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Abstract: The current understanding of CO2 emission concentrations in hybrid vehicles (HVs) is
limited, due to the complexity of the constant changes in their power-train sources. This study aims
to address this problem by examining the accuracy, speed and size of traditional and advanced
machine learning (ML) models for predicting CO2 emissions in HVs. A new long short-term memory
(LSTM)-based model called UWS-LSTM has been developed to overcome the deficiencies of existing
models. The dataset collected includes more than 20 parameters, and an extensive input feature
optimization has been conducted to determine the most effective parameters. The results indicate that
the UWS-LSTM model outperforms traditional ML and artificial neural network (ANN)-based models
by achieving 97.5% accuracy. Furthermore, to demonstrate the efficiency of the proposed model, the
CO2-concentration predictor has been implemented in a low-powered IoT device embedded in a
commercial HV, resulting in rapid predictions with an average latency of 21.64 ms per prediction.
The proposed algorithm is fast, accurate and computationally efficient, and it is anticipated that it
will make a significant contribution to the field of smart vehicle applications.
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1. Introduction

Vehicles are a major source of pollution, accounting for a total of 25% of annual
CO2 emissions worldwide [1]. In the last decade, the adoption of hybrid vehicles (HV)
on a global scale has proven the reduced levels of CO2 emissions generated by HVs in
comparison with conventional vehicles. This has sparked interest in industry and academia
in finding ways to optimise and reduce vehicle emissions. When it comes to measuring
CO2 concentrations, a portable emissions monitoring system (PEMS) is the preferred
choice, since they are an accurate and reasonably portable. Nevertheless, the usage of
this equipment incurs high costs, and therefore, it is mainly used by car manufacturers
and environmental regulation entities. It us almost impossible to use for researchers
and investigators.

Recent developments in machine learning (ML) mechanisms have led to the creation
of pollution predictors. However, these have primarily been focused on conventional
internal combustion engine (ICE) vehicles. The complexity and constantly changing nature
of power-train sources, coupled with several factors involved in determining the CO2
emissions from HVs, make the prediction a challenging task for traditional ML algorithms.
A comparative analysis has been summarised in Table 1 to contrast the published results
related to CO2 emission prediction in automotive applications.

In [2], a real-time cloud-based in-vehicle air quality monitoring system was developed
to predict the current and future cabin air quality. Three predictive ML algorithms—linear
regression (LR), support vector regression (SVR), and multilayer perceptron (MLP)—were
applied for prediction. SVR had the best performance in terms of R2 score in their studies
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when compared with the LR and MLP models. However, our study is focused on the
prediction of CO2 exhaust concentrations emitted by HVs.

Table 1. Comparison of prediction techniques for vehicle CO2 emissions.

Ref.
Prediction

Target
Vehicle/

Engine Type
Fuel
Type Algorithm Framework

Exec.
Env.

Accuracy
(%)

Exe.
Speed (ms)

Model
Size (MB)

[3] CO2 conc.
(ppm)

ng ng GBR ng ng 91 ng ng

[4] CO2 emission
rate (g/s)

Passenger/
ICE

Diesel GBR Scikit-learn ng 99 ng ng

[5] CO2 emission
rate (g/s)

Passenger/
Hybrid

Gasoline XGBoost Scikit-learn ng 89.8 ng ng

[6] CO2 emission
rate (g/km)

Passenger/
ICE

Gasoline LSTM ng PC 9.30
(RMSE)

ng ng

[7] CO2 emission
rate (g/s)

Passenger/
Hybrid

Gasoline GPR ng ng 69 ng ng

[8] CO2
emissions

(kg)

Passenger/
ICE

Gasoline LR ng ng 95.75 ng ng

[9] CO2 conc.
(%)

ng/ICE Diesel PA-LSTM ng PC 94.6 ng ng

[10] CO2 conc.
(ppm)

Construction/
ICE

Diesel RF ng ng 94 ng ng

[11] CO2
emissions

(kg)

Passenger/
ICE

Diesel ANN TensorFlow ng 0.5
(RE)

ng ng

TP CO2 conc.
(ppm)

Passenger/
Hybrid

Gasoline LSTM TensorFlow Nvidia
Jetson Xavier

97.5 21.64 7.7

TP = this paper; ICE = internal combustion engine; ng = not given; RE = relative error.

In [3], CO2 concentrations were predicted using a tuned gradient boosting regression
(GBR) model, which achieved a higher (92%) accuracy compared to other ML algorithms,
such as MLP and xtreme gradient boosting regression (XGBR). Focusing on fuel consump-
tion will be their future work for developing a more robust model. In [4], the GBR model
was used to predict the emissions of nitrogen oxide (NOx) and carbon dioxide (CO2) and
the fuel consumption in urban, suburban and highway areas in a conventional diesel-
fuelled vehicle. Data collection was performed using a PEMS. Two routes were used to
perform the experiments. The model was trained in the first route data and was used to
predict the emissions of the second route. The best CO2 model had R2 scores of 0.98, 0.99
and 0.99 for the various driving patterns. Predictions for the second route were R2 scores
of 0.79, 0.82 and 0.83, respectively.

In [5], the exhaust emissions and fuel consumption of a HV were tested using a
GBR model. However, in contrast to our study, the predictive model only considered the
data corresponding to when the ICE was turned on, and therefore, the authors did not
contemplate the power train state transitions in HVs. In [12], air pollutant concentrations
were modelled using an ANN model for three different traffic volume predictors. Moderate
results could be achieved for all CO2 concentration levels. All three input variable options
(sound, traffic and time) are suitable for modelling various air pollutant concentrations.

In [6], a comparative analysis of LSTM, DNN and CNN was conducted regarding
predicting CO2 emissions from two light-duty diesel-fuelled vehicles. The dataset was
captured from the OBD2 port. The LSTM model outperformed the other models, achieving
an RMSE score of 9.30. Plus, the authors analysed the effect of noisy data in the input data,
showing that its presence can negatively affect a model’s accuracy by up to 30%.

In [7], several ML techniques used to estimate the CO2 emission rate in hybrid vehicles
in comparison to traditional micro and macro estimation models. The Gaussian process
regression (GPR) model outperformed the rest, achieving a maximum level of accuracy
of 69%. As the authors conclude, due to the variability of CO2 emission levels from a
hybrid vehicle, there is a problem with the existing emission models, as they do not provide
reliable results. Our research here provides a contribution to address this phenomenon.

In [9], the authors propose a parallel attention-based LSTM (PA-LSTM) for building
an emission prediction model for several vehicle pollutants using PEMS. In this model, the
two-layer attention spatial encoding mechanism accelerated the convergence speed of the
model to reduce the training time. The results show that the PA-LSTM performed better
than any other ML mode, reaching 94.6% accuracy.
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In [10], the CO2 emissions of a diesel-fuelled vehicle were estimated by means of
different ML models. The authors examined the a novel relationship between the movement
of construction equipment chassis and the emission rates generated from them. Results
show that the best algorithm was RF, obtaining an accuracy level of 94%.

In [11], four different ANNs were studied for predicting the mass-based pollution
rates of diesel-fuelled passenger vehicles. Among the analysed models, the ANN that
showed the best results was the one trained with the engine speed, engine torque, vehicle
speed, coolant temperature and air–fuel ratio.

To sum up, almost all the current literature focuses on prediction of CO2 emissions
using ICE passenger vehicles. Only two works used a HV during the experiments, of
which only the work done in [7] studied the prediction during the vehicle’s power-train
switch-overs, which is the biggest challenge in HVs. The results reflected in this study are
about 27% less accurate than the average score obtained by the rest of the studies present
in the literature. Hence, it is clear that the complex behaviour of HV lowers the accuracy of
CO2 emission prediction to a large extent when using current ML-based mechanisms.

To tackle this problem, we designed, implemented and evaluated a long short-term
memory-based (LSTM) model named UWS-LSTM for predicting CO2 emission concen-
trations from HVs. Although several studies have been performed using various ML
techniques to predict several pollutants in conventional vehicles, to the best of our knowl-
edge, this is the first study focusing on HV CO2 emission concentrations considering the
entire set of conditions and challenges derived from the complete use of a HV (i.e., without
excluding any driving scenario). By accurately predicting CO2 emission concentrations,
this model could help in democratising the access to CO2 concentration information in
HVs and in the development of strategies to reduce vehicle emission to combat air pollu-
tion. In addition, the proposed UWS-LSTM model has been embedded and deployed in a
real-world HV to properly demonstrate its practical application in a low-powered Internet
of Things (IoT) device, providing an efficient, cost-effective solution without the need
for using PEMS. As seen from previous studies, IoT devices are increasingly improving
their capabilities, which, coupled with the optimisation of ML techniques, can drastically
provoke a change in this paradigm from highly-capable workstations to low-powered
devices [13]. The outcomes of this study have the potential to assist policy makers and
vehicle manufacturers regarding CO2 emission in HVs. As a result, our contributions are
summarised as follows:

• Collection of a comprehensive dataset containing operational and emission-related
information of a HV in real driving conditions and scenarios.

• Study of the most influential features presented in the dataset for prediction of CO2
emission concentrations.

• Design, implementation, training and validation of an accurate lightweight LSTM-
based model (UWS-LSTM) able to perform CO2-concentration prediction for HVs.

• Comparison of traditional and advanced ML models in terms of accuracy, speed and
model size with the proposed UWS-LSTM model.

• Deployment of the designed model in a low-powered IoT device installed within the
vehicle to perform real-time on-road CO2-concentration prediction.

The rest of the paper is organised as follows. Section 2 elaborates the data collection
and cleaning process, and addresses the input feature selection of the models evaluated.
Moreover, it describes the definition of the proposed LSTM model and presents the execu-
tion environment. Subsequently, Section 3 explains the results found during the evaluation
of each of the models evaluated. Section 4 concludes the paper.

2. Materials and Methods

This sections explains the main stages addressed to achieve the contributions high-
lighted in the introduction. Figure 1 depicts the process followed to perform these stages.
First, a data collection and cleaning process was carried out to gather the dataset that was
used to train and evaluate the ML models. During this process, a study was conducted to
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investigate the correlation and effect of different input parameters sets on the assessed ML
models. As a result, a subset of parameters present in the original dataset was identified as
the final dataset and used in subsequent stages of the study. Later, a model creation stage
was conducted with the objective of defining, training and validating the ANN-based ML
models. Lastly, during the execution stage, an evaluation of each ML model was carried
out with various performance indicators when these models were executed in a IoT device
installed in a real vehicle. Further descriptions of the tasks involved in the defined stages
are elaborated below.

Figure 1. Workflow of the complete process from when the dataset was collected from the vehicle to
the final execution, including designing and training of the ML model.

2.1. Machine Learning Algorithms Evaluated

ML is a frequently used method to be applied for classification and regression in
myriad of applications. In our study, 5 different ML algorithms were developed and tested
to assess their performances when predicting the CO2 concentrations in HV exhausts:

• Linear regression: Linear regression tries to find the relationship between two variables
by fitting a linear equation to observed data. One variable is the explanatory variable,
and the other is the dependent variable [14].

• Random forest: Random forest regression is a supervised learning algorithm using
ensemble learning method to perform regression. Ensemble learning method is
a technique that each ML algorithm makes its own individual prediction. These
predictions are then averaged to produce a more robust result than a single model [15].

• Gradient boosting trees: Gradient boosting decision trees are ensembles of several
decision trees which are combined using loss functions to form a strong and effective
model. The gradient boosting algorithm uses the gradient descent method to find the
optimal point by minimising loss function.

• Artificial neural network (ANN): An ANN is based on a collection of connected nodes
inspired by biological neural networks in the brain. The connection between any two
neurons has some weight, which determines the effect of one neuron on the other.
ANNs can be used to discover nonlinear and complex relationships among input and
output variables [16].

• Long short-term memory: LSTM is a special form of a recurrent neural network (RNN)
that solves the problem of vanishing gradient in vanilla RNNs [17]. LSTM models
can store information to deal with time-series data due to their memory structure. In
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the LSTM model, a gating mechanism stores a long sequence of data and uses some
information from previous steps to produce the output [18].

2.2. CO2 Concentration Collection

For the entire process of dataset collection, a SprintIR-R 20 (Gas Sensing Solutions Ltd.,
Cumbernauld, UK) sensor was used for measuring and recording the vehicle’s exhaust
CO2 concentration, expressed in parts per million ppm. More specifically, the Sprint-IR
sensor was found to be ideal for this use case, since it is able to report CO2 concentration
values of up to 20% with an accuracy of ±70 ppm and a resolution of 10 ppm at a maximum
sampling frequency of 50 Hz via non-dispersive infra red (NDIR) technology.

During the dataset collection process, the sensor was installed in the rear end of a
vehicle and connected to the vehicle’s exhaust pipe. Furthermore, a set of tools were used to
separate impurities and water vapour from the CO2 analyte, which included a hydrophobic
filter, a water trap and a particulate filter to avoid any incorrect or inaccurate measurements.
The CO2 collection system also featured an electric pump that helped the system to have a
constant 0.5 l/min sample flow rate through the sensor’s measurement chamber. Moreover,
the CO2 sensor was directly connected to an ESP32 micro-controller (Espressif Systems,
Shanghai, China) via serial connection that performed measurements requests at a rate
of 5 Hz. Before each drive, the sensor was calibrated manually using the external air as a
reference, assuming a CO2 concentration value of 400 ppm. More information about the
CO2 sensor can be found in the Supplementary information section of this manuscript.

2.3. Vehicle Status Data Collection

The collection of the onboard vehicle status parameters was carried out with custom
software executed on a laptop that was connected to the vehicle’s CAN bus via its OBD2
port. The software was written in Python and performs UDS-like (Unified Diagnostic
Services) [19] queries to periodically report a list of given parameters obtained from the
vehicle’s electronic control units (ECU) at a fixed rate. The collection of parameters was
done at 5 Hz; we stored the information recorded on separate files and drives and then
merged it together. Figure 2 illustrates the sequence diagram of the data collection process.

Figure 2. Data collection sequence diagram. Notice that after the acquisition of every ECU parameter
and the CO2 concentration, the received messages have to be re-scaled and transformed from
hexadecimal to decimal notation.

The set of parameters acquired from the vehicle’s CAN bus comprises the following
21 parameters: accelerator position (%), vehicle speed (MPH), external atmospheric pres-
sure (psi), engine load (%), coolant temperature (°C), acceleration (m/s2), distance travelled
since vehicle startup (miles), drive mode, engine exhaust flow rate (kg/h), engine mode,
engine speed (RPM), EV mode status, engine power delivered (kW), hybrid battery SOC
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(%), mass air flow (g/min), electric motor power delivered (kW), electric motor revolution
(RPM), electric motor torque (Nm), GPS latitude, GPS longitude and altitude (m). Among
the listed variables, there are 3 categorical parameters:

• Drive mode: indicates whether the power train source is hybrid or electric.
• EV mode status: in case the drive mode is electric, it indicates whether the electric

mode is normal or “city”, which limits the power capacity up to 53 kW.
• Engine mode: indicates the status of the engine, such as (1) stopped, (2) stopping,

(3) starting or (4) started.

2.4. Selected Input Parameters

Specific input features selection was conducted to identify a subset of input features
that are most pertinent to the output variable and also to eliminate unnecessary information
in the prediction process. To perform the input selection, the significance of the input
data and the correlation amongst features should be estimated. Hence, to identify the
most relevant parameters for this use-case, the correlation coefficient technique and some
traditional ML algorithms were used for different parameters of the dataset.

2.4.1. Correlation Matrix

The first attempt to identify the most useful parameters was to calculate their correla-
tion coefficients. Firstly, a correlation matrix was created with the entire set of parameters
described in Section 2.3. The technique implemented was the Spearman-based correlation
matrix, which provides a correlation coefficient based on the statistical dependence of
ranking between two variables and covers non-linear relationships. The parameters with a
high correlation score among them were eliminated, and the ones with a high correlation
with the CO2 concentration were kept. Based on the observations seen in the correlation
matrix, the parameters accelerator position, external atmospheric pressure, engine load, dis-
tance travelled since vehicle startup, drive mode, EV mode status, engine power delivered,
electric motor power delivered, electric motor revolution, electric motor torque and altitude
were removed, since they were considered less influential for the prediction. In addition,
GPS coordinates of the car, i.e., latitude and longitude, were also discarded from the dataset,
since the location of the car should not be a decisive factor in the prediction. As a result,
Figure 3 presents the correlation matrix featuring the eight final selected input parameters
and the output parameter to be predicted. Moreover, the resulting input parameters are
presented and listed in Table 2.

Table 2. Statistical values for each of the input features selected in the final dataset.

ID Name Unit Mean Min. Max.

1 Acceleration m/s2 0.011 −7.058 4.634
2 Hybrid battery SOC % 16.63 10.58 78.55
3 Vehicle speed MPH 32.61 0 79.535
4 Engine mode n/a n/a n/a n/a
5 Coolant temperature °C 83.24 23 93
6 Engine speed RPM 730.734 0 4512
7 Mass air flow g/min 424.836 25.2 3753.6
8 Engine exhaust flow rate kg/h 26.074 0 242.2
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Figure 3. Correlation matrix composed of the final input values selected.

2.4.2. ML-Based Feature Selection

To further evaluate the impacts of the remaining input parameters, 255 different
combinations of input values (the combination for 8 input values) were used to train and
test each ML model to assess the adjusted R2 accuracy level achieved. Three distinct
traditional ML algorithms were selected: linear regression (LR), random forest (RF) and
gradient boosting regression (GBR).

Table 3 illustrates the top 4 combinations of input parameters that showed the best
result for each ML algorithm tested. As seen, for both RF and GBR, the set of parameters
that achieved the highest scores were: acceleration, hybrid battery SOC, vehicle speed,
engine mode, coolant temperature and engine speed, leaving behind mass air flow and
engine exhaust flow rate. However, LR showed that using all the values yielded the best
score. In this case, as the RF and GBR obtained substantially higher accuracy than LR, the
combinations of input parameters indicated by the best GBR and RF scores were chosen as
candidates for the set of most influential parameters. As a result, two different set of input
parameters were defined and used in the following stages of this research:

• Input set 1. Features 8 input parameters: acceleration, hybrid battery SOC, vehicle
speed, engine mode, coolant temperature, engine speed, mass air flow and engine
exhaust flow rate.

• Input set 2. Features 6 input parameters: acceleration, hybrid battery SOC, vehicle
speed, engine mode, coolant temperature and engine speed.
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Table 3. Top 4 most accurate combinations of different input parameters with three traditional ML
algorithms. The black dots indicate that the parameter was included in the input parameter for that
combination, whereas the white dots indicate the opposite.

ML
Algorithm

Input Parameters Adjusted
R2

ScoreAcceleration
Hybrid
Battery

SOC
Vehicle
Speed

Engine
Mode

Coolant
Temperature

Engine
Speed

Mass
Air

Flow

Engine
Exhaust

Flow Rate

LR
       # 0.518
        0.518
    #   # 0.517
    #    0.517

RF
      # # 0.91
   #    # 0.91
       # 0.909
     #  # 0.908

GBR
      # # 0.916
   #   # # 0.913
     # #  0.909
     #  # 0.909

2.5. Final Dataset

A total of 70,683 samples were collected from 235 min of driving. Three heterogeneous
road scenarios are included in this dataset: motorway roads, urban roads and intercity
roads; all of them were recorded at different times of the day. The classification of the
samples in each road was done manually based on the GPS coordinates of the vehicle
at each moment. As is common, 80% of the samples were employed for the purpose of
training (56,546 samples in total), and the remaining 20% (14,137 samples in total) were
used for validation and testing (10% and 10% respectively).

The distribution of CO2 concentration in ppm in the dataset is represented in Figure 4.
As is apparent, most of the samples in the dataset lie between the minimum and the
maximum concentration values ppm. To the best of our knowledge, no other studies in the
literature used the CO2 concentration emitted by HVs in combination with the vehicle’s
operational performance indicators. In other datasets mentioned in the literature, the ppm
concentration remains either constant when using a petrol engine or fluctuates within a
limited range (usually between 80,000 and 120,000 ppm) when using a diesel engine [20,21].
With a hybrid engine, this is distributed along the entire range of possible values from 400
to approximately 155,000 ppm, generating the U-shaped distribution presented in Figure 4.
This graph shows two peaks being captured over the data collection. First, a large portion
of low-ppm measurements are captured when the engine is turned off (53.73%). Secondly,
a high portion of high-ppm measurements are captured when the engine is on (38.41%).
The remaining values correspond to switch-overs from the electric mode to the hybrid
mode and vice versa. Therefore, these data are minimal, since it only takes a few seconds
to make the transition (1.52% and 6.32% of the total dataset when the engine is starting and
stopping, respectively).

The high frequency of switch-overs recorded during the drives carried out, which
is very usual and normal behaviour in HV, and a non-constant CO2 concentration data
distribution between both ends of the data, indicate the complexity and uniqueness of
the dataset. This rapid change in concentration values during the switch-overs can be
challenging for traditional ML algorithms. For this reason, more complex prediction
mechanisms techniques were developed and used in this research, this being one of the
main contributions of this manuscript.
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Figure 4. Histogram of CO2 concentration (ppm) present in the dataset.

Dataset Preprocessing

For training and validation, the complete dataset was standardised to prevent inputs
with higher values from dominating those with the smaller values. To this end, formulae
described by Equation (1) were applied to the dataset, where Zi describes the standardised
value of a sample i, xi describes the original value of a sample i, µ represents the mean
value of the this parameter in the dataset, and σ is the standard deviation of this parameter
in the dataset.

Zi =
xi − µ

σ
(1)

2.6. Proposed LSTM

The proposed UWS-LSTM comprises three primary components: the first compo-
nent is the input layer, which includes the most effective input parameters mentioned in
Section 2.4.2. The second component is the hidden layers comprising two LSTM layers
with 512 and 256 neurons in each LSTM cell. In this regard, a hierarchical structure of
stacked LSTM layers has been shown to outperform single-layer LSTM models [22]. A drop
out layer is also used after each LSTM layer with the probabilities of p = 0.2 and p = 0.3,
respectively, to control the overfitting [23]. The second component also comprises two
dense layers with 256 and 1 neurons, respectively. The third components is the output layer
which outputs the CO2-concentration prediction as a single value. Figure 5 illustrates the
architecture of the proposed algorithm, which outperforms the other algorithms mentioned
in this article.

One of the advantages of using an LSTM model in comparison with the ANN model
is that the former can be parameterized in terms of the amount of information that is taken
into consideration from previous states. This term is often referred to as the lookback
window. This parameter determines how many previous timesteps are considered to
perform the current prediction. In order to figure out the influence of this parameter in the
accuracy of the LSTM model, a process of model training and validation was conducted
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with a set of different lookback windows to compare the obtained scores. Further results
can be observed in Section 3.1.1.

Figure 5. Architecture of proposed LSTM-based algorithm.

2.7. Hyperparameters

This subsection gathers the information regarding the configurations for the ML
models studied in this work. Table 4 reflects the hyperparameter configurations. It is worth
mentioning that for optimising the hyperparameters defined in the ANN model, a series of
Bayesian optimisation iterations were conducted using keras-tuner.

Table 4. Final hyperparameter configuration for each ML model.

Algorithm Input
Set

No.
Estimators

Loss
Function

Max.
Depth

Min.
Samples

Split

Max.
Leaf

Nodes
Subsample Learning

Rate Epochs Batch
Size Optimiser

Lookback
Window

Size

LR 1 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
RF 2 800 MSE None 2 None n/a n/a n/a n/a n/a n/a

GBR 2 800 MSE 12 10 n/a 0.8 0.08 n/a n/a n/a n/a
ANN 1 n/a MSE n/a n/a n/a n/a 1× 10−3 1000 32 Adam n/a

UWS-LSTM 1 n/a MSE n/a n/a n/a n/a 1.6× 10−4 100 32 Adam 32

n/a: not applicable.

2.8. Execution Environment

The complete prediction system was deployed in a real operating vehicle and tested
on public roads to validate its performance under realistic conditions. The vehicle used was
a Toyota Prius Plug-in Hybrid (2019). This vehicle features a 4-stroke, 4-cylinder 1798 cc
gasoline engine that can output 90 kW of power. The maximum torque achieved is 142 Nm
at 3600 RPM. As per the emissions, the vehicle is categorised under the Euro-class scheme
as a Euro 6 DG type; according to official manufacturers information, the vehicle emits
28 g/km of CO2 (WLTP test).

The computing platform chosen was a Nvidia Jetson Xavier. This board is an off-the-
shelf, low-consumption Linux-based system with a 512-core Volta GPU with Tensor Cores
which runs at more than 21 tera operations per second (TOPS) and has 32 GB of memory.
Different power consumption modes are supported: 10 W, 15 W and 30 W. Its portability
and its power capability made it suitable for use cases to deploy our CO2-concentration
predictor.
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All the ANN-based algorithms were implemented and executed on TensorFlow 2.
TensorFlow [24], which is a state-of-the-art ML platform that is fully compatible with
Nvidia compute unified device architecture (CUDA); therefore, it was the selected platform
for implementation and execution of the algorithms in Jetson Xavier. On the other hand, the
python package Scikit-learn was also used to perform the predictions with the traditional
ML algorithms due to it is simplicity and efficiency.

3. Results and Discussion

In this section, we present and analyse the results obtained from the evaluations of
the ML models outlined in previous sections of the manuscript. The results are presented
in two forms: quantitative and qualitative. The quantitative results consist of a set of
numerical measurements, and the qualitative results pertain to the implementation and
performance of the CO2 predictor within an actual vehicle environment.

3.1. Quantitative Results

The quantitative accuracy of the predictions was measured by calculating the errors
given by adjusted R2, mean absolute error (MAE), mean square error (MSE) and root mean
squared error (RMSE), described by Equations (2)–(5), respectively. In these equations, R2

refers to the ordinary R-squared formula, n is the number of data points, p is the number
of predictor variables in the model, yi is the true value of the ith observation and ŷi is the
predicted value of the ith observation.

Adjusted R2 = 1− (1− R2)(n− 1)
n− p− 1

(2)

MAE =
1
n

n

∑
i=1
|yi − ŷi| (3)

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (4)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (5)

3.1.1. LSTM Lookback Window

As previously mentioned in Section 2.6, a key hyperparameter to be defined for
LSTM-based models is the lookback window. Table 5 presents the different results in
terms of accuracy after training and validating the UWS-LSTM model with different
lookback window sizes. In addition, we presented in Section 2.4.2 that two particular input
parameters yielded different scores depending on the ML model used. For this reason,
these input parameters were part of the analysis to determine the best LSTM configuration.

Table 5. Accuracy score for each LSTM network configuration.

(a) Input Parameters Set 1 (b) Input Parameters Set 2

Lookback Window Adjusted R2 Lookback Window Adjusted R2

1 0.5627 1 0.5585
2 0.5015 2 0.4895
4 0.4738 4 0.4446
8 0.6036 8 0.5237
16 0.8389 16 0.7901
32 0.975 32 0.9702

As observed in the results, configurations with smaller lookback window sizes, such
as 1, 2 or 4, performed inferiorly. However, there was a significant increase in accuracy as
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the window size increased: an improvement of approximately 25% when using both input
parameter sets, when comparing a window size of 8 to 16. Notably, the highest accuracy
was achieved with a window size of 32 and input parameter set 1: an adjusted R2 score
of 0.975, surpassing the same window size with input parameter set 2, which had a score
of 0.9702. This illustrates that a sufficiently large window size can substantially enhance
the accuracy of the model. Moreover, the selected input parameters for the training have
effect on the results. Thus, input parameter of set 1 scored better results for every lookback
window size configuration.

Nonetheless, it is also known that higher lookback windows demand higher computa-
tional resources. Since the aim of this research was the deployment of the developed model
in a low-powered device, no bigger window sizes were considered for this study.

3.1.2. Accuracy

Table 6 shows the accuracy obtained for each ML model. It is very important to clarify
that, due to the fact that LSTM-based models are naturally designed to be trained (and
executed) following a time-based order, for the sake of a fair comparison among all the
models, the other 4 ML algorithms were trained following the same procedure, i.e., without
shuffling the testing dataset. Figure 6 shows the prediction results of the models. The
figures show the real values against the predicted values in ppm. In addition, the results
are colour-coded based on the differences between these two values.

Table 6. Accuracy scores obtained with the complete test dataset. Note that the scores shown refer to
standardised data (see Equation (1)).

Algorithm Adjusted R2 MAE MSE RMSE

LR 0.4214 0.6566 0.6021 0.7759
RF 0.4645 0.5507 0.5572 0.7465

GBR 0.4597 0.5555 0.5622 0.7498
ANN 0.4639 0.5346 0.5577 0.7468

UWS-LSTM 0.975 0.1135 0.0261 0.1616

As evident in Table 6, the performance of the LR model was the lowest among all the
ML models evaluated, with scores of 0.4214, 0.6566, 0.6021 and 0.7759 for adjusted R2, MAE,
MSE and RMSE, respectively. This is also reflected in Figure 6a; a high degree of dispersion
can be observed throughout the plot. In contrast, RF, GBR and ANN models exhibited
similar accuracy levels. Furthermore, the distribution of the results, as seen in Figure 6b–d,
illustrates a more accurate prediction on the edges of the dataset’s distribution, which
correspond to moments when the engine was either started or stopped. However, a more
dispersed result can be observed in all three models when predicting values associated with
power-train switch-overs. This serves as clear evidence of how the presence of power-train
switch-overs hinders the ability of these three models to predict the CO2 concentration in
hybrid vehicles (HVs). Specifically, for RF, the scores obtained were 0.4645, 0.5507, 0.5572
and 0.7465 for adjusted R2, MAE, MSE and RMSE, respectively. For GBR, the scores were
0.4597, 0.5555, 0.5622 and 0.7498 for adjusted R2, MAE, MSE and RMSE, respectively. For
ANN, the scores obtained were 0.4639, 0.5346, 0.5577 and 0.7468 for adjusted R2, MAE,
MSE and RMSE, respectively.

Ultimately, the proposed UWS-LSTM algorithm demonstrated superior performance
in comparison to the other evaluated methods, as evidenced by its adjusted R2 value
of 0.975 and its MAE, MSE, and RMSE values of 0.1135, 0.0261, and 0.1616, respectively.
Additionally, as demonstrated in Figure 6e, the LSTM algorithm shows exceptional accuracy
not only at the edges of the data distribution, but also in the middle values corresponding
to engine switch-overs, as depicted in Figure 4. This highlights the potential of LSTM-based
models in predicting more complex non-linear relationships by utilising previous states.
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(a) (b)

(c) (d)

(e)

Figure 6. Prediction results. The colour-code is based on the difference between the original data
and the predicted data. (a) Very dispersed predicted values with an R2 of 42%. (b) Better prediction
in ppm edges. Still high dispersion. (c) GBR still failing in predicting the CO2 in switch-overs.
(d) The ANN performed very poorly on power-train switch-overs, with an accuracy of 46%. (e) LSTM
narrows all predictions to the ground truth.
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3.1.3. Latency

This subsection focuses on the experiments carried out after deploying and applying
our predictive model in TensorFlow in the Nvidia Jetson board described in Section 2.8.
In addition to the proposed UWS-LSTM model, LR, RF, GBR and ANN were studied to
compare the different latency levels and assess the trade-offs between speed and accuracy.
All these results were obtained by setting the Nvidia Jetson Xavier on different power
modes: 10 W, 15 W and 30 W.

The results in Figure 7 are presented in milliseconds, which shows the cumulative
average inference time for the first 1000 iterations. The cumulative average inference time
was calculated following Equation (6), where x is the inference time at a time step i and
t is the current time step. The inference time was calculated, since the input was fed to
the algorithm until the results were provided in the output. Thus, 15 experiments were
carried out to evaluate five algorithms in three different power modes. As LR, RF and GBR
models were implemented with the Scikit learn package and not with TensorFlow, their
execution was carried out by the CPUs available on the device. On the other hand, the
TensorFlow framework was used to implement neural network-based algorithms, so they
were compatible with the Jetson’s GPU.

Tt =
∑t

i=1 xi

t
(6)

First the performance levels of traditional ML algorithms, including LR, GBR and
RF, were analysed and compared. The results, as depicted in Figure 7a–c, indicate that
the LR algorithm performed with the lowest average cumulative latency of 0.16 ms per
iteration. GBR exhibited a slightly slower performance, with an average execution time of
1.43 ms per iteration under a 30 W power consumption. On the other hand, RF algorithm
demonstrated the highest average latency of 14.45 ms among the three traditional ML
algorithms. Furthermore, ANN and LSTM models, as presented in Figure 7d,e, respectively,
both exhibited slower average performance when operating at 30 W. Specifically, the ANN-
based model recorded an average execution time of 5.72 ms, whereas the LSTM-based
model took 21.64 ms on average. These results suggest that traditional ML algorithms
generally exhibit faster performance compared to ANN and LSTM models. However,
as seen in previous sections, there is a trade-off between speed and accuracy, which is
especially notable with the UWS-LSTM model.

Additionally, as observed in every graph, there was a significant improvement in terms
of speed when the Nvidia Jetson board was configured to operate at 15 W in comparison to
10 W. Oppositely, changing from 15 to 30 W did not reveal a remarkable enhancement in
terms of latency.

3.1.4. Model Size

In an IoT setting, the size of a machine learning model is a crucial consideration. Due
to the limited storage and computational resources of IoT devices, models with smaller
sizes are typically more favourable, as they can be more easily exported and deployed
on these devices. In this context, the UWS-LSTM model, with a size of 7.7 MB, can be
considered relatively lightweight and well-suited for IoT applications. As depicted in
Figure 8, among the five models presented, only the LR model had a smaller size than
the UWS-LSTM model. However, as previously established through the analysis of other
performance metrics, the LR model dud not present an appropriate trade-off between
model size and accuracy. Thus, the UWS-LSTM model emerged as the most promising
candidate for deployment on IoT devices.
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(a) (b)

(c) (d)

(e)

Figure 7. Performance evaluation. (a) Outstanding results in speed. (b) Good results at 15–30 W.
(c) Less than 10 ms for each scenario. (d) Good for 15–30 W. (e) Achieved real-time for 15–30 W.
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Figure 8. Comparison of the ML models size.

3.2. Qualitative Results

The UWS-LSTM model was instantiated and installed within a real scenario to prove
the potential of its use under realistic scenarios. The Nvidia Jetson was set up in the
Toyota Prius car described in Section 2.8. The installation can be seen in Figure 9a, where
the display shows the real-time execution and CO2 measurement during the evaluation.
Figure 9b presents the predicted concentration against the real CO2 values captured by
the sensors during the installation and evaluation process. As can be seen, the prediction
results fit to a great extent the real values, including when the switch-overs were performed.

During the on-board evaluation, the real-time predictions were shown on a display.
However, IoT devices represent an ideal platform for remote monitoring, thanks to their
easy integration with communication protocols over wireless networks, leveraging an
incipient solution for remote ML-based emissions monitoring.

(a)

Figure 9. Cont.
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(b)
Figure 9. Vehicle onboard deployment. (a) Setup. (b) Prediction against real recorded values.

3.3. Discussion

In this paper, we have presented the design, implementation, training and validation
of a LSTM-based ML model for prediction of CO2 concentration for HVs. Initially, a data
gathering process was conducted with the aim of collecting features of a real-world HV
and its CO2 emission concentrations. This dataset is the only of its kind, to the best of
our knowledge, since it contains over 70,000 of more than 20 operational parameters and
CO2 emission concentrations of a HV during 235 min of driving in different scenarios,
regardless of the power-train source (i.e., data were collected when the engine was started
and stopped).

To determine the relevance of the gathered data, we performed an input feature
selection by calculating the correlation score among the dataset parameters and evaluating
765 different combinations of training with different input features in three traditional ML
algorithms. This resulted in two sets of parameters, one with six parameters and another
with eight parameters, which was better for each different algorithm, showcasing that no
specific input parameter set can be foreseen as optimal for every ML model. This input
feature selection procedure allowed identifying the most relevant parameters for predicting
emissions and eliminating irrelevant or redundant data, which proved to improve the
performance in the assessed models.

Moreover, we have designed and evaluated the proposed ML model, UWS-LSTM,
for predicting CO2 emission concentrations in a HV. The results showed that this model
outperformed other ML mechanisms (achieving 97.5% accuracy level), especially with
high complexity of the labelling distribution observed during power-train switch-overs
carried out by the HV (see Figure 4). This makes the UWS-LSTM model a valuable tool for
researchers studying emissions in HVs, where the use of the engine is not constant, and
therefore, the CO2 concentrations fluctuate greatly over time. In terms of the computational
cost derived from the training and validation processes, the proposed UWS-LSTM was
found as a relatively inexpensive and quick solution with 7.7 MB in size and 21.64 ms of
inference time. The proposed model took an average of 30 min for training when utilising a
dedicated GPU. It is hard to make a comparison with other approaches seen in the literature
about the computational costs implied in the process, since this information is usually not
disclosed by the authors.
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Finally, we have implemented the UWS-LSTM model in a low-powered IoT device
installed in the same vehicle where we gathered the data (see Figure 9). An evaluation of
its performance with three different power settings was conducted as recorded to measure
the speed. As observed, the UWS-LSTM reached a minimum average execution time
of 21.64 ms, which was considerably more than the second best ML algorithm (GBR
with 1.43 ms). Nonetheless, as for the model sizes, the proposed UWS-LSTM was the
second most lightweight model, being 7.7 MB; the other three most accurate models
were 150.1, 151.4 and 624.5 MB, respectively. Overall, the proposed UWS-LSTM seems to
better fit the performance and weight requirements for being implemented in low-resource
environments.

In conclusion, the work presented in this study would make an important contribution
to the field of HV emission concentration prediction. The large collected dataset, the
effective input feature selection and the performance of the UWS-LSTM model make it
a valuable resource for researchers in the area of ML-based pollution prediction, which
can greatly help the development of new cost-effective emission-aware driving strategies.
Moreover, thanks to the use of IoT devices, this solution can potentially facilitate the
transmission of CO2 emission concentrations over wireless networks.

Despite the provided results proving the capacity of the model to accurately predict
the concentrations with a decent extent of success, we are aware of the shortcomings
in execution time. Therefore, further research will be conducted towards reducing the
execution time for the proposed model.

4. Conclusions

This paper presented the design and implementation of an LSTM-based ML model for
predicting a CO2 emission concentration in HVs. A dataset of over 70,000 data points of
more than 20 operational parameters and CO2 emission concentrations of a HV over 235 min
of driving in different scenarios was gathered, and an extensive input feature selection
was conducted to improve the performances of the ML models. The proposed UWS-LSTM
model outperformed the other ML mechanisms, achieving 97.5% accuracy, including in
scenarios where the engine usage is not constant. The proposed model was implemented
in a low-powered IoT device in a real vehicle and proved to have a good balance of
performance and latency. It is believed that this work makes a valuable contribution to
the field of HV emission concentration prediction and can aid in the development of new
cost-effective emission-aware driving strategies and exhaust monitoring.

Supplementary Materials: Video of instantaneous CO2 pollution monitoring: https://beyond5ghu
b.uws.ac.uk/vehicle_emissions_monitoring/ (accessed on 17 November 2022).
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The following abbreviations are used in this manuscript:

ANN Artificial Neural Network
CAN Controlled Area Network
cc cubic centimeters
CNN Convolutional Neural Network
CO2 Carbon Dioxide
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
ECU Electronic Control Unit
GBR Gradient Boosting Regression
GPS Global Positioning System
GPU Graphics Processing Unit
HV(s) Hybrid Vehicle(s)
ICE Internal Combustion Engine
IoT Internet of Things
LR Linear Regression
LSTM Long Short-Term Memory
MAE Mean Absolute Error
ML Machine Learning
MLP Multi Layer Perceptron
MPH Miles per Hour
MSE Mean Square Error
NDIR Non Dispersive Infra Red
NOx Nitrogen Oxide
PEMS Portable Emissions Monitoring System
ppm parts per million
psi pounds per square inch
RF Random Forest
RMSE Root Mean Square Error
RNN Recurrent Neural Network
RPM Revolutions per Minute
SOC State of Charge
SVR Support Vector Regression
TOPS Tera Operations per Second
UDS Unified Diagnostic Services
W Watts
WLTP Worldwide Harmonised Light Vehicle Test Procedure
XGBR Xtreme Gradient Boosting Regression
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