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Abstract: Convolutional neural network (CNN)-based autonomous driving object detection algo-
rithms have excellent detection results on conventional datasets, but the detector performance can
be severely degraded in low-light foggy weather environments. Existing methods have difficulty in
achieving a balance between low-light image enhancement and object detection. To alleviate this prob-
lem, this paper proposes a foggy traffic environment object detection framework, IDOD-YOLOV7.
This network is based on joint optimal learning of image defogging module IDOD (AOD + SAIP)
and YOLOV7 detection modules. Specifically, for low-light foggy images, we propose to improve the
image quality by joint optimization of image defogging (AOD) and image enhancement (SAIP), where
the parameters of the SAIP module are predicted by a miniature CNN network and the AOD module
performs image defogging by optimizing the atmospheric scattering model. The experimental results
show that the IDOD module not only improves the image defogging quality for low-light fog images
but also achieves better results in objective evaluation indexes such as PSNR and SSIM. The IDOD
and YOLOV7 learn jointly in an end-to-end manner so that object detection can be performed while
image enhancement is executed in a weakly supervised manner. Finally, a low-light fogged traffic
image dataset (FTOD) was built by physical fogging in order to solve the domain transfer problem.
The training of IDOD-YOLOV7 network by a real dataset (FTOD) improves the robustness of the
model. We performed various experiments to visually and quantitatively compare our method with
several state-of-the-art methods to demonstrate its superiority over the others. The IDOD-YOLOV7
algorithm not only suppresses the artifacts of low-light fog images and improves the visual effect of
images but also improves the perception of autonomous driving in low-light foggy environments.

Keywords: IDOD-YOLOV7; object detection; low-light foggy images; autonomous driving

1. Introduction

Environment perception, behavior decision, and motion control are the three major
tasks of autonomous driving, for which object detection is an important component of
environment perception. However, the accuracy and real-time performance of sensor
acquisition data will be seriously affected in severe weather environments. For example, in
low-light foggy environments, this leads to image degradation problems that can seriously
affect the object detection performance of autonomous vehicles [1].

Most of the mainstream detection algorithms, such as Faster R-CNN [2], SSD [3], Reti-
naNet [4], YOLO [5], etc., have good performance when the object detection is performed
in a good-weather road environment. However, if the aforementioned object detection
methods are utilized directly for object identification in adverse weather, particularly in
environments with low-light fog, the detection performance would be severely compro-
mised [6]. An example of object detection in a low-light foggy traffic environment is shown
in Figure 1, where if the image enhancement process is applied to the low-light fog image,
the potential information of the image can be further recovered and the accuracy of object
detection can be improved.
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Figure 1. Object Detection in Low-Light Foggy Traffic Environments. (a) Image visualization and 
detection accuracy are low for object detection using only YOLOV7, YOLOV7; (b) The method 
proposed in this paper not only improves the detection accuracy but also reduces the leakage rate, 
IDOD-YOLOV7 (Ours). 

To address this problem, Cao J et al. [7] used a weighted mask and loss function en-
hancement to improve the SSD model, which effectively reduced the vehicle miss detec-
tion due to the lack of local information, thus improving the accuracy of small object ve-
hicle detection in severe weather such as fog, but with slow detection speed. Han X [8] 
proposed an enhanced RCNN vehicle detection model that incorporates rich location and 
background information and reduces information loss caused by feature mapping in 
downsampling, but suffers from omissions and false detection in foggy environments. 
Huang et al. [9] proposed to use two sub-networks for joint learning of image enhance-
ment and object detection to reduce the effect of image degradation by sharing the feature 
extraction layer; however, it is difficult to adjust the parameters during the network train-
ing. Hang et al. [10] first performed pre-processing operations such as defogging and en-
hancement to fade the specific effects of foggy weather on the image and then used a 
complex image recovery network to recover and detect the image, but it requires separate 
training of the network model with pixel-level supervision. Sindagi et al. [11] proposed 
an image priori-based model for a foggy and rainy environment based on an unsuper-
vised adversarial object detection algorithm. Although the above methods achieve signif-
icant results on synthetic datasets, they tend to overfit the provided training data with 
poor generalization, especially for real-world haze images. 

For the domain transfer problem arising from artificially synthesized foggy images, 
most of the current domain adaptation algorithms are used to solve the domain transfer 
problem [12–14]. However, fog images with different concentrations have different char-
acteristics, and existing studies tend to ignore this diversity. Previous domain adaptive 
methods only consider migration learning between the source and target domains while 
ignoring the joint optimization capability between image defogging, image enhancement, 
and object detection [15]. 

To overcome the shortcomings of the above object detection algorithm in a foggy 
environment, this paper proposes an object detection algorithm IDOD-YOLOV7 for pin 
autonomous vehicles under low-light foggy conditions, which focuses on the joint learn-
ing integration design of image defogging and image enhancement with object detection, 
to achieve the optimal performance of the whole detection system. The AOD (An All-in-
One Network for Dehazing and Beyond) module compensates for the information loss 
during the convolution process by using parallel convolution layers to effectively improve 
the image defogging quality. To further improve the visualization of the defogged images, 
this paper introduces an adaptive image enhancement module (SAIP) with three 

Figure 1. Object Detection in Low-Light Foggy Traffic Environments. (a) Image visualization and
detection accuracy are low for object detection using only YOLOV7, YOLOV7; (b) The method
proposed in this paper not only improves the detection accuracy but also reduces the leakage rate,
IDOD-YOLOV7 (Ours).

To address this problem, Cao J et al. [7] used a weighted mask and loss function en-
hancement to improve the SSD model, which effectively reduced the vehicle miss detection
due to the lack of local information, thus improving the accuracy of small object vehicle
detection in severe weather such as fog, but with slow detection speed. Han X [8] proposed
an enhanced RCNN vehicle detection model that incorporates rich location and background
information and reduces information loss caused by feature mapping in downsampling,
but suffers from omissions and false detection in foggy environments. Huang et al. [9]
proposed to use two sub-networks for joint learning of image enhancement and object
detection to reduce the effect of image degradation by sharing the feature extraction layer;
however, it is difficult to adjust the parameters during the network training. Hang et al. [10]
first performed pre-processing operations such as defogging and enhancement to fade the
specific effects of foggy weather on the image and then used a complex image recovery
network to recover and detect the image, but it requires separate training of the network
model with pixel-level supervision. Sindagi et al. [11] proposed an image priori-based
model for a foggy and rainy environment based on an unsupervised adversarial object
detection algorithm. Although the above methods achieve significant results on synthetic
datasets, they tend to overfit the provided training data with poor generalization, especially
for real-world haze images.

For the domain transfer problem arising from artificially synthesized foggy images,
most of the current domain adaptation algorithms are used to solve the domain transfer
problem [12–14]. However, fog images with different concentrations have different char-
acteristics, and existing studies tend to ignore this diversity. Previous domain adaptive
methods only consider migration learning between the source and target domains while
ignoring the joint optimization capability between image defogging, image enhancement,
and object detection [15].

To overcome the shortcomings of the above object detection algorithm in a foggy
environment, this paper proposes an object detection algorithm IDOD-YOLOV7 for pin
autonomous vehicles under low-light foggy conditions, which focuses on the joint learning
integration design of image defogging and image enhancement with object detection,
to achieve the optimal performance of the whole detection system. The AOD (An All-
in-One Network for Dehazing and Beyond) module compensates for the information
loss during the convolution process by using parallel convolution layers to effectively
improve the image defogging quality. To further improve the visualization of the defogged
images, this paper introduces an adaptive image enhancement module (SAIP) with three
hyperparameters (WB, Gamma, Contrast) that are learned adaptively by a lightweight
CNN parameter predictor (CNN-PP). CNN-PP adaptively predicts hyperparameters based
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on the brightness, color, saturation, and color of the input image. After processing by the
SAIP module, it can improve the external interference of low-light images due to light
source transformations while recovering detailed texture information of the images. A
joint optimization scheme is suggested to enhance the detection of low-light fog images by
combining AOD, SAIP, and YOLOV7 [16] backbone detection networks. In addition, we
use images with normal and different light intensities and different concentrations to train
the proposed network. Taking advantage of the SAIP network, the IDOD-YOLOV7 method
in this paper is able to detect foggy low-light images subjected to different concentrations.
Figure 1b shows an example of the detection results of the proposed method in this paper.

The main contributions of this paper are as follows:

(1) We design a joint learning network for image enhancement and object detection
(IDOD-YOLOV7), in which a parameter-tunable low-illumination image enhancement
module (SAIP) is proposed, whose hyperparameters are predicted by a small network,
to remove fog from the input image.

(2) We prepare a dataset for low-illumination fog object detection (FTOD) that is built
by physical fog creation and artificial synthesis. This reduces the domain difference
between the synthetic dataset and the real fog images on foggy days, avoids overfitting
of the fog removal model, and improves the performance of object detection in
real environments.

(3) We demonstrate the performance of our designed network architecture through
various experiments. The experimental results show that our network outperforms
existing methods on synthetic images both quantitatively and qualitatively.

The rest of the paper is organized as follows. In Section 2, the atmospheric scattering
model of fog and the related properties of fog object detection are presented, providing a
theoretical basis for the design of an object detection network architecture (IDOD-YOLOV7)
in low-illumination foggy environments. Section 3 presents the detailed design and im-
plementation of the IDOD-YOLOV7 architecture. Sections 4 and 5 are the experimental
sections and the conclusion section, respectively.

2. Related Work

In order to accurately describe the formation process of fog images, McCartney first
proposed an atmospheric scattering model [17], where fog is produced when there are
large amounts of water vapor and suspended tiny particles in the atmosphere under the
absorption and scattering effects of natural light. The scattering effect of the particles causes
light attenuation during transmission between the object and the sensor and adds a layer
of atmospheric scattered light (Airlight) [18]. The detection system receives the light source
imaging from two main parts; part of the light is reflected from the object to the detection
system through particle attenuation, but from the light source (in this case light) through
the scattering of atmospheric light formed by the particle reflection. The mathematical
model of foggy sky imaging is obtained by this physical model as:

I(x, λ) = e−β(λ)d(x)R(x, λ) + L∞

(
1− e−β(λ)d(x)

)
= D(x, λ) + A(x, λ) (1)

where I(x, λ) is the foggy image acquired by the detection system; R(x, λ) is the fog-free
image to be recovered; x is the position of the pixel in the image, λ is the wavelength of
light; L∞ is the atmospheric light value at infinity; and e−β(λ)d(x) is the transfer function,
the physical meaning of which is the proportion of light that can reach the detection system
after particle attenuation. Most teams and scholars use the above atmospheric scattering
model as the theoretical model for fog imaging when acquiring fog images through the
detection system and performing image defogging. The main idea is to estimate the transfer
function e−β(λ)d(x) or the atmospheric light A(x, λ) from the foggy image based on various
a priori knowledge or image processing tools and to recover the object image R(x, λ) by
substituting the solved parameters into the atmospheric scattering model [19].
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For computational purposes, atmospheric transmittance is assumed to be t(x) = e−βd(x),
the object reflected light to be J(x), the object attenuated reflected light to be D(x) = J(x)t(x),
and the atmospheric scattered light value to be A = L∞(1− t) = A∞(1− t), so as to obtain
mathematical expression of the final atmospheric scattering model:

I(x) = D + A = J(x)t(x) + A∞(1− t(x)) (2)

By formulating a mathematical model, the imaging process of foggy images and the
various elements contained in foggy images are explained. Although it is intuitive to
perform image defogging based on a physical model, estimating atmospheric light values
and transmittance are independent steps and errors can accumulate and may potentially
amplify each other, resulting in poor image defogging quality.

J(x) =
1

t(x)
I(x)− A

1
t(x)

+ A (3)

J(x) = K(x)I(x)− K(x) + b (4)

K(x) =
1

t(x) (I(x)− A) + (A− b)

I(x)− 1
(5)

The two variables t(x) and A are integrated into a new variable K(x) represented
by the transformation of Equations (3)–(5), where b is a constant deviation, which avoids
cumulative errors in multiparameter estimation [20]. This provides the basis for the
defogging model in the third section of this paper.

In order to reduce the impact of haze on image data and improve the accuracy of
autonomous vehicle object detection, image dehaze is therefore an important component
of late object detection. Image dehaze algorithms are currently divided into four categories:
the first category is based on image enhancement dehaze methods, usually using traditional
image processing methods to improve image contrast and enhance image brightness, gra-
dient, and other feature information, which does not defog from the formation mechanism
of fog, resulting in defogged images prone to color deviation, loss of detail and other
phenomena. The second category is the physical model-based approach, which establishes
a degraded physical model of fog based on the scattering mechanism of atmospheric light
and uses image-priori methods such as saturation prior [21], sparsity prior, and regular
probability prior for dehaze [22]. For example, He et al. [17] used a dark channel priori
assuming that the presence of the color channel has low values under the background re-
gion of the object in a clear image, and used an atmospheric scattering model based on this
priori knowledge for the dehaze. Zhu et al. [23] proposed a color decay priori algorithm for
the estimation of fog-free image projection and recovery based on the fact that the greater
the fog concentration, the greater the depth of field. The above algorithms have low time
complexity, but it is more difficult to find general prior knowledge in complex traffic envi-
ronments, leading to an inaccurate estimation of the transmission map and an incomplete
dehaze and color distortion. The third category is based on neural networks and deep
learning methods, which are divided into two types; one is a network architecture based on
atmospheric scattering models such as the AOD-Net network proposed by Li et al., and the
Dehazenet network proposed by Cai et al., based on CNN [24,25]. The network architecture
relies excessively on atmospheric scattering models. Another end-to-end deep learning
approach for direct dehaze, such as Liu et al. [26], proposes a dehaze network with a grid-
like shape, which effectively alleviates the bottleneck problem in traditional multi-scale
fusion dehaze methods through an attention mechanism. Yang et al. [27] proposed a feature
fusion-based image-dehazing network, which defogs by learning content and style features
while maintaining the color characteristics of the original image. Dong et al. [10] used the
U-Net architecture to correct the missing spatial information in high-resolution features
using back-projection techniques and non-neighboring features. Chen et al. [28] proposed
a codec network based on the contextual information gated fusion, but lacked information
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interaction between features in the encoding and decoding stages. Yang et al. [29] proposed
a codec network with a multi-scale feature aggregation network, but the information of
different scale features was not retained during the successive downsampling in the coding
stage of the network, resulting in the loss of image features and affecting the recovery of
high frequency details of images. The above end-to-end network cannot fully utilize the
multi-scale feature information of the image, resulting in incomplete image dehaze. In
addition, only pixel-by-pixel recovery is considered during the training process, which
results in some color distortion in the defogged image despite the high peak signal-to-noise
ratio index.

The ability to sense complex traffic environments is crucial for autonomous driving;
however, current detection models trained under normal weather conditions in harsh
natural environments such as fog are usually not adequate for object detection in adverse
weather conditions because of the large amount of fog noise in the images captured by the
camera. There are currently four main approaches to object detection in harsh environments,
the first of which is based on image pre-processing, such as image denoising and image
enhancement to remove the specific effects of fog on images [30]. However, as both fog noise
and image texture are high-frequency small-scale information, model training by image
pre-processing can easily lead to the loss of image detail information. The second is a priori-
based approach for image dehaze and object detection, such as the priori-based domain
adaptive object detection under rain and fog conditions proposed by Sindagi et al. [11] The
third one uses a two-branch joint learning network [9], where one network is used for image
dehaze operations and the other for object detection. Since the two network branches share
the feature extraction layer, it is difficult to balance the two tasks during training. The fourth
one uses end-to-end adaptive learning to align detection targets in clear and fogged images
for object detection. Liu et al. [31] proposed the IA-YOLO network for object detection in
complex environments, where object labels and bounding box coordinates are predicted
by a single CNN. This method leads to a high rate of missed detection due to incomplete
defogging. However, for the current low illumination, low contrast, and small object
environment, the current detection model in harsh environment detection also has some
application value. The SVA-SSD algorithm proposed by Shahin et al. [32] has significant
results in object detection in a low contrast environment. A lightweight multi-scale small
object detection algorithm was proposed by Li et al. [33]. The algorithm effectively improves
small object detection accuracy while reducing the model complexity, but the detection
performance is degraded for bad weather conditions. In this paper, we mainly use a joint
optimization based on an image dehaze module (AOD), image enhancement module in
(SAIP), and single-stage detector YOLOV7 module for autonomous vehicle object detection
in a low-light foggy traffic environment [16], which improves its accuracy and real-time
object detection in foggy conditions.

3. Material and Methods

The reduced visibility of images due to low-light and foggy conditions seriously affects
the accuracy of object detection for autonomous vehicles and poses a great challenge to the
vehicle’s environmental perception capability. In order to better solve this practical problem,
this paper creates a low-illumination foggy weather traffic object detection dataset (FTOD)
and proposes an object detection algorithm IDOD-YOLOV7 for autonomous vehicles under
foggy weather conditions, which reveals more potential information inside the image by
eliminating foggy interference. The whole network framework consists of an AOD module,
an adaptive image enhancement module (SAIP), and a YOLOV7 detection module. The
AOD module first estimates the two parameters of the atmospheric scattering model to
obtain a preliminary defogged image. Then, the model resizes the image to 256 × 256
and feeds it to the SAIP module for parameter optimization to further improve the image
dehaze quality and enhance the image for object detection in foggy weather in a weakly
supervised manner. Finally, the processed image from the SAIP module is used as the input
to the YOLOV7 detector and used for traffic environment object detection.
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3.1. Foggy Object Detection Dataset

As it is very difficult to obtain paired foggy/non-foggy images of the traffic road
environment in the same scene, this paper generates foggy traffic images by physical fog
creation and artificial synthesis. First, two models (SONY) FDR-AX700 4K HDR digital
cameras were used simultaneously, one for clear image acquisition and the other for
simulating fog scenes of different concentrations by adding different concentrations of
fogging flakes in front of the camera lens, while the environment was fogged by artificial
spray in order to further enhance the realism of the fog scenes. A foggy traffic object
detection dataset, FTOD, was created, containing 5100 pairs (1000 pairs of physical fogging,
4100 pairs of VOC_foggy synthesis) of fog-free and fogged images.

The VOC_foggy dataset is a synthetic dataset built on the basis of the classical
VOC dataset based on the atmospheric scattering model. In order to form traffic im-
ages in low-illumination foggy environments, this paper chooses data containing five
categories to add fog. To avoid the computational overhead of generating fog images
during the training process, the VOC_foggy dataset was constructed offline. According to
Equations (1) and (2), the fog image I(x) is obtained by the following steps, where d(x) is
0.4 times the Euclidean distance from the current pixel to the center pixel, and multiple
different levels of fog can be added to each image by setting A = 0.5 and β = 0.01× i + 0.05,
where i is an integer from 0 to 9.

In order to determine the effect of fog on detection accuracy at different concentrations,
this paper divides the fogged images into three difficulty classes: heavy, medium, and light,
according to the fog coverage ratio (FCR) of the detected objects. By combining FCR and
human eye visual effects, image numbers 1~2600 are classified as easy level, 2601~3600
as normal level, 3601~4600 as difficult level, and 4601~5100 as particularly difficult level.
Figure 2 shows the label distribution of the FTOD dataset.
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Figure 2. The label distributions in the proposed FTOD. Most of the annotated objects are cars
(2706 labeled), pedestrians (3283 labeled), and bicycle (810 labeled).

3.2. Image Dehazing Model

The AOD-NET (end-to-end defogging network) is optimized based on the atmo-
spheric scattering model, which is direct image recovery by a lightweight CNN network
and is therefore highly portable. In this paper, based on this feature of AOD-NET, we opti-
mize the original network architecture and construct an end-to-end smart driving vehicle
object detection algorithm under low-illumination fog conditions by fusing its network
characteristics with the YOLOV7 detection network.

The original AOD-NET network consists of two modules, divided into an estimation
module and an image recovery module. Since the atmospheric scattering model-based
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image defogging algorithm produces error accumulation in the process of parameter
estimation, it results in incomplete image defogging image distortion. Therefore, in this
paper, a self-adaption image processing module (SAIP) is added following the AOD image
defogging module. This module includes four image enhancement weights (pixel-level
filters), including white balance (WB), gamma correction, contrast enhancement, and image
sharpening [34]. WB can eliminate the chromatic aberration caused by atmospheric light,
the gamma correction can restore the detail information in darker areas, the contrast
enhancement can improve the global visibility of thick fog areas, and the image sharpening
can effectively improve the visualization of the defogged image. The structure of the Image
Dehazing Model is shown in Figure 3.
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3.2.1. AOD Module

The AOD Module is used to perform image defogging based on the atmospheric
scattering model. This module adopts a joint learning method to unify A and t(x) for
learning, which can effectively improve the accuracy of parameter estimation. The module
has two parts, as shown in Figure 3: the parameter estimation module and the image
recovery module, where the parameter estimation module uses a 5-layer convolution to
estimate K(x) for the input image Ix, and the image recovery module uses the estimated
K(x) value and b output to recover the image.

The K(x) estimation module mainly uses five convolutional layers to fuse multi-scale
information, and in order to link coarse-scale features with fine-scale features effectively,
the parallel convolutional layer “Concat” is used for the connection. As shown in Figure 3,
Concat1 connects Conv1 and Conv2, Concat2 connects Conv2 and Conv3, and Concat3
connects Conv1, Conv2, Conv3 and Conv4. Using different parallel convolutional layers can
effectively compensate for the information loss during the convolution process. The image
recovery module generates the recovered image based on the parameter estimation gate
module obtained from K(x). The recovered image is generated by the element summation
layer and element multiplication layer according to Equation (5).

3.2.2. SAIP Module

Generally, the filter parameters are manually adjusted based on experience for im-
age correction and image enhancement operations. This not only leads to poor image
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enhancement due to large parameter errors, but also makes the system less adaptive. To
effectively address this issue, this paper uses small CNN networks to estimate the four
filter parameters of the SAIP module.

The SAIP module consists of a pixel-level filter and a sharpening filter. The pixel-level
filter consists of three adjustable parameters: white balance, gamma correction, and contrast
enhancement, which are mainly used to smooth the image after defogging to improve
the visualization of the image. The mapping functions of the pixel-level filters map the
input image Pi to the three color channels (R, G, B) of the output image Po, respectively.
Table 1 shows the mapping functions of the three filters and the parameters to be optimized.
The contrast filter sets a linear interpolation between the original image and the fully
enhanced image by the input parameters. The definition of En(Pi) in the mapping function
is as follows:

L(Pi) = 0.27ri + 0.67gi + 0.06bi (6)

EnL(Pi) =
1
2
(1− cos(π × (L(Pi)))) (7)

En(Pi) = Pi ×
EnL(Pi)

L(Pi)
(8)

where Pi denotes the input pixel value, ri, gi, bi denote the image RGB color channel pixel
values, respectively, and the Po denotes the mapped output pixel value.

Table 1. The mapping functions of the three filters and the parameters to be optimized.

Filter Mapping Function Parameters

WB Po =
(
Wrri, Wggi, Wbbi

)
Wr, Wg, Wb

Gamma Po = PG
i G

Contrast Po = α · En(Pi) + (1− α) · Pi α

The image sharpening filter mainly uses image sharpening to compensate for contours
and highlight edge information in order to make the image clearer after defogging, and the
process of image sharpening can be described as follows [35].

F(x, λ) = I(x) + λ(I(x)− Gau(I(x)) (9)

where I(x) is the input image, Gau(I(x)) is the Gaussian filter, and λ is the positive
scale factor.

The SAIP module is based on the CNN network for parameter optimization. Since
CNN extracts high-resolution image feature information, it leads to a large amount of
wasted computer resources. Therefore, the acquired high-resolution fogged images are
adjusted to low-resolution images (256 × 256) and the image filtering parameters are
extracted. The above filters are applied to the low-resolution defogging images for image
enhancement after defogging by the AOD module.

The fogged images are downsampled by a small CNN network, which not only
speeds up the parameter estimation but also reduces the number of model computational
parameters [36]. As shown in Figure 3, the defogged images are first reduced to 256× 256
by bilinear differences before parameter estimation, and then hyperparameter estimation
is performed by five convolution blocks and two fully connected layers, where each
convolution block consists of 3 × 3 convolution layers, and ReLu activation functions
with output channels of 16, 16, 32, 32, and 32, respectively. For white balance (WB),
gamma correction, contrast enhancement, and image sharpening filters, the number of
parameters to be estimated is small, and in order to reduce the waste of computational
resources and improve network efficiency, a small CNN network is used to downsample
the defogged images. This not only speeds up the parameter estimation but also reduces
the number of computational parameters of the model. Before parameter estimation, the
defogged images are bilinearly differenced to reduce the resolution to 416 × 416, and the
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hyperparameter estimation is relatively reasonable and efficient for low-resolution images
with five convolutional blocks and two fully connected layers.

3.3. Detection Network Module

In order to improve the accuracy and real-time object detection for autonomous
driving in low-light and foggy weather conditions, the latest version of YOLOV7 is selected
as the detection network. YOLO series is a fast object detection algorithm, whose main
characteristics are being fast and lightweight based on certain detection accuracy [37].
Therefore, the selected YOLO detection algorithm is well suited for object detection of
autonomous vehicles when deployed in low-light fog environments.

YOLO has continuously improved its detection accuracy and speed from V1-V7. YOLOV7
differs significantly from previous versions in terms of model structure (CSP->ELAN), partial
convolution strategy approach (Conv->RepConv), and label assignment approach (IOU,
simota->Coarse to fine deep supervision approach) [38]. YOLOV7 focuses on the training
process of optimization to make the training process more costly and thus improve accuracy
without increasing computational parameter consumption. It can reduce the number of
parameters by 40% and the computational effort by 50% compared to Sota’s object detection
method. Combining the above features, the same network architecture and lost function of
YOLOV7 are used for the object detection module in low-light foggy environments. The
algorithm is used for object detection after defogging images to achieve road environment
awareness for autonomous driving in foggy and bad weather conditions, optimize control
decisions, and improve the safety of autonomous vehicles in bad weather conditions [39].

The architecture of YOLOV7 is shown in Figure 4, in which an extended ELAN
(E-ELAN) based on ELAN is proposed in the network architecture. Without destroying the
original gradient path, the learning capability of the network is continuously enhanced by
using methods such as extension and merging bases. Group convolution is used to extend
the channels and bases in the computation process. The YOLOV7 network consists of
three parts: input, backbone, and head. When the backbone is used to extract features, the
entire backbone layer consists of several BConv layers, E-ELAN layers, and MPConv layers
alternately halving the aspect, doubling the channels, and extracting features. Head is used
for prediction, consisting of SPPCPC layers, several BConv layers, several MPConv layers,
several Concat layers, and a RepVGG block layer that subsequently outputs three Heads.
After the Head outputs three feature maps, it outputs three unprocessed predictions of
different sizes through the three REP and Conv layers, respectively.

3.4. Multi-Source HybrIDOD Weather Data Training

A multi-source hybrid weather data training scheme is adopted for IDOD-YOLOV7
to improve the robustness of the system. The 1/4 rainy weather image and low-light
image are selected in the network training process. In the presence of fog training data
and other weather training data, the whole network is trained end-to-end with the loss of
YOLOV7, which ensures mutual adaptation between the modules in IDOD-YOLOV7. The
multi-source hybrid weather data training mode ensures that IDOD-YOLOV7 is capable
of adapting the images according to the content of each image, resulting in high detection
performance. In the case of mixed dataset training data, the entire pipeline is trained
end-to-end with YOLOV7 detecting loss, ensuring mutual adaptation among the modules
in IDOD-YOLOV7. The mixed data training mode ensures that IDOD-YOLOV7 is able to
perform adaptive processing of images based on the content of each image, resulting in high
detection performance. Meanwhile, the use of a real data set (FTOD) can effectively solve
the domain transfer problem due to synthetic data, making the training data more relevant
to the real low-illumination foggy traffic environment, thus improving the generalization
ability and robustness of the plus detection network.
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4. Experiments and Results

This section systematically analyzes and evaluates the detection module and the
dehaze module of the algorithm in a real low-light foggy environment with different con-
centrations. The experimental results of the algorithm proposed in this paper under a
foggy traffic environment are summarized. In order to verify the detection performance of
the IDOD-YOLOV7 network structure in a low-light foggy environment, first, the defog-
ging module is compared with the existing classical defogging methods DCP [18], AOD-
NET [20], MSCNN [40], GFN [41], GCANET [29], FFA-NET [42], DCPDN [43], EPDN [44],
and Dehazenet [25]. Then, it is compared with the existing detection methods Fast R-CNN,
Faster R-CNN, SSD, RetinaNet, and YOLOV3 methods [45]. Finally, the detection algo-
rithm is compared with YOLOV7 [16] and various defogging algorithms such as AOD-NET,
CAP [46], MSCNN, FFA-NET, and Dehazenet for a comprehensive comparison. The above
experiments are conducted on a PC equipped with NVIDIA GeForce GTX 2080Ti GPU.
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4.1. Implementation Details

The backbone network for all experiments in the IDOD-YOLOV7 method is New
ELANCSP. Data enhancement methods such as image flipping, cropping, and transfor-
mations are used during the training process to extend the training dataset. In addition,
a random approach is used to resize the image to (64n× 64n) where n ∈ [9, 19]. IDOD-
YOLOV7 is trained with Adam optimizer, using SyncBatchNorm multi-GPU for distributed
training, DDP parameters are set to default values, the maximum number of workers is
eight, there are 200 Epochs, initial learning rate 10−4, and the batch size is four. IDOD-
YOLOV7 predicts the position of detection frames by different scales. There are three
anchors on each scale. Three different image input scales are set with multi-scale training
enabled, and one scale is randomly selected at certain iterations during training to enhance
the robustness of the model. Experiments are performed using Pytorch and run on GPU.

For the IDOD-YOLOV7 network structure, this paper uses a joint training approach to
train the defogging sub-network and the detection network separately. First, the detection
network YOLOV7 is not trained from scratch using pre-trained weights trained on the MS
COCO dataset [47], but is trained by migration learning in combination with the dataset
presented in this paper. Then, the SAIP module is reproduced by sharing the first five
convolutional layers of YOLOV7 and the network is trained jointly with mixed data.

The loss function consists of three parts, which are divided into three parts: Regression
Loss, Object Confidence Loss, and Classification Loss. Among them, the object confidence
loss and classification loss use BCE With Logits Loss (cross-entropy loss), and the regression
loss uses CIoU loss [48]. The total loss function is the sum of the above three losses,
as follows.

LDCF−YOLOV7
(
tp, tgt

)
=

K

∑
k=0

[
αbalance

k αbox

S2

∑
i=0

B

∑
j=0

Iobj
kij LCloU + αobj

S2

∑
i=0

B

∑
j=0

Iobj
kij Lobj + αcls

S2

∑
i=0

B

∑
j=0

Iobj
kij Lcls

]
(10)

where K is the output feature map, S2 is the number of cells, B is the number of anchors on
the cells, and α is the weight value of the corresponding term. In this paper, αbox = 0.05,
αcls = 0.3, αobj = 0.7, Iobj

kij are the kth feature map, tgt and tp are the ground-truth vector and

the prediction vector, respectively. αbalance
k is the weight of the output feature map at each

scale, and the default values are [4.0,1.0,0.4], which correspond to 80× 80, 40× 40, 20× 20
feature maps in turn. Where the three weight values are based on the default values of
the detection network, usually the confidence loss takes the maximum weight and the
rectangular box loss and the classification loss take the second weight.

Bbox Regression Loss:

LCIoU = 1− IOU +
ρ2( b, bgt)

C2 +
ρ2(w, wgt)

C2
w

+
ρ2(h, hgt)

C2
h

(11)

ρ(·) =
∥∥∥b− bgt

∥∥∥
2

(12)

where b is the prediction box, bgt label box; wgt and hgt, are the width and height of the
label box, w and h are the width and height of the prediction box, ρ is the distance between
the center points of the two boxes, and C is the farthest distance between the boundaries of
the two boxes.

Object Confidence Loss:

Lobj (po, piou ) = BCEsig
obj

(
po, piou ; wobj

)
(13)

where BCEsig
cls denotes binary cross-entropy loss, wobj denotes positive sample weights,

Po denotes the object confidence score in the prediction frame, and Piou the prediction frame
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and the iou value of the corresponding object frame, which is used as ground-truth. Both
calculate the binary cross-entropy to obtain the final object confidence loss.

Classification Loss:

Lcls
(
cp, cgt

)
= BCEsig

cls

(
cp, cgt; wcls

)
(14)

where BCEsig
cls denotes binary cross-entropy loss, wcls denotes positive sample weights, and

cp and cgt denote the predicted and true values of the corresponding categories, respectively.
The two calculate the binary cross-entropy to get the final category loss.

Initialization:
In this paper, a random Gaussian distribution (mean µ = 0, standard deviation

σ = 0.001) is used for initialization, and the learning rate decreases by half from 0.00001 to
3.125 × 10−4 per 100,000 iterations. In the detection sub-network, the trained YOLO model
on the MS COCO dataset is used, and the fully trained weights of this model are fine-tuned
instead of randomly initializing the weights.

To accurately measure the performance of the IDOD-YOLOV object detector, the
AP metrics of the accuracy and completeness curves (PRC) were used, where the precision
(Pr) and recall (Re) for different thresholds are expressed as follows:

Pr =
TP

TP + FP
(15)

Re =
TP

TP + FN
(16)

where TP, FP, and FN are the number of true positives, false positives, and false negatives,
respectively. The AP defined as follows:

AP =
∫ 1

0
Pr(Re)dRe (17)

The average accuracy (mAP) of the object detector is expressed in terms of the average
AP value of all object classes and is calculated as follows:

mAP =
1
M

M

∑
z=1

APz (18)

where M is the number of object categories.

4.2. Performance Evaluation of Image Dehazeing Model

For object detection in low-light foggy environments, the quality of image dehaze in
the preliminary stage affects the accuracy of object detection in the next stage. In this paper,
we compare the image dehaze module (AOD + SAIP) with defogging methods based on a
priori DCP and deep convolutional neural networks (AOD-NET, MSCNN, GFN, EPDN,
Dehazenet, FFANet, PSD [49], CycleGan [50], YOLY [51]). For an accurate comparison,
retraining on the same training dataset and evaluation on the same test dataset (SOTS [52],
HAZE [53], FTOD) were used. The objective evaluation metrics PSNR (Peak Signal to
Noise Ratio), SSIM (Structural similarity) [54], and MSE (Mean Square Error) were used to
evaluate the effectiveness of the above defogging algorithms.

PSNR (Peak Signal to Noise Ratio) a full reference image quality evaluation index.
Given a clear image I of size m× n and a noisy image K, the mean square error MSE is:

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[I(i, j)− K(i, j)]2 (19)
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Then, PSNR (dB) is defined as:

PSNR = 10 · log10

(
MAX2

I
MSE

)
(20)

where MAX2
I is the maximum possible pixel value of the image.

SSIM (structural similarity), which is also a full-reference image quality evaluation in-
dex, measures image similarity in terms of brightness, contrast, and structure, respectively.

SSIM(x, y) =

(
2µxµy + c1

)(
2σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) (21)

where µx, µy denote the mean values of images x and y, respectively, σx, σy denote the
variance of images x and y, respectively, and σxy denotes the covariance of images x and y;
c1, c2, c3 are constants. In order to avoid the case that the denominator is 0, we usually take
c1 = (k1 × l)2, c2 = (k2 × l)2, c3 = 0.5c2, generally k1 = 0.01, k2 = 0.03, l = 255. Then, SSIM
takes the value range [0, 1].

The results of the objective evaluation of the defogged images for different datasets
are shown in Table 2. It can be seen that the defogging method using DCP performs poorly.
FFA-NET demonstrates strong fitting ability on the SOTS test set, but loses its advantage
when the test sample is not consistent with the training data. In contrast, the proposed
(AOD + SAIP) method outperforms the above algorithms in terms of objective evaluation
metrics PSNR, SSIM, CIEDE, and image dehaze efficiency. Figure 5 shows the effect of
using the above defogging methods. DCP algorithm has obvious color distortion in the
defogged image of scenes with a large fog concentration. The defogging method based on
the atmospheric scattering model is less effective due to the inability to accurately estimate
the atmospheric light values. End-to-end-based direct image defogging is superior to
other methods based on indirect estimation of atmospheric scattering model, but produces
excessive defogging. Other deep learning-based methods have different degrees of image
artifacts and incomplete defogging. The defog method in this paper not only removes most
of the haze from the image but also improves the contrast and saturation of the image,
thus effectively improving the image quality and providing a basis for the next step of
object detection.

Table 2. Quantitative evaluations on the benchmark dehazing datasets. ↑and↓mean the better
methods should achieve higher/lower score of this metric.

Methods DCP EPDN DehazenetAODNET MSCNN FFANET PSD CycleGan YOLY Ours

SOTS
PSNR↑ 13.23 25.06 18.80 21.14 17.57 25.29 15.32 20.55 15.57 24.62
SSIM↑ 0.809 0.931 0.834 0.864 0.811 0.924 0.805 0.875 0.837 0.837

CIEDE↓ 7.508 4.578 5.632 4.325 6.328 2.347 13.24 7.547 14.216 4.295

HAZE
PSNR↑ 13.10 15.02 13.23 18.68 14.67 12.00 15.30 15.29 14.74 18.87
SSIM↑ 0.699 0.763 0.833 0.843 0.796 0.592 0.800 0.756 0.688 0.845

CIEDE↓ 19.04 14.96 13.33 13.67 14.27 20.33 14.84 19.50 15.24 13.27

FTOD
PSNR↑ 11.34 21.37 11.39 20.38 17.21 14.23 16.89 15.83 15.67 19.17
SSIM↑ 0.727 0.821 0.845 0.851 0.807 0.681 0.841 0.781 0.771 0.873

CIEDE↓ 16.73 14.05 14.78 13.57 14.37 17.21 13.87 18.17 17.26 13.21
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Figure 5. Qualitative comparison of different methods on low-light foggy traffic images.

Two examples of how the SAIP module image enhancement parameters (WB, Gamma,
Contrast) are predicted by a CNN-PP network are given in Figure 6. The CNN-PP network
is able to learn a set of parameters for each image based on specific information about the
brightness, color, hue, and fog concentration of each low-illumination fog image. To give
a more visual representation of the processing effect of each filter, the parameter values
of each filter and the processed image are shown in Figure 6. The defogged images are
processed by the SAIP module to improve the visualization of low-illumination images
and improve the detail information of the images, which is beneficial to the subsequent
object detection.
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4.3. Object Detection Results

To validate the performance of the joint optimization model IDOD-YOLOV7 proposed
in this paper for object detection in low-light foggy environments, cross-sectional and
longitudinal comparison experiments are conducted on the same test dataset. First, the
IDOD-YOLOV7 algorithm is compared with the current state-of-the-art CNN object detec-
tors Fast R-CNN, Faster R-CNN, SSD, RetinaNet, and YOLOV3 methods. Table 3 shows
the detection results of different detectors at different concentrations of fog images. As can
be seen from the table, the object detection accuracy using IDOD-YOLOV7 algorithm is
better than the above detection algorithms in a low-light fog environment.

Table 3. The mAP comparison on the different object detection methods at three fog concentrations.

Training Set Test Set Fast R-CNN Faster R-CNN SSD YOLOV3 YOLOV7 IDOD-YOLOV7

Heavy Heavy 0.5137 0.5316 0.5734 0.5048 0.5387 0.6036
Medium Medium 0.5843 0.6217 0.6647 0.5916 0.6867 0.6917

Light Light 0.6472 0.6618 0.6918 0.6264 0.7114 0.7304

To verify the effect of the defogging module (SAIP) on the later object detection algorithm,
comparison experiments of AOD-NET + YOLOV7, DCP + YOLOV7, MSCNN + YOLOV7,
and Dehazenet + YOLOV7 for foggy object detection were conducted. Figure 7 shows the
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detection effect plots for different combinations mentioned above. From the figure, it can
be seen that the accuracy and the leakage rate of fog concentration detection using IDOD-
YOLOV7 algorithm are significantly better than other algorithms in moderate and heavy
fog. The first three rows of Table 4 compare the mean accuracy (mAP) of the above methods
on the three different test sets. As can be seen from the table, the detector performance in
fog object detection is greatly improved by using this defogging + detection mode. Among
them, MSCNN + YOOV7 improves the detection efficiency of fog concentration by 8%,
and both AOD-NET + YOLOV7 and Dehazenet + YOLOV7 improve, but perform slightly
worse compared to MSCNN + YOOV7. The joint optimization model proposed in this
paper outperforms the above combined algorithms in terms of average accuracy for all
haze conditions (light, medium, or heavy).
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Table 4. The mAP comparison on the different “dehazing + detection” methods at three fog concen-
trations and multiple haze level. (Y: YOLOV7).

Training
Set Test Set AOD-

NET + Y DCP + Y MSCNN + Y Dehazenet + Y Ours

Heavy Heavy 0.5436 0.5612 0.5834 0.5448 0.6036
Medium Medium 0.6983 0.6911 0.6847 0.6816 0.6917

Light Light 0.7077 0.7051 0.7118 0.7164 0.7304

Multiple
Haze
Level

Heavy - - - - 0.6514
Medium - - - - 0.6826

Light - - - - 0.7143
Multiple

Haze
Level

0.6786

In this paper, a mixed training set with different concentrations is randomly generated
in the SONY dataset. The last three rows of Table 4 show the results of retraining the tuned
IDOD-YOLOV7 on this training set. Although the results of the mixed dataset training
are slightly inferior to the average detection accuracy specifically applied to specific fog
concentrations, they perform well in terms of average accuracy for all fog conditions (light,
medium, or heavy).

The method proposed in this paper has certain superiority in low-light fog traffic
environments. Since it is difficult to obtain fog and non-fog images of the same scene, the
current advanced fog detection algorithms use conventional datasets (synthetic datasets)
for model training, so there is a serious domain transfer problem and their detection
performance is far inferior to the method proposed in this paper in real low-light fog
traffic environments.

4.4. Ablation Study

In this subsection, ablation experiments are performed using different settings in order
to verify the effectiveness of the image enhancement module (image denoising + image
filtering) proposed in this paper for late object detection. The IDOD-YOLOV7 method is
compared with the benchmark YOLOV7, Enhancement + YOLOV7, and Defog + YOLOV7
on the same three test datasets. Table 5 shows the mAP of the test datasets using the three
fog concentrations. Detection performance is improved using Enhancement + YOLOV7
and Defog + YOLOV7 over YOLOV7 alone in a low-light foggy environment. Figure 8
shows the comparison of object detection visualization results in a dense fog scene. Com-
pared with the generated image enhancement model (enhancement + YOLOV7) and the
generated image defogging model (Defog + YOLOV 7), the IDOD-YOLOV algorithm not
only effectively improves the visibility of the low-light fog images, but also improves the ac-
curacy of object detection and reduces the rate of missed detection. The detection accuracy
(mAP) is improved by 24% compared to enhancement + YOLOV7 in heavy fog situations
and by 26% compared to Defog + YOLOV7. The ablation study verifies that joint learning
image defogging and image enhancement is effective for object detection algorithms.

Table 5. Ablation analysis on the low-light foggy in Image Dehazing Model (mAP).

Training Set Model Enhancement Defog Detection Heavy Medium Light

Multiple
Haze Level

YOLOV7 4 0.5187 0.6467 0.6514
Enhancement
+ YOLOV7 4 4 0.5217 0.6671 0.6872

Defog +
YOLOV7 4 4 0.5143 0.6481 0.6816

IDOD-
YOLOV7 4 4 4 0.6514 0.6826 0.7143
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Figure 8. Ablation study object detection results of YOLOV7, Defog + YOLOV7, Enhancement +
YOLOV7, and our IDOD-YOLOV7 on low-light foggy traffic images. The proposed method has better
detection performance with fewer missed and wrong detections.

4.5. Model Efficiency Analysis

The proposed method in this paper outperforms other detection methods in terms of
object detection accuracy, but in order to effectively improve the detection accuracy, image
enhancement and image defogging are required for low-illumination fog images, so the
computational load is greater than that of a single object detection algorithm. The time
complexity, space complexity, and detection speed of the detection method in this paper
compared with other methods are shown in Table 6. The time complexity, i.e., the number
of operations of the model, is evaluated using Floating-point Operations (FLOPs) for the
time complexity of a CNN model. The time complexity of a single convolutional layer is
represented by Equation (22):

Time ∼ O(M2 · K2 · Cin · Cout) (22)

where M denotes the edge length of the output feature map for each convolution kernel,
K the edge length for each convolution kernel, and Cin the number of channels for each
convolution kernel, and Cout denotes the number of convolution kernels that the convolu-
tion layer has, i.e., the number of output channels. Among them, the output feature map
size itself is determined by four parameters: input matrix size X, convolution kernel size K,
Padding, and Stride, which are expressed as follows.

M = (X− K + 2× Padding )/ Stride + 1 (23)
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Table 6. Complexity analysis of different object detection algorithms.

Fast
R-CNN

Faster
R-CNN SSD YOLOV3 YOLOV7 IDOD-

YOLOV7

FLOPs 13G 28G 71G 102G 89.7G 93.6G
#Param 7.4M 12.9M 0.6647M 62M 36.9M 46.5M

FPS 0.5 7 21 54 65 71

The overall time complexity of the convolutional neural network is expressed as follows:

Time ∼ O

(
D

∑
l=1

M2
l · K

2
l · Cl−1 · Cl

)
(24)

where D denotes the network depth, l denotes the lth convolutional layer of the neural
network, and the number of output channels of the lth convolutional layer of the Cl neural
network Cout.

The spatial complexity consists of two parts: the total number of parameters and
the output feature map of each layer. The number of parameters is the total number of
weight parameters for all layers of the model with parameters (i.e., the model volume, the
first summation expression below); the feature map is the size of the output feature map
calculated for each layer of the model during the real-time run (the second summation
expression below).

Space ∼ O

(
D

∑
l=1

K2
l · Cl−1 · Cl +

D

∑
l=1

M2 · Cl

)
(25)

where K denotes the size of the convolution kernel, C denotes the number of channels, and
D denotes the number of layers.

The time complexity determines the training/prediction time of the model and the
spatial complexity determines the number of parameters of the model. From Table 6, it
can be seen that the IDOD-YOLOV7 network architecture in this paper increases the time
complexity and spatial complexity of the model due to the introduction of SAIP and AOD
modules, which increases by 4% and 26%, respectively, compared to the baseline YOLOV7,
but the detection speed increases by 10.7%.

5. Discussion and Conclusions

In this paper, we propose an object detection algorithm IDOD-YOLOV7 for low-light
foggy traffic environments by joint learning of image defogging and image enhancement.
The IDOD-YOLOV7 algorithm is compared with various advanced dehaze and object de-
tection algorithms. The image defogging module (AOD) and image enhancement module
(SAIP) are evaluated using objective evaluation metrics (PSNR, SSIM) and subjective evalua-
tion methods on real low-light traffic image datasets. The experimental results demonstrate
the superiority, robustness, and effectiveness of the defogging + enhancement method for
image defogging in low-light fog traffic environments. Object detection and recognition
in low-light foggy traffic images are improved by the joint optimization learning method,
outperforming advanced detection algorithms and non-joint methods. However, for low-
light foggy environments, object detection techniques are highly correlated with fog depth
and concentration estimation. The performance of the IDOD-YOLOV7 object detection
algorithm can be further improved by introducing depth and fog concentration estimation.
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