulted
in the explosion of the computational cost compared to traditional GNN neighbor state
information flow.

For a more in-depth analysis of GNNs, please refer to [66].
For the purposes of anomaly detection in the IoT, an IoT network can be seen as a

graph G = {V, E}, where nodes v ∈ V are connected in some way by edges ei,j ∈ E. What
these edges are can depend on the type of data you are looking at. For instance, if an IoT
network comprising sensors that communicate information to one another is used, E may
consist only of edges between IoT devices that talk to one another. However, for an IoT
network where all data are aggregated in a central location, E may be born from some
spatial component between nodes.

In addition, how the data are formulated can have an impact on the embeddings pro-
duced. An IoT dataset comprised of network packet information can produce an embedding
very different than an IoT data-set comprised only of the sensor-reported information.

Whether or not graph-based representation of the IoT network is directed or not can
be a result of the direction of communication between nodes. For spatial-based IoT network
representations, the resultant G may be an undirected graph, but for IoT networks that
communicate information between nodes, where the information came from may be just as
important (if not more important) than assuming a simple undirected edge ei,j; therefore, a
directed graph may be necessary.

In all of these cases, one can see the inherent benefit of representing sensor networks
and some types of data as graphs.

Sensors 2023, 23, 1352 30 of 33

References
1. Ma, X.; Wu, J.; Xue, S.; Yang, J.; Zhou, C.; Sheng, Q.Z.; Xiong, H.; Akoglu, L. A Comprehensive Survey on Graph Anomaly

Detection with Deep Learning. IEEE Trans. Knowl. Data Eng. 2021. [CrossRef]
2. Wu, Y.; Dai, H.N.; Tang, H. Graph Neural Networks for Anomaly Detection in Industrial Internet of Things. IEEE Internet

Things J. 2021, 9, 9214–9231. [CrossRef]
3. Toshniwal, A.; Mahesh, K.; Jayashree, R. Overview of Anomaly Detection techniques in Machine Learning. In Proceedings of the

2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India, 7–9
October 2020; pp. 808–815.

4. Lindemann, B.; Maschler, B.; Sahlab, N.; Weyrich, M. A survey on anomaly detection for technical systems using LSTM
networks. Comput. Ind. 2021, 131, 103498. [CrossRef]

5. Agrawal, S.; Agrawal, J. Survey on Anomaly Detection using Data Mining Techniques. Procedia Comput. Sci. 2015, 60, 708–713.
[CrossRef]

6. Hagemann, T.; Katsarou, K. A Systematic Review on Anomaly Detection for Cloud Computing Environments. In Proceedings
of the 2020 3rd Artificial Intelligence and Cloud Computing Conference (AICCC 2020), Kyoto Japan, 18–20 December 2020;
Association for Computing Machinery: New York, NY, USA, 2020; pp. 83–96.

7. Su, Y.; Zhao, Y.; Niu, C.; Liu, R.; Sun, W.; Pei, D. Robust Anomaly Detection for Multivariate Time Series through Stochastic
Recurrent Neural Network. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD’19), Anchorage, AK USA, 4–8 August 2019; Association for Computing Machinery: New York, NY, USA,
2019; pp. 2828–2837.

8. Pang, G.; Shen, C.; van den Hengel, A. Deep Anomaly Detection with Deviation Networks. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’19), Anchorage, AK USA, 4–8 August 2019;
Association for Computing Machinery: New York, NY, USA, 2019; pp. 353–362.

9. Zheng, Y.; Jin, M.; Liu, Y.; Chi, L.; Phan, K.T.; Chen, Y.P.P. Generative and Contrastive Self-Supervised Learning for Graph
Anomaly Detection. IEEE Trans. Knowl. Data Eng. 2021. [CrossRef]

10. Hasan, M.; Islam, M.M.; Zarif, M.I.I.; Hashem, M. Attack and anomaly detection in IoT sensors in IoT sites using machine
learning approaches. Internet Things 2019, 7, 100059. [CrossRef]

11. Ngo, Q.D.; Nguyen, H.T.; Tran, H.A.; Pham, N.A.; Dang, X.H. Toward an Approach Using Graph-Theoretic for IoT Botnet
Detection. In Proceedings of the 2021 2nd International Conference on Computing, Networks and Internet of Things (CNIOT’21),
Beijing, China, 20–22 May 2021; Association for Computing Machinery: New York, NY, USA, 2021.

12. Deng, A.; Hooi, B. Graph neural network-based anomaly detection in multivariate time series. In Proceedings of the AAAI
Conference on Artificial Intelligence, Virtual, 2–9 February 2021; Volume 35, pp. 4027–4035.

13. Gupta, V.; Narwariya, J.; Malhotra, P.; Vig, L.; Shroff, G. Handling Variable-Dimensional Time Series with Graph Neural Networks.
arXiv 2020, arXiv:2007.00411.

14. Chen, Z.; Chen, D.; Zhang, X.; Yuan, Z.; Cheng, X. Learning Graph Structures with Transformer for Multivariate Time Series
Anomaly Detection in IoT. IEEE Internet Things J. 2021, 9, 9179–9189. [CrossRef]

15. Wu, X.; Wu, J.; Cheng, B.; Chen, J. Neural Network Based Situation Detection and Service Provision in the Environment of IoT. In
Proceedings of the 2013 IEEE 78th Vehicular Technology Conference (VTC Fall), Wynn, LV, USA, 2–5 September 2013; pp. 1–5.

16. Thottan, M.; Ji, C. Anomaly detection in IP networks. IEEE Trans. Signal Process. 2003, 51, 2191–2204. [CrossRef]
17. Chiba, Z.; Abghour, N.; Moussaid, K.; El Omri, A.; Rida, M. Smart approach to build a deep neural network based ids for cloud

environment using an optimized genetic algorithm. In Proceedings of the 2nd International Conference on Networking, Information
Systems & Security, Rabat, Morocoo, 27–28 March 2019; pp. 1–12.

18. Chen, Z.; Xu, J.; Peng, T.; Yang, C. Graph Convolutional Network-Based Method for Fault Diagnosis Using a Hybrid of
Measurement and Prior Knowledge. IEEE Trans. Cybern. 2021, 52, 9157–9169. [CrossRef]

19. Chen, K.; Hu, J.; Zhang, Y.; Yu, Z.; Jinliang, H. Fault Location in Power Distribution Systems via Deep Graph Convolutional
Networks. IEEE J. Sel. Areas Commun. 2019, 38, 119–131. [CrossRef]

20. Huang, J.; Guan, L.; Su, Y.; Yao, H.; Guo, M.; Zhong, Z. Recurrent Graph Convolutional Network-Based Multi-Task Transient
Stability Assessment Framework in Power System. IEEE Access 2020, 8, 93283–93296. [CrossRef]

21. Wang, X.; Jin, B.; Du, Y.; Cui, P.; Tan, Y.; Yang, Y. One-class graph neural networks for anomaly detection in attributed networks.
Neural Comput. Appl. 2021, 33, 12073–12085. [CrossRef]

22. Zheng, L.; Li, Z.; Li, J.; Li, Z.; Gao, J. AddGraph: Anomaly Detection in Dynamic Graph Using Attention-based Temporal GCN.
In Proceedings of the IJCAI, Macao, China, 10–16 August 2019.

23. Zhou, J. Research on Time Series Anomaly Detection: Based on Deep Learning Methods. J. Phys. Conf. Ser. 2021, 2132, 012012.
[CrossRef]

24. Zhuo, M.; Liu, L.; Zhou, S.; Tian, Z. Survey on security issues of routing and anomaly detection for space information networks.
Sci. Rep. 2021, 11, 1–18. [CrossRef] [PubMed]

25. Aggarwal, S.; Gulati, R.; Bhushan, B. Monitoring of Input and Output Water Quality in Treatment of Urban Waste Water
Using IOT and Artificial Neural Network. In Proceedings of the 2019 2nd International Conference on Intelligent Computing,
Instrumentation and Control Technologies (ICICICT), Kannur, Kerala, India, 5–6 July 2019; Volume 1, pp. 897–901.

http://doi.org/10.1109/TKDE.2021.3118815
http://dx.doi.org/10.1109/JIOT.2021.3094295
http://dx.doi.org/10.1016/j.compind.2021.103498
http://dx.doi.org/10.1016/j.procs.2015.08.220
http://dx.doi.org/10.1109/TKDE.2021.3119326
http://dx.doi.org/10.1016/j.iot.2019.100059
http://dx.doi.org/10.1109/JIOT.2021.3100509
http://dx.doi.org/10.1109/TSP.2003.814797
http://dx.doi.org/10.1109/TCYB.2021.3059002
http://dx.doi.org/10.1109/JSAC.2019.2951964
http://dx.doi.org/10.1109/ACCESS.2020.2991263
http://dx.doi.org/10.1007/s00521-021-05924-9
http://dx.doi.org/10.1088/1742-6596/2132/1/012012
http://dx.doi.org/10.1038/s41598-021-01638-z
http://www.ncbi.nlm.nih.gov/pubmed/34782695

Sensors 2023, 23, 1352 31 of 33

26. Phivou, P.; Panousopoulou, A.; Tsakalides, P. On realizing distributed topology control in low-power IoT platforms. In Proceedings
of the 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), Milan, Italy, 14–16 December 2015; pp. 98–103.

27. Li, N.; Hou, J.; Sha, L. Design and analysis of an MST-based topology control algorithm. IEEE Trans. Wirel. Commun. 2005, 4,
1195–1206.

28. Zhang, W.; Zhang, Y.; Xu, L.; Zhou, J.; Liu, Y.; Gu, M.; Liu, X.; Yang, S. Modeling IoT Equipment With Graph Neural Networks.
IEEE Access 2019, 7, 32754–32764. [CrossRef]

29. Aneja, S.; Aneja, N.; Islam, M.S. IoT Device Fingerprint using Deep Learning. In Proceedings of the 2018 IEEE International
Conference on Internet of Things and Intelligence System (IOTAIS), Bali, Indonesia, 1–3 November 2018; pp. 174–179.

30. Li, Y.; Chen, C.; Duan, M.; Zeng, Z.; Li, K. Attention-Aware Encoder–Decoder Neural Networks for Heterogeneous Graphs of
Things. IEEE Trans. Ind. Inform. 2021, 17, 2890–2898. [CrossRef]

31. Tournier, J.; Lesueur, F.; Mouël, F.L.; Guyon, L.; Ben-Hassine, H. IoTMap: A Protocol-Agnostic Multi-Layer System to Detect
Application Patterns in IoT Networks. In Proceedings of the 10th International Conference on the Internet of Things (IoT’20),
Malmö, Sweden, 6–9 October 2020; Association for Computing Machinery: New York, NY, USA, 2020.

32. Ren, H.; Anicic, D.; Runkler, T.A. Towards Semantic Management of On-Device Applications in Industrial IoT. ACM Trans.
Internet Technol. 2022, 22, 1–30. [CrossRef]

33. Suárez-Varela, J.; Carol-Bosch, S.; Rusek, K.; Almasan, P.; Arias, M.; Barlet-Ros, P.; Cabellos-Aparicio, A. Challenging the
Generalization Capabilities of Graph Neural Networks for Network Modeling. In Proceedings of the ACM SIGCOMM 2019
Conference Posters and Demos, Beijing, China, 19–23 August 2019; Association for Computing Machinery: New York, NY, USA,
2019; pp. 114–115.

34. Cheng, H.P.; Zhang, T.; Yang, Y.; Yan, F.; Teague, H.; Chen, Y.; Li, H. MSNet: Structural Wired Neural Architecture Search for
Internet of Things. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW),
Seoul, Republic of Korea, 27–28 October 2019; pp. 2033–2036.

35. Liu, S.; Yao, S.; Huang, Y.; Liu, D.; Shao, H.; Zhao, Y.; Li, J.; Wang, T.; Wang, R.; Yang, C.; et al. Handling Missing Sensors in
Topology-Aware IoT Applications with Gated Graph Neural Network. Proc. ACM Interact. Mobile Wearable Ubiquitous Technol.
2020, 4, 1–31. [CrossRef]

36. Ward, I.R.; Joyner, J.; Lickfold, C.; Guo, Y.; Bennamoun, M. A Practical Tutorial on Graph Neural Networks: What Are the
Fundamental Motivations and Mechanics That Drive Graph Neural Networks, What Are the Different Variants, and What Are
Their Applications? ACM Comput. Surv. 2021, 54, 1–35. [CrossRef]

37. Banbury, C.; Zhou, C.; Fedorov, I.; Matas, R.; Thakker, U.; Gope, D.; Janapa Reddi, V.; Mattina, M.; Whatmough, P. MicroNets:
Neural Network Architectures for Deploying TinyML Applications on Commodity Microcontrollers. Proc. Mach. Learn. Syst.
2021, 3, 517–532.

38. Myridakis, D.; Spathoulas, G.; Kakarountas, A. Supply Current Monitoring for Anomaly Detection on IoT Devices. In Proceedings
of the 21st Pan-Hellenic Conference on Informatics (PCI 2017), Larissa, Greece, 28–30 September 2017; Association for Computing
Machinery: New York, NY, USA, 2017.

39. Meyer-Berg, A.; Egert, R.; Böck, L.; Mühlhäuser, M. IoT Dataset Generation Framework for Evaluating Anomaly Detection
Mechanisms. In Proceedings of the 15th International Conference on Availability, Reliability and Security (ARES’20), Virtual,
25–28 August 2020; Association for Computing Machinery: New York, NY, USA, 2020.

40. Bhatia, R.; Benno, S.; Esteban, J.; Lakshman, T.V.; Grogan, J. Unsupervised Machine Learning for Network-Centric Anomaly
Detection in IoT. In Proceedings of the 3rd ACM CoNEXT Workshop on Big DAta, Machine Learning and Artificial Intelligence
for Data Communication Networks (Big-DAMA’19), Orlando, FL, USA, 9 December 2019; Association for Computing Machinery:
New York, NY, USA, 2019; pp. 42–48.

41. Evmorfos, S.; Vlachodimitropoulos, G.; Bakalos, N.; Gelenbe, E. Neural Network Architectures for the Detection of SYN
Flood Attacks in IoT Systems. In Proceedings of the 13th ACM International Conference on PErvasive Technologies Related
to Assistive Environments (PETRA’20), Corfu, Greece, 30 June–3 July 2020; Association for Computing Machinery: New York,
NY, USA, 2020.

42. Yehezkel, A.; Elyashiv, E.; Soffer, O. Network Anomaly Detection Using Transfer Learning Based on Auto-Encoders Loss Normaliza-
tion. In Proceedings of the 14th ACM Workshop on Artificial Intelligence and Security (AISec’21), Virtual, 15 November 2021 2021;
Association for Computing Machinery: New York, NY, USA, 2021; pp. 61–71.

43. Li, C.; Shen, G.; Sun, W. Cross-Architecture Internet of Things Malware Detection Based on Graph Neural Network. In Proceedings
of the 2021 International Joint Conference on Neural Networks (IJCNN), Shenzhen, China, 18–22 July 2021; pp. 1–7.

44. Abbasi, F.; Naderan, M.; Alavi, S.E. Anomaly detection in Internet of Things using feature selection and classification based on
Logistic Regression and Artificial Neural Network on N-BaIoT dataset. In Proceedings of the 2021 5th International Conference
on Internet of Things and Applications (IoT), Online, 19–20 July 2021; pp. 1–7.

45. Reddy, D.K.; Behera, H.S.; Nayak, J.; Vijayakumar, P.; Naik, B.; Singh, P.K. Deep neural network based anomaly detection in
Internet of Things network traffic tracking for the applications of future smart cities. Trans. Emerg. Telecommun. Technol. 2021,
32, e4121. [CrossRef]

46. Shafiq, M.; Tian, Z.; Bashir, A.K.; Du, X.; Guizani, M. CorrAUC: A malicious bot-IoT traffic detection method in IoT network
using machine-learning techniques. IEEE Internet Things J. 2020, 8, 3242–3254. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2019.2902865
http://dx.doi.org/10.1109/TII.2020.3025592
http://dx.doi.org/10.1145/3510820
http://dx.doi.org/10.1145/3411818
http://dx.doi.org/10.1145/3503043
http://dx.doi.org/10.1002/ett.4121
http://dx.doi.org/10.1109/JIOT.2020.3002255

Sensors 2023, 23, 1352 32 of 33

47. González-Vidal, A.; Cuenca-Jara, J.; Skarmeta, A.F. IoT for Water Management: Towards Intelligent Anomaly Detection.
In Proceedings of the 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), Limerick, Ireland, 15–18 April 2019;
pp. 858–863.

48. Morosan, A.G.; Pop, F. OCPP Security—Neural Network for Detecting Malicious Traffic. In Proceedings of the International
Conference on Research in Adaptive and Convergent Systems (RACS’17), Krakow, Poland, 20–23 September 2017; Association
for Computing Machinery: New York, NY, USA, 2017; pp. 190–195.

49. Tagaris, T.; Ioannou, G.; Sdraka, M.; Alexandridis, G.; Stafylopatis, A. Putting Together Wavelet-Based Scaleograms and Convolutional
Neural Networks for Anomaly Detection in Nuclear Reactors. In Proceedings of the 2019 3rd International Conference on Advances
in Artificial Intelligence (ICAAI 2019), Istanbul, Turkey, 26–28 October 2019; Association for Computing Machinery: New York, NY,
USA, 2019; pp. 237–243.

50. Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection: A survey. ACM Comput. Surv. 2009, 41, 15:1–15:58. [CrossRef]
51. Wang, B.; Yang, H.; Yao, Q.; Yu, A.; Hong, T.; Zhang, J.; Kadoch, M.; Cheriet, M. Hopfield Neural Network-based Fault Location

in Wireless and Optical Networks for Smart City IoT. In Proceedings of the 2019 15th International Wireless Communications
Mobile Computing Conference (IWCMC), Tangier, Morocco, 24–28 June 2019; pp. 1696–1701.

52. Yu, X.; Shan, C.; Bian, J.; Yang, X.; Chen, Y.; Song, H. Adagum: An adaptive graph updating model-based anomaly detection
method for edge computing environment. Secur. Commun. Netw. 2021, 2021, 9954951. [CrossRef]

53. Yu, X.; Yang, X.; Tan, Q.; Shan, C.; Lv, Z. An edge computing based anomaly detection method in IoT industrial sustainability.
Appl. Soft Comput. 2022, 128, 109486. [CrossRef]

54. Saurav, S.; Malhotra, P.; TV, V.; Gugulothu, N.; Vig, L.; Agarwal, P.; Shroff, G. Online Anomaly Detection with Concept Drift
Adaptation Using Recurrent Neural Networks. In Proceedings of the ACM India Joint International Conference on Data Science
and Management of Data (CoDS-COMAD’18), Goa, India, 11–13 January 2018; Association for Computing Machinery: New York,
NY, USA, 2018; pp. 78–87.

55. Wu, D.; Jiang, Z.; Xie, X.; Wei, X.; Yu, W.; Li, R. LSTM Learning With Bayesian and Gaussian Processing for Anomaly Detection in
Industrial IoT. IEEE Trans. Ind. Inform. 2020, 16, 5244–5253. [CrossRef]

56. Javed, A.R.; Usman, M.; Rehman, S.U.; Khan, M.U.; Haghighi, M.S. Anomaly Detection in Automated Vehicles Using Multistage
Attention-Based Convolutional Neural Network. IEEE Trans. Intell. Transp. Syst. 2021, 22, 4291–4300. [CrossRef]

57. Jia, Y.; Cheng, Y.; Shi, J. Semi-Supervised Variational Temporal Convolutional Network for IoT Communication Multi-Anomaly
Detection. In Proceedings of the 2022 3rd International Conference on Control, Robotics and Intelligent System (CCRIS’22), Xi’an,
China, 26–28 August 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 67–73.

58. Huang, Z.; Wu, Y.; Tempini, N.; Lin, H.; Yin, H. An Energy-Efficient And Trustworthy Unsupervised Anomaly Detection Framework
(EATU) for IIoT. ACM Trans. Sen. Netw. 2022, 18, 1–18. [CrossRef]

59. Shafiq, M.; Tian, Z.; Bashir, A.K.; Du, X.; Guizani, M. IoT malicious traffic identification using wrapper-based feature selection
mechanisms. Comput. Secur. 2020, 94, 101863. [CrossRef]

60. Pázsit, I.; Demazière, C. Noise Techniques in Nuclear Systems. In Handbook of Nuclear Engineering; Springer: Boston, MA, USA,
2010; Volume 3, pp. 1629–1737.

61. Hu, W.; Fey, M.; Zitnik, M.; Dong, Y.; Ren, H.; Liu, B.; Catasta, M.; Leskovec, J. Open Graph Benchmark: Datasets for Machine
Learning on Graphs. Adv. Neural Inf. Process. Syst. 2020, 33, 22118–22133.

62. Gelenbe, E.; Fröhlich, P.; Nowak, M.; Papadopoulos, S.; Protogerou, A.; Drosou, A.; Tzovaras, D. IoT Network Attack Detection
and Mitigation. In Proceedings of the 2020 9th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro,
8–11 June 2020; pp. 1–6.

63. Voghoei, S.; Tonekaboni, N.H.; Wallace, J.G.; Arabnia, H.R. Deep Learning at the Edge. arXiv 2019, arXiv:1910.10231.
64. Ngo, M.V.; Luo, T.; Quek, T.Q.S. Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge Computing: A

Contextual-Bandit Approach. ACM Trans. Internet Things 2021, 3, 1–23. [CrossRef]
65. Alabadi, M.; Celik, Y. Anomaly Detection for Cyber-Security Based on Convolution Neural Network : A survey. In Proceedings

of the 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), Istanbul,
Turkey, 26–27 June 2020; pp. 1–14.

66. Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Yu, P.S. A Comprehensive Survey on Graph Neural Networks. IEEE Trans. Neural
Netw. Learn. Syst. 2021, 32, 4–24. [CrossRef]

67. Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional neural networks on graphs with fast localized spectral filtering. In
Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS’16), Barcelona, Spain, 5–10
December, 2016; Volume 29.

68. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907.
69. Xu, K.; Hu, W.; Leskovec, J.; Jegelka, S. How powerful are graph neural networks? arXiv 2018, arXiv:1810.00826.
70. Hamilton, W.; Ying, Z.; Leskovec, J. Inductive representation learning on large graphs. In Proceedings of the 31st International

Conference on Neural Information Processing Systems (NIPS’17), Long Beach, CA, USA, 4–9 December 2017; Volume 30.
71. Velickovic, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. Stat 2017, 1050, 20.
72. Seo, Y.; Defferrard, M.; Vandergheynst, P.; Bresson, X. Structured sequence modeling with graph convolutional recurrent networks.

In Proceedings of the International Conference on Neural Information Processing; Springer: Berlin/Heidelberg, Germany, 2018; pp. 362–373.

http://dx.doi.org/10.1145/1541880.1541882
http://dx.doi.org/10.1155/2021/9954951
http://dx.doi.org/10.1016/j.asoc.2022.109486
http://dx.doi.org/10.1109/TII.2019.2952917
http://dx.doi.org/10.1109/TITS.2020.3025875
http://dx.doi.org/10.1145/3543855
http://dx.doi.org/10.1016/j.cose.2020.101863
http://dx.doi.org/10.1145/3480172
http://dx.doi.org/10.1109/TNNLS.2020.2978386

Sensors 2023, 23, 1352 33 of 33

73. Yu, B.; Yin, H.; Zhu, Z. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. arXiv
2017, arXiv:1709.04875.

74. Brüel-Gabrielsson, R.; Yurochkin, M.; Solomon, J. Rewiring with Positional Encodings for Graph Neural Networks. arXiv 2022,
arXiv:2201.12674.

75. Dwivedi, V.P.; Bresson, X. A Generalization of Transformer Networks to Graphs. arXiv 2020, arXiv:2012.09699.
76. Ying, C.; Cai, T.; Luo, S.; Zheng, S.; Ke, G.; He, D.; Shen, Y.; Liu, T.Y. Do Transformers Really Perform Bad for Graph Representation?

arXiv 2021, arXiv:2106.05234.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Related Work
	Related Surveys
	Graph-Based Data Use

	Anomaly Detection by Application
	Anomaly Detection by Approach
	Comparison of Performance
	Research Directions and Opportunities
	Conclusions
	Dataset and Breakdown of Approaches
	Graph-Based Neural Networks
	References

