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Abstract: This paper proposes a generic algorithm for industries with degrading and/or failing
equipment with significant consequences. Based on the specifications and the real-time status of
the production line, the algorithm provides decision support to machinery operators and manufac-
turers about the appropriate lifetime extension strategies to apply, the optimal time-frame for the
implementation of each and the relevant machine components. The relevant recommendations of the
algorithm are selected by comparing smartly chosen alternatives after simulation-based life cycle
evaluation of Key Performance Indicators (KPIs), considering the short-term and long-term impact of
decisions on these economic and environmental KPIs. This algorithm requires various inputs, some
of which may be calculated by third-party algorithms, so it may be viewed as the ultimate algorithm
of an overall Decision Support Framework (DSF). Thus, it is called “DSF Core”. The algorithm was
applied successfully to three heterogeneous industrial pilots. The results indicate that compared to
the lightest possible corrective strategy application policy, following the optimal preventive strategy
application policy proposed by this algorithm can reduce the KPI penalties due to stops (i.e., failures
and strategies) and production inefficiency by 30–40%.

Keywords: optimization; decision making; industrial equipment; manufacturing; circular economy;
life extension strategy; cost modelling

1. Introduction

The European remanufacturing industry is estimated to have a total turnover of EUR
29.8 billion with 190,000 employees. Provided adequate support from public authorities,
remanufacturing could reach up to EUR 90 billion and an associated employment of
600,000 by 2030 [1]. According to [2], the Europe Maintenance, Repair and Overhaul (MRO)
distribution market size was estimated at USD 202.88 billion in 2021 and is expected to
grow at a compound annual growth rate (CAGR) of 2.8% from 2022 to 2030. In addition,
the manufacturing of machinery and equipment is one of the most competitive and largest
manufacturing segments in Europe. Furthermore, based on [1], remanufacturing and
refurbishment can contribute significantly to the well-being in Europe, as they are important
lifetime extension strategies of resource-efficient manufacturing. By keeping components
and their embodied material in use longer, significant environmental benefits can emerge.
Less energy and fewer material resources are used, and less waste is created when products
and components are used again instead of only recycling the materials. Opportunities
for highly skilled jobs and economic growth would also arise; according to a recent study
conducted by the European Remanufacturing Network Project, remanufacturing in Europe
was assessed to reach about EUR 30 billion in 2015 and has been expected to triple up to
about EUR 100 billion in Europe until 2030, employing over 500,000 people.

An electromechanical machine near its end of life (EoL) can no longer perform its
required functions under the stated conditions, thus EoL decisions should be made well
in advance in order to minimize the impact on production capacity [3]. One cost-effective
decision is to extend the life of the machine via refurbishment or remanufacturing. However,
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so far there was no standard solution or even an established decision-making strategy for
the refurbishing of manufacturing assets [4]. This raises the need for a Decision Support
Framework (DSF) for a timely and accurate machine health forecast. There are three main
challenges that need to be addressed during the decision-making process concerning the
refurbishment of a machine. First, is the machine worth refurbishing? Second, what is
the best time to perform refurbishment at the least cost? Finally, how should the machine
be refurbished?

This paper deals with an algorithm responsible for providing recommendations to
industrial end users (machinery operators and manufacturers) about the optimal lifetime
extension strategy application policy for the analysed industrial equipment of the produc-
tion line. This policy includes the selection of the strategies, the time of application of
each and the relevant machine components. The application of this algorithm requires
heterogeneous raw (sensorial or manually defined) or processed input data (past stops and
downtime, degradation levels, failure probabilities, production efficiency, failure metrics,
cost elements, etc.). Since many of these data may have been processed by third-party
algorithms, this algorithm, which gathers all these inputs to provide integrated decision
support, will be called “DSF Core” for simplicity. The DSF Core requires first training a
DSF Core model based on (mainly manually defined) specifications of the production line
to learn the optimal policy. Then, this model can be used (run) in order to simulate the
status of the production line at every timestamp of a future time interval in terms of Key
Performance Indicators (KPIs), numbers and time intervals of stops (failures and strategies)
and production time percentage of each machine component under the optimal policy. It
can also run real-time only to recommend strategies that should be used immediately. In
both run scenarios, an initial (present) condition of the production line should be assumed.
The actual condition may be inferred by information provided by the raw sensorial data
and the data processed by third-party algorithms.

In particular, this algorithm may receive the following kinds of inputs. Unavailable
processed inputs from third-party algorithms should be manually defined, be assigned
some default values or be simulated using random generators.

• The direct sensorial input needed is the historical and real-time information about
analysed stops (failures, strategies), i.e., start-end time, related machine component
and reason for each instance. Usually, the aforementioned stop information cannot
be recorded directly thanks to sensorial data, may be only manually registered,
may have not been performed at all or performed incompletely or inaccurately. In
these cases, the stop intervals should be identified based on the behaviour of other
sensorial time series (e.g., based on zero or absent values), whereas failure diagnosis
algorithms should infer the related component and stop reason, especially in the
case of failures accompanied by some anomaly. Failure diagnosis may be performed,
e.g., using failure mode and effects analysis [5] or probabilistic graphical models [6]
[such as Bayesian methods [7] in general or the time-dependent dynamic Bayesian
networks [8]].

• From predictive maintenance algorithms, such as those described in [9,10], the DSF
Core needs the real-time failure probabilities for each failure type for a particular
forecasting horizon, computed based on sensorial data.

• From degradation models, the DSF Core may receive the parameters of the Weibull
distributions characterizing the lifetime of machine components with respect to
various failure types. In relation to this, it may also receive real-time equivalent
age and load information, which assess the respective degradation levels and
degradation speeds, in accordance with the generic references [11,12]. There are also
references about the reliability of specific common machine components considered
in this work, such as bearing [13] and sample-detector [14].
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• Thanks to extensive cost information, directly provided as input or computed based
on [15] or by the DSF Core itself, the algorithm is able to perform short-term as
well as long-term (using Monte Carlo simulation) assessment of the economic KPI,
considering costs and profit both during production and during voluntary (strategies)
and involuntary stops (failures).

The DSF Core, as well as third-party algorithms which may provide potential useful
input to it from each of the above kinds, have been developed within the context of the
RECLAIM project (see Funding section). The algorithm was successfully applied to three
pilot industries involved in this project: GORENJE (white goods manufacturer, the white
enamelling line of which is studied in this paper), HWH (producer of control systems in
the welding sector) and ZORLUTEKS (cotton textile manufacturer). A couple of indicative
useful DSF Core models from each pilot will be discussed in this paper.

Particularly, the remainder of the paper is organized as follows. The rest of Section 1
presents the related work found in the bibliography and the contribution of this work,
Section 2 describes the generic methodology of the algorithm, and Section 3 deals with
the implementation of the algorithm per pilot for various machinery components. More
especially, Section 3 includes the input and results related to the trained DSF Core models,
as well as execution examples of these models with simulation of the production line life
cycle under the optimal strategy application policy and the relevant impact on KPIs. The
results are also discussed in the same section. The deliverable is concluded in Section 4.

The lifetime extension (circular economy) and conventional (linear economy) strategies
applied during the machinery life cycle which are considered by the DSF Core were defined
in [16], andwere also instantiated per pilot during workshops. References [3,17–20] include
figures that mention such machinery as product and show the flow among states of the
machinery during its life cycle based on the applied strategies.

1.1. Related Work on Decision Support and Optimization Plans

Table 1 summarizes the bibliographic findings about the candidate decisions proposed
by decision support frameworks in manufacturing, the KPIs evaluating decision support
optimization criteria, the methods used and the required input data to the optimization
algorithm. A particularly systematic classification of KPIs appears in [21,22], based on
which the KPIs of this work were coarsely classified as economic and environmental, as
explained later in detail. In the former work, the KPIs are first scaled in the range 0–100 and
then weighted based on factors defined by stakeholders, and it is asserted that they should
also be determined with the help of historical data when possible. Unlike other available
methodologies, the latter paper considers all the interests of the stakeholders involved in
the product life cycle, who also define the KPI weighting factors based on their objectives,
which generally vary and may even be conflicting.
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Table 1. Relation among data, KPIs, decisions and methods based on bibliography about decision
support and optimization plans in manufacturing.

Input Data Optimization
Criteria Decisions Methods Reference(s)

-

economic (costs,
profit, net present
value. . . ), environ-
mental (greenhouse
gas, energy, life-cycle-
assessment-based,
water, waste,. . . ),
other (service level,
social)

decisions for green
supply chains
about production–
distribution planning,
inventory manage-
ment

multi-criteria decision
methodology (MCDM)
[analytic hierarchy
process (AHP), ana-
lytic network process,
decision-making trial
and evaluation labora-
tory, elimination and
choice expressing real-
ity, preference ranking
organization method
for enrichment of eval-
uations, technique for
order of preference by
similarity to ideal so-
lution, utility additive,
ε-constraint, goal pro-
gramming, weighting
method] (+interpretive
structural modelling)

[23,24]

product performance, historical
product design, customer de-
mands, assembly requirements,
environment impacts,. . .

- intelligent product
and service design

data mining, artificial in-
telligence, big data anal-
ysis (deep learning on di-
verse input)

[25]

{historical faults, product quality}
→ {failure forecasting, products life-
time}

-
intelligent production
(predictive mainte-
nance planning,. . . )

material delivery, energy (maybe
predicted by process variables)

energy efficiency (of
shop-floor material
handling)

intelligent production
(material route),. . .

product operation status → equip-
ment performance, product qual-
ity monitoring, historical faults, cus-
tomer evaluation

-

intelligent mainte-
nance and service
(customer service,
product support,
maintenance)

product life cycle history ({product
design index, maintenance history,
operation status,. . . } → {remaining
lifetime, degradation status}, envi-
ronmental factors,. . . )

environmental

intelligent recovery
(reuse, remanufactur-
ing, repair, recycling,
disposal,. . . )

linking equipment and process data
to inspection and metrology data

product quality and
yield -

logistics data
shop-floor logis-
tics (productivity,
delivery time)

-
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Table 1. Cont.

Input Data Optimization
Criteria Decisions Methods Reference(s)

- environmental,. . . design

• ISO 20140 (2013)→
classification, envi-
ronmental effect

• ISO 10303e1 (1994)
→ product geome-
try, material choice

[17]

• proportion of each item ob-
tained after disassembly of
1 unit of its parent

• fixed setup cost for disassem-
bly of each parent item in each
period

• unit holding cost for each item
in each period

• demand of each leaf item in
each period

costs (setup, penalty,
overload, lost sales,
inventory holding)

disassembly lot-
sizing (scheduling)

• disassembly
quantity of each
parent item in
each period

• if each parent
item will be
disassembled in
each period

• inventory level
of each item at
the end of each
period

various [26]

• unit production cost for
(re)manufacturing in each
period

• fixed setup cost for
(re)manufacturing in each
period

• unit holding cost for service-
able products/returns in each
period

• demand for serviceable prod-
ucts in each period

• quantity of returns in each pe-
riod

production, setup,
holding costs
associated to
(re)manufacturing

from product to raw
material recycling

• production
quantity for
(re)manufacturing
in each period

• if
(re)manufacturing
will occur in
each period

• inventory
level of ser-
viceable prod-
ucts/returns in
each period

• production coefficient of each
co-product

• unit production cost of each co-
product in each period

• fixed setup cost in each period
• unit holding cost for each co-

product in each period
• demand of each co-product in

each period

setup, production, in-
ventory costs

by-products vs. co-
products

• production
quantity in each
period

• if production
will occur in
each period

• inventory level
of each co-
product in each
period
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Table 1. Cont.

Input Data Optimization
Criteria Decisions Methods Reference(s)

• unit production cost/emission
in each period

• fixed setup cost/emission in
each period

• unit holding cost/emission in
each period

• demand for products in each
period

• global emission capacity

costs

greenhouse gas emis-
sions and energy con-
sumption

• production
quantity in each
period

• if production
will occur in
each period

• inventory level
in each period

failure probability threshold (deter-
mining replacement decision)

replacement/ mainte-
nance cost replacement

gas turbine measure-
ments → failure prob-
ability (supervised
classification with fuzzy
unordered rule induction
algorithm)

[27]

- environmental, eco-
nomic, social

material alternatives
in manufacturing

multi-criteria decision
analysis (MCDA) [21]

data from a local control drive re-
manufacturing company

technological, eco-
nomic, resource
utilization, environ-
mental metrics

- (only a continu-
ous remanufacturabil-
ity score is the output)

fuzzy inference system [28]

• disassembly cost (dependent
on disassembly labor, labor
rate, tooling and material costs,
overheads)

• net recoverable value (NRV)
(dependent on component
value, and processing, collec-
tion and disassembly costs)

• EoL impact (EOLI) (weighted
sum of component-
specific impacts)

environmental
(EOLI, CO2-SO2
emissions, energy),
economic [NRV,
logistic–disassembly
cost, product cost
(incineration, re-
cycling, landfill)],
societal (number
of employees and
their exposure to
hazardous materials)

remanufacturing,
reconditioning,
refurbishment, can-
nibalization, repair,
recycling

mathematical optimiza-
tion, MCDM (selected in
the respective paper), em-
pirical methods

[29]

-

working status, qual-
ity, disassemblability,
cleanability, repair–
replacement ability,
spare parts avail-
ability, market for
recovered 2nd-hand
products, green de-
sign and hazardous
waste

reuse/resell, product
upgrade (repair, re-
manufacturing, refur-
bishment), materials
recovery (cannibaliza-
tion, recycling), dis-
posal

fuzzy logic [30]



Sensors 2023, 23, 1332 7 of 58

Table 1. Cont.

Input Data Optimization
Criteria Decisions Methods Reference(s)

item useful life time [31,32], technol-
ogy/design cycle [33–35], wear-out
life [33,35], standard or interchange-
able item [36,37], number of compo-
nents [33], product architecture and
level of integration [33,34], disassem-
bly effort [38–40], materials separa-
bility [34], investment costs [41,42],
recovery process cost [43], new item
value [34,44], used item value [34],
lost sale in primary market [34,45],
EoL product location [46], collection
cost [34,41,42], demand volume [41],
cost of legal compliance [47], regu-
lations on recycled quota [48], en-
ergy yield [49], material yield [50],
liquid and solid waste impact [50],
air emissions [49,50], hazardous ma-
terial contents [51], reason for dis-
card, purpose of ownership, con-
sumer opinion toward used prod-
uct [43], damages/benefit to human
health [52,53], society involvement
in recovery programs [54], green
party pressure [55], fuel cell cost data
[for end and bipolar plates, mem-
brane electrolyte assembly (MEA)
[gas diffusion layer (GDL), anode
and cathode catalyst, membrane],
gaskets, current collectors, electrical
jumpers, bolts], disassembly time (to
unplug electrical jumpers, unscrew
end plate bolts, and remove end and
bipolar plates, current collector, gas-
ket, MEA assembly, GDLs, cathode
and anode catalysts and membrane)

engineering (product,
process), business
(market, supply–
demand, legal-
political), environ-
mental (resources,
pollution), societal
(targeted segment,
overall society)

• level 1: reuse, re-
cycling, inciner-
ation

• level 2: de-
gree of
reuse/recycling/
incineration

exhaustive enumeration,
mathematical optimiza-
tion, multi-criteria (se-
lected with AHP in the
respective paper), cluster-
ing, empirical

[22]

• Easy-LCA → emissions to
air/water/soil: CO2, SOx,
NOx, biochemical oxygen de-
mand, {bill of materials, en-
ergy}→ global warming poten-
tial [Eco-indicator 99 inapplica-
ble to Asia]

• QFDNavi/LCPlanner→ QFD
data [quantitative quality char-
acteristics of the target prod-
uct (product weight,. . . ), com-
ponents composing the prod-
uct, and their importance] →
cost importance analysis

cost, environmental,
quality

upgrade/maintenance,
product/component
reuse, material
recycling, disposal

quality function deploy-
ment (QFD) (transforms
qualitative user demands
into quantitative parame-
ters,. . . )

[18]
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Table 1. Cont.

Input Data Optimization
Criteria Decisions Methods Reference(s)

• recovery fraction (percentage
of environmental impact
corresponding to weight of
reusable components at j-th
recovery cycle)

• useful life (extended by recov-
ery processes)

environmental effec-
tiveness of recovery
cycles (intensity of re-
source use in terms of
extension of the prod-
uct’s useful life)

design alternative

• comparison among
few alternatives

• unitary indicators
based on Eco-
indicator 95 method
(Goedkoop 1995)

[56]

• if each unit/distribution
hub/retailer is open per period

• capacities of each sup-
plier/unit/distribution
hub/retailer

• stake per raw material per part,
stake per part per product

• demand per product per cus-
tomer per period per scenario

• opening cost for
each unit/distribution
hub/retailer (fixed)

• unit cost of purchas-
ing/processing/assembling/
sorting and pack-
ing/dismantling/disposal/ re-
processing (uniform)/shipping
(/km)

• percentages of collected de-
mand per retailer per customer
per scenario

• percentages of disassembled
amounts disposed/resent
to units

total supply chain
cost

quantities shipped
among supplier, pro-
cessing/assembling/
reprocessing/sorting
and disman-
tling/disposal units,
distribution hubs,
retailers, customers

mixed integer linear pro-
gramming (selected in
respective paper), fuzzy
logic, branch and bound,
spanning tree and prufer
number, stochastic pro-
gramming, goal program-
ming

[57]

expected (based on Markov chain)
frequency of accepting products for
remanufacturing/rejecting disposed
products/disposing products due
to storage capacity limits/customer
order completion delays/storing
recoverable products/discarding
products during remanufacturing,
expected revenue from remanufac-
turing a returned product [quality
follows normal, exponential or beta
(in respective paper) distribution],
salvage cost, cost of recoverable
products inventory establishment,
cost of customer order completion
delay, holding cost of returned prod-
ucts, cost of discarding recoverable
product during remanufacturing
(fixed unit costs)

profit

optimal minimum
quality to accept
into remanufac-
turing facility and
quantity of parts
to purchase from
external suppliers,
recoverable products
inventory capacity

mixed integer non-
linear programming
(MINLP), queueing
model, continuous time
Markov chain, quasi-
birth–death process,
matrix-geometric method

[58]
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Table 1. Cont.

Input Data Optimization
Criteria Decisions Methods Reference(s)

• operational cost (remanufactur-
ing, product disassembly, part
refurbishing, inventory hold-
ing, product and part invento-
ries)

• purchasing and under-
stocking cost (returns ac-
quisition and inspection,
purchasing from external sup-
pliers, total under-stocking)

• set up and idle cost (set-up cost
of remanufacturing, disassem-
bly, refurbishing sites as well
as their idle costs)

• revenue (by selling remanufac-
tured products into the sec-
ondary market)

(fixed unit costs – beta-distributed
quality)

total profit of facility

optimal minimum
quality to reman-
ufacture, sales,
quantity of pur-
chased/disassembled/
remanufac-
tured/refurbished/
disposed prod-
ucts/parts, inventory
levels, binary vari-
ables for setup
of remanufactur-
ing/disassembly/
refurbishing

MINLP → quadratic
mixed integer program-
ming

[59]

quality of product (or subassembly,
or component) → revenue (health
state of product, its parts and sub-
parts considered as random vari-
ables)
• remaining usage potential

(RUP) of a subassembly or
component

• revenue generated by a sub-
assembly or component (func-
tion of RUP)

• cost of disassembly task (fixed)
• processing time of task (fixed,

should have been considered
as variable)

• cost per disassembly time unit
(fixed)

disassembly profit
(revenue by re-
covered parts –
disassembly costs)

disassembly alterna-
tives (level) in reman-
ufacturing

quality modeled using
RUP [considered as
normal distribution
truncated in [0,1]]

[60]

• production cost (sum of pur-
chasing, manufacturing and as-
sembly costs)

• CO2 emissions per pur-
chased/manufactured/assembled
unit

• customer demand, due date,
supplier/manufacturer capac-
ity, lot-size release and ma-
chine yield → lead time (pur-
chasing new+recycled)

(fixed parameters – uncertainty
faced by FMOLP)

costs, CO2 emissions,
lead time

lot size (units) per
component pur-
chased/released
per manufactur-
ing/assembling
machine

fuzzy multi-objective lin-
ear programming model
(FMOLP)

[61]

1.2. Related Work on Cost Analysis and Cost Modelling Tools

Since the economic KPI is the most important one, a cost modelling and financial
analysis methodology should definitely be embedded into a decision support framework
for sustainable refurbishment and remanufacturing of used industrial equipment. The DSF
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Core relies on [15] to estimate the costs during stops and calculates on its own the cost and
profit during production. Based on the above, using a Monte Carlo simulation including
discrete event simulation, it is able to further estimate economic KPI. Table 2 summarizes
the information in indicative bibliographic references about the types of estimated costs, the
methods used and the required input data. Most of these references are related to additive
manufacturing. A more extensive bibliographic study on cost modelling and analysis is
included in [15].

Table 2. Relation among data, cost types and methods based on bibliography about cost analysis and
cost modelling tools.

Input Data Cost Types Methods Reference(s)

• three-dimensional model and related infor-
mation (materials, tolerances, surface fin-
ish,. . . )

• geometry, manufacturing process, materi-
als, other non-geometric information

manufacturing

predictive analytics modelling,
least absolute shrinkage and se-
lection operator and elastic net
modelling 1, process-oriented
feature extraction

[62]

raw material price, initial investment
labor, part material, en-
ergy, support material,
overheads

fixed values of parameters [63]

few primary user parameters, optional secondary
user parameters to increase estimation accuracy

machine, material, labor,
post-processing

break-down (build time esti-
mated by considering activities
undergone by machine for prepa-
ration of a layer and multiplying
it by total number of layers)

[64]

module dimensions and format, factory assump-
tions and cost inputs, production equipment as-
sumptions, materials

manufacturing (sum of tool
and facility, spare parts,
footprint, electricity, mate-
rial cost-usage)

Monte Carlo analysis to estimate
cost distribution [65]

product type, design method, machining condi-
tion parameters (tool diameter/tip, cutting/free
movement feed rate, cut depth, step over)

machining, printing (pro-
cess), material, labor, post-
processing

calculating parameters affecting
air manifold production price
(cost types) (machining simula-
tions performed with “Power
mill 2018 software”)

[66]

vendor’s/buyer’s holding cost, cost of replacing
imperfect goods, cumulative distribution func-
tion, mean/variance of lead time, buyer’s order-
ing cost, backorder cost, coefficient of variance
per time period, batch size, initial probability
of shifting out-of-control from in-control state,
vendor’s initial setup cost, demand scaling pa-
rameter, scaling/shape parameters related to ad-
vertising demand function, annual fractional cost
of capital investment, variation constant of prod-
uct tool/die cost, machine running cost, scaling
parameters related to PQI/SCR, reorder point
for buyer, expected backorder quantity/on-hand
inventory, mean lead time demand

vendor [holding, setup,
variable production, de-
fective, process quality
improvement (PQI), setup
cost reduction (SCR),
advertisement]

exact computations also consid-
ering assumptions based on bib-
liography

[67]

1 These two are regularization and are dimensionality reduction techniques for linear regression.

The above studies consider cost only during specific stages of products life cycle.
However, insightful decision making requires cost evaluation during the whole life cycle.
The review in [68] examines life cycle cost (LCC) studies, along with the complementary
life cycle assessment (LCA), which corresponds to the environmental factors, and the
integration between the two. According to that review, there is no general standard for
the application of LCC; there is just ISO 15686-5 for buildings and built assets. Although
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summing up costs per functional unit is a common practice, the detailed cost elements
depend on the objectives of each study. LCA, along with its integration with LCC, is
discussed in the next heading.

1.3. Related Work on Life Cycle Assessment and Integration with Life Cycle Cost

As mentioned above, LCA is the evaluation of environmental KPIs throughout a
product’s life cycle. Thus, this subsection complements the previous one, which examined
the economic KPI.

LCA is performed at three system boundary levels with corresponding considered
impacts as mentioned below [69]:

• Cradle-to-gate: raw material extraction and material production until the exit of the
product from the factory;

• Cradle-to-grave: raw material extraction, material production, exit of the final product
from the factory, as well as the use, demolition and waste phases;

• Cradle-to-cradle: raw material extraction, material production, exit of the final prod-
uct from the factory, as well as the phases of use, demolition, waste, recycling and
extensive reuse of the waste.

Our work evaluates the economic and environmental KPIs from the viewpoint of the
user of the industrial machinery throughout a representative period of production with
intermediate failures and lifetime extension strategies regarding this machinery.

The particular challenge posed by the environmental factors is the diversity of their
measurement units. According to [70], environmental factors generally concern resource
consumption and greenhouse gas emissions. A finer classification of the environmental
factors follows below:

• air (global warming potential, ozone layer depletion potential,. . . );
• Water (water depletion, eutrophication potential,. . . );
• Energy (cumulative energy demand, fossil fuel depletion,. . . );
• Soil (land occupation, acidification potential,. . . );
• Human (human toxicity potential from chemicals and pollutants released,. . . );
• Other (minerals depletion, solid waste,. . . ).

As admitted in this reference, although there are standards for the application of LCA,
they are too general, giving much freedom regarding the definition of scopes, boundaries
and functional units.

Examples of methods for integrating the environmental factors within a common
environmental indicator are mentioned in [69,70] are CML 2001, CML 2002, EDIP97–
EDIP2003, Tool for Reduction and Assessment of Chemicals and Other Environmental
Impacts, ReCiPe, Eco-indicator 99, Environmental Priority Strategies 2000, Impact 2002+
(applied, e.g., in the industry-related paper [71]), LIME, LUCAS, Swiss Ecoscarcity and the
Methodology Study for Ecodesign of Energy-using Products. However, the comparison
of the environmental factors with the economic KPI is another issue. For this reason, a
good practice is the monetization of environmental impacts [68], which was adopted in our
paper. Another alternative is the use of fuzzy logic and the Likert scale [68,72] to qualify the
heterogeneous factors in a common scale for comparison. However, such an approach has
the drawback that the qualitative evaluation is subjective, and the evaluation accuracy is
partly lost due to discretization. What is more, in our paper, the upper limits of the original
individual KPIs are highly dependent on the lifetime extension strategy application policy,
which would make the mapping to the Likert scale even more questionable and subjective.
Finally, there are some hybrid approaches combining LCA with exergetic analysis with the
use of the second law of thermodynamics, but they also suffer from the lack of appropriate
indicators and a well-established set of calculations, as well as the lack of complete and
updated data to overcome the uncertainty [73].

According to [69], many input data are needed to apply LCA. In the RECLAIM
project, most sensorial data became available recently, and a systematic LCA has not been



Sensors 2023, 23, 1332 12 of 58

performed within the context of the DSF Core, but it will be conducted by another tool
afterwards. Instead, the DSF Core at this stage relies on static specifications, assump-
tions and simulations to evaluate the environmental impacts within a sufficiently large
future interval.

As is easily observable from the literature review conducted on LCA, the detailed
environmental elements which are worth considering are use-case-specific. The aforemen-
tioned work in [70] examines textile production, so it is comparable and quite in line with
the evaluation of environmental KPIs in our paper for the ZORLUTEKS pilot. However,
related work on LCA for white goods manufacturing (GORENJE pilot) and friction weld-
ing (HWH pilot) was not found. There is just related work on welding [74]. In our work,
each pilot selected for itself the most important environmental elements and the desired
improvements in them to be achieved during the RECLAIM project. These were classified
for the DSF Core based on [21] and according to their measurement units. LCA has also
been applied to other industrial use cases, such as mass timber [75] and silicon photovoltaic
modules [76] production, as well as in other settings.

1.4. Contributions of This Work beyond the State of the Art

The mathematical formulation of the optimization problem to be solved by the DSF
Core algorithm in RECLAIM was inspired mainly by the MCDA approach of [21], which
was also taken into account by the authors in their previous work on demand-side manage-
ment [77] and is suitable for integrating economic and environmental KPIs [68]. However,
this method in those papers is not combined with life cycle evaluation of KPIs, which
enables decision support considering the strategy application policy impact on their values
both during the application of strategies and in the long run. In general, as mentioned
in the review of [25], big data analysis for smart decision making for the whole life cycle
of a production line considering multiple objectives is rarely performed, so the current
work may support progress in this research direction. In contrast to the other relevant
methods found in the literature [23], which balance heterogeneous KPIs subjectively, this
work introduces a method for automatic objective balancing of KPIs measured in different
units by converting all environmental units to economic units. In addition, this paper
demonstrates that, thanks to life cycle evaluation of KPIs and Monte Carlo simulation,
decision support may be provided not only for the present, but for any timestamp of the
simulation interval by estimating when each strategy will be favorable in the future under
a specific optimal application policy. Since the evaluation of the objective function in this
work is time-consuming and the value of the function depends on its arguments only
within a subset of its domain, a typical optimization method, such as MINLP [58,59], is
inappropriate and intractable. Thus, a technique for smarter selection and updating of the
decision variables is introduced, so that the function is optimized with the fewest possible
evaluations. The DSF Core supports health-based recovery planning at the component,
machine and production line level while considering economic and environmental effects.
Instead, other studies, such as [57], disregard the environmental factors and only consider
the economic KPI or vice versa [56]. The DSF Core aims at helping the machinery operators
and manufacturers make efficient EoL decisions at different service and life periods. More
especially, it considers failure probabilities estimated based on both real-time sensorial
data and the degradation level of components, as well as detailed cost modelling and
financial analysis computations. In all cases, it considers dependencies among different
machine components in terms of failures and operational efficiency in contrast to related
references considering a single component, such as [27]. Furthermore, the quantitative
optimization method used in this paper seems to be more suitable for the problem solved
than qualitative approaches [18,28,30,61], since the latter involve some information loss
due to uncertainty.

The cost modelling and analysis method of this paper also goes beyond the state of
the art because apart from the static specifications it also supports the consideration of the
(near-)real-time condition of the production line, expressed by stops and the degradation
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level of components. Furthermore, as mentioned, the Monte Carlo simulation method
developed in this work enables a relatively accurate cost estimation for every timestamp of
a future time interval as well, and by extension a life cycle estimation of the economic KPI.
This also applies to the other KPIs when considered. The other KPIs are generally simpler
and more straightforward to compute, both during stops and during production, as shown
later. Previous similar studies generally do not consider life cycle cost dependent on the
health status of the production line, only some constant costs during production [63,64,66]
or during lifetime extension strategies, such as manufacturing [62,65].

Finally, it needs to be clarified that some of the above papers are not fully com-
parable with the current one because they solve a somehow different problem. More
especially, [23,24,58,59,67] make decisions based on supply and demand rather than the
health of the equipment, whereas other references [17,60] consider a single phase of the life
cycle, namely design and disassembly.

2. Materials and Methods

The optimization of the DSF Core algorithm surrounding strategies recommended
for machines and machine components of a production line, as explained in Section 1, is
based on a mathematical programming problem of minimizing a non-linear scalar objective
function. This function quantifies a mean (average) total KPI over a sufficiently large
simulation interval. At every timestamp of this interval, obtained using a constant sampling
rate, the total KPI is the weighted sum of independent individual KPIs with different
measurement units. In the following, the mean individual KPIs and the mean total KPI
will be scaled so that they correspond to average yearly values. Coarsely, based on [21,70]
and the RECLAIM pilot goals, the individual KPIs in this project may be categorized
as economic (including several cost elements all measured in Euros) and environmental
(including the sub-categories about resource use and emissions). As described later in detail,
every individual KPI at a particular timestamp is computed based on the condition of the
production line at that moment, considering whether production is active or not, potential
stops (failures or strategies) occurring and the production inefficiency due to degradation of
machine components. Failures are simulated using discrete event simulation, considering
short-term failure probabilities based on degradation of the respective components or other
reasons. The failure probabilities within the simulation interval are randomly generated
from particular probability distributions, and, usually, consecutive failure probability values
for the same failure type are correlated. The evolution of the production line condition (and
thus the KPIs) is estimated iteratively.

Every machine is assumed to consist of at least one component, particularly, at most
one static component and potential movable components in the sense that a movable
component can be changed without replacing the rest of the machine, whereas the change
of the static component signifies the change of the machine. For the static component,
refurbishment is the only candidate circular economy strategy that will be discussed in this
paper. The definition of refurbishment is mentioned in [16] as follows: “Refurbishment
means restoring an old product and bringing it up to date. In general, refurbished products
are upgraded and brought back to specified quality standards or satisfactory working
and/or cosmetic conditions and have to fulfill extensive testing. Occasionally, refurbishing
is combined with technology upgrading by replacing outdated modules and parts with
technologically superior ones”. For a movable component, replacement should always be
a candidate strategy, whereas maintenance is also a possible lighter strategy, with one or
more alternatives. In the following, wherever it is mentioned that the machine fails or is
refurbished, it will be implied that this happens to the static component. Refurbishment
of the static component can be combined with strategies to the movable components in
multiple ways. More concretely, a strategy in a component generally does not imply the
(in)ability to simultaneously apply a strategy in other component(s), with the following
exceptions, stemming from the definition of refurbishment:
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• During refurbishment of a static component, maintenance of movable components of
the same machine is impossible. In this case, the movable components may either be
replaced or remain as they are. For some movable components, replacement may be
compulsory in this case.

• The reverse is true. During maintenance of a movable component, refurbishment of
the same machine is impossible.

The optimization consists of two main phases:

1. Pre-optimization for corrective strategies σ: Assuming initially that a strategy is al-
ways applied to a component and only as soon as possible after the component has
failed, this phase finds the optimal strategy for each component after its failure. The
initial solution considers the lightest compulsory corrective strategy for each failure
type. The lightest compulsory corrective strategy to be applied after a failure is de-
fined by the user, as explained later. For every failure type, the possible corrective
strategies are the possible preventive ones which are not lighter than the above.

2. Main optimization for decision variables θ related to:

• Short-interval average modified KPI threshold per component and strategy applicable to it:
The strategy is recommended and applied when the average total modified KPI
(based on a modification described later) exceeds the threshold. If the threshold
is exceeded for multiple strategies for the same component simultaneously, the
heaviest one is selected. (If this happens for multiple maintenance alternatives
simultaneously, the one defined first by the user is selected.) If strategies and
failure fixations may take place only during working hours or the present time is
non-working time, the strategy is assigned the status “urgent” and is applied as
soon as possible. Otherwise, it is assigned the status “non-urgent” and is also
applied as soon as possible, but only during non-working hours in order not
to interrupt the production, which would cause indirect economic loss, since
fewer parts would be produced due to the additional downtime. Exceptionally, if
refurbishment for the static component has been chosen, any proposed strategy
for movable components is assigned the same urgency status as refurbishment.

• Failure probability threshold per component and failure type: The lightest strategy
applicable to the component is recommended and applied when the probability
of any failure in this component exceeds the threshold. If strategies and failure
fixations may take place only during working hours or the present time is non-
working time, the strategy is considered “urgent”. Otherwise, it is considered
“urgent” (instead of “non-urgent”) if and only if the failure probability until the
next non-working timestamp is much higher than the failure probability at the
next timestamp, also considering the impact of the strategy on the downtime of
components and the time distance until the next non-working timestamp, based
on the formula

Plong ≥ 10∆pnPshort, (1)

according to the following notation:

– Pshort: probability for failure of the component in question to happen at the
next timestamp, according to the considered (constant) sampling step;

– Plong: probability for failure of the component in question to happen at the
next non-working timestamp;

– n: number of time steps until the next non-working timestamp;
– ∆p: difference in percentage of non-working machine components if the

strategy is applied and not.

For a particular component and failure type combination, due to high time
complexity, the relevant computations take place only at the first consecutive
working timestamp for which the computation of urgency makes sense. For the
other timestamps among the above, the same urgency is defined. In addition,
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when the status “non-urgent” is assigned to the recommended strategy at the
last working timestamp of a working interval, the strategy is recommended with
status “urgent” at the next timestamp (i.e., the first of the next non-working
interval). This happens even if the respective failure probability threshold with
respect to the load during non-working hours at that timestamp is also exceeded.
Exceptionally, if refurbishment of the static component has been chosen, any
simultaneously proposed strategy for movable components is assigned the same
urgency status as refurbishment.

• Corrective strategies “actuators” per component and failure type: Binary variables
determining if the optimal corrective strategy for the component as found during
the pre-optimization phase will indeed be applied as soon as possible (with
status “urgent”) after the component fails.

The objective function quantifying the mean yearly total KPI is defined as

g(σ,θ) =
number of yearly timestamps

L

L

∑
i=1

C

∑
c=1

∑
k∈K

wkKk
c (i,σ,θ), (2)

with the following notation:

• Kk
c (i,σ,θ): instant individual KPI of type k of component c at the i-th timestamp of

the simulation interval under corrective strategies σ and decision variables θ;
• wk: weighting coefficient of respective KPI Kk

c (i,σ,θ).

Complex assumptions about the behavior of the KPIs under various circumstances
(e.g., regarding their dependence on the degradation level of machine components) need
to be taken into account, as will be explained further below. Thus, the objective function
of this optimization is difficult to define as an analytic function, which would enable its
optimization with the help of its derivatives with respect to its continuous input variables.
Moreover, the computation of an exact solution using dynamic programming has too high
a time complexity. Furthermore, since some stop periods have relatively short duration
and some stops rarely occur, to reliably estimate individual KPIs, a long simulation time
interval with many timestamps is needed, which would require many operations for
iterative calculations. In this work, we perform a Monte Carlo simulation including discrete
event simulation to evaluate and optimize g first with respect to σ (pre-optimization)
and then with respect to θ (main optimization), thus finding the optimal corrective and
preventive policy for applying lifetime extension strategies. To decrease computational
complexity as much as possible, a specific greedy optimization algorithm was introduced,
thanks to which the number of objective function evaluations is much lowith respect toan if
a common non-linear optimization method was applied. The optimization of g with respect
to σ and θ, shown in Algorithm 1 and Algorithm 2, respectively, will be called “training”.

The inputs of Algorithm 1 follow below. Those with an asterisk are directly defined by
the user, and thus they are discussed in detail in Section 2.1. The rest are computed by or
included in the DSF Core itself.

• Number of strategy types;
• *Failure types;
• *Lightest compulsory corrective strategies;
• Objective function g evaluated based on simulation;
• *Stop types corresponding to decision variables to be excluded from the optimization

(these are not considered in Algorithm 1);
• Function sorting strategy types based on their effect (for comparisons with the lightest

compulsory strategies to determine which strategies are applicable after each failure).

The outputs of Algorithm 1 are the optimal σ and corresponding g value.
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Algorithm 1 Algorithm for pre-optimization for corrective strategies σ

1: compute g without applying strategies in preventive way, for σ corresponding to
applying the lightest compulsory corrective strategy corresponding to every failure

2: epoch← 0
3: while no termination criterion applies (epoch number/no improvement within 1 epoch)

do
4: for every combination of component and failure type do
5: for every corrective strategy applicable to the component after such failure do
6: compute g if not computed with same arguments yet
7: if the value of g is better than the optimal found so far then
8: update optimal σ and optimal g value
9: end if

10: end for
11: end for
12: epoch← epoch + 1
13: end while

Strategies are never recommended in a preventive way when the KPI and failure
probability thresholds are high enough so they are never exceeded. Therefore, high values
are initially chosen. For probabilities, values equal to 1.1 are set. For KPIs, a single
maximum KPI value of 104 is considered in this paper. In addition, initially, all corrective
strategies “actuators” are active, i.e.,strategies are always applied after relevant failure
instances. This is important because if the optimization starts from a really bad solution
some component will never undergo any strategy.

The maximum number of optimization epochs will always be set to 10 but will never
be reached, as discussed later.

The main inputs of Algorithm 2 follow below. Those with an asterisk are directly
defined by the user; thus, they are discussed in detail in Section 2.1. The rest are computed
by or included in the DSF Core itself.

• *Strategy types;
• *Failure types;
• *Lightest compulsory corrective strategies;
• Objective function g evaluated based on simulation;
• *Stop types corresponding to decision variables to be excluded from the optimization

(these are not considered in Algorithm 2);
• Function finding every time the next θ for which g is to be evaluated;

The main outputs of Algorithm 2 are the optimal θ and corresponding g value.
The use of percentiles also plays an important role in the reduction of function evalua-

tions because the KPI and failure probability thresholds are updated in such a way that
the numbers of instances from some stop types are significantly affected, also considering
that the objective function is independent of the decision variables in some regions. The
percentiles are updated every time a new solution is found because the distribution of KPIs
and failure probabilities have been affected by the updated policy.
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Algorithm 2 Algorithm for main optimization for decision variables θ

1: initialize σ as the optimal one found during pre-optimization
2: for every KPI time series (each corresponding to a component—strategy type combina-

tion) and failure probability time series (each corresponding to a component—failure
type combination) do

3: compute the 100(1 − nr)% percentiles of its instant values observed during
the computation of g for the optimal pre-optimization solution, with resolution
r [n ∈ N, 1− nr ∈ [0, 1]]

4: end for
5: while no termination criterion (maximum epochs reached or g not improved within 1

epoch) applies do
6: for every decision variable do
7: if the decision variable corresponds to KPI threshold or failure probability

threshold then
8: compute g for the closest lower and higher values for this threshold corre-

sponding to respective percentiles if not computed with same arguments yet
9: else(decision variable corresponds to corrective strategy “actuator”)

10: compute g for the other value of this binary “actuator” if not computed with
same arguments yet

11: if the value of g is better than the optimal found so far then
12: update optimal θ and optimal g value
13: update KPI and probability percentiles based on new optimal solution,

keeping also the initial thresholds as candidate values
14: end if
15: end if
16: end for
17: epoch← epoch + 1
18: end while

2.1. Input Parameters to the DSF Core Training

Machines of the production line studied by the DSF Core model, components of each machine, as
well as potential stop (strategy and failure) types corresponding to each component: Only the names
of machines and components considered by the DSF Core model in question should be de-
fined. If other machines and components are considered by other DSF Core models (which
should be considered in the case of many independent or similar machines/components,
to reduce computation time, since time complexity is quadratic with respect to the number
of stop types, and to avoid multiple trainings for similar components), just their number
needs to be mentioned. In this paper, it is assumed that when a component stops, this
causes the stop of production of the whole production line. However, the other compo-
nents do not fail, i.e., they are not damaged. When the originally stopped component is
restored, the others are also assumed as operational. Furthermore, no strategy is applicable
to a failed component until it is fixed, even if the strategy is proposed by the DSF Core.
Production is quantified per component and may stop due to the aforementioned reasons.
Finally, it needs to be noted that no multiple failures may occur simultaneously in the same
component. Even when mentioned that a failure of one type immediately causes a failure
of another type (as discussed later), the latter starts at the next timestamp after the end of
the former.

Components to be always replaced along with refurbishment: These should be defined for
every machine for which refurbishment has been selected as a candidate strategy. Selected
components must always be replaced along with refurbishment, but they may also be
replaced at other times.
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Stop types corresponding to decision variables to be excluded from the optimization; It makes
sense to exclude failures which never happen (i.e., never cause downtime) but lead to
degradation-based inefficiency during production, as expressed with some KPI(s). It also
makes sense to exclude strategies that should be applied due to failure or high failure
probability, but not due to KPI-expressed inefficiency.

Lightest compulsory corrective strategies: For every failure type, the lightest compulsory
corrective strategy to make the component work again should be defined. It is possible
not to select any strategy for some failure type. In this case, it is assumed that there is also
the option just to fix the failure without improving the respective equivalent age (which
quantifies the degradation level of the component with respect to this failure type, as
discussed below). Maintenance alternatives belonging to the same high-level strategy type
are assumed as sorted previously by the user in ascending order of effect.

Failure type dependencies: Based on prior pilot knowledge, the dependent failure types
are considered by the DSF Core. In this paper, a failure type f2 is dependent on another
failure type f1 if a failure of type f2 occurs immediately after a failure of type f1.

Sampling step: The selected value is usually close to the minimum stop duration, as
defined later, to ensure both sufficient time granularity and tractable time and mem-
ory complexities.

Working hours (from which the gross profit rate is computed): These are assumed as
dependent on the day of week.

Indication if strategies and failure fixations may take place only during working hours: Yes/no.
Simulation interval length: The selected value is close to 30 times the maximum Mean

Equivalent Time To Failure (METTF), discussed later, to ensure both that enough instances
from each stop type occur within the simulation interval and that the time and memory
complexities are not too high.

Remaining equivalent age after strategy compared to before (percentage): Each simulation
for training starts assuming that the production line is new. As the time passes, the
components are gradually aging with respect to their various failure types. Depending
on the component and the failure type, aging speed generally (which will be called “load”
to follow the degradation modelling terminology) depends on whether the component is
working, and it is also generally affected by the way in which it is working, as described
by available process variables. The ages of components with respect to their failure types
consider these factors, so they are called “equivalent ages”. The equivalent age of a
component with respect to a particular failure type partly affects the occurrence probability
of a failure of this type, based on Weibull distributions, as explained later. The percentage
of equivalent age that a component has with respect to each of its failure types after a
strategy compared to before is assumed as dependent on the component, the strategy type
and the failure type.

Load specifications: The load specifications follow below:

• Range: The range is per component and failure type during periods with and without
production. The load starts from a random number within the range and evolves
according to the maximum absolute first-order difference within 1 day defined below.

• Maximum absolute first-order difference within 1 day: This is a single value divided by the
average number of timestamps per day to compute the maximum absolute change
between two consecutive timestamps, based on the considered sampling step.

• Multiplier during production due to high failure probability until the next timestamp: This
is a per ordered pair of possibly equal failure types, where the first corresponds to
the multiplier and the second to the failure probability. The probability is considered
as high (resulting in the multiplication of load by the multiplier) when it exceeds the
corresponding degradation-based probability of failure until the next timestamp at
90% of the respective METTF (discussed later).

KPI types considered: The economic KPI is mandatory because it is the only one related
to benefit, and it is measured in some currency unit.

Measurement units of KPIs: A measurement unit should be defined per KPI type.



Sensors 2023, 23, 1332 19 of 58

KPI weighting coefficients: The environmental KPIs are monetized based on unit prices
of environmental elements, but the user may define any other possible weights.

Ideal average yearly values of KPIs: “Ideal” means that the equipment always works as
efficiently as when it was new, and all failures always have probability of 0, so there is no
need for strategies. The yearly values within a certain year are computed by summing up
the instant values within this year. All KPIs are assumed to have a neutral value of 0, while
the respective components are not producing. The ideal average yearly values of KPIs are
assumed to depend only on the KPI type k. The values to be defined should correspond
to the whole production line, including potential machine components absent from the
current DSF Core model but considered by other DSF Core models.

KPIs evolution and dependencies:
During production, the component individual KPI Kk

c (i,σ,θ), present in the objective
function, is defined as the mean of failure-type-specific KPI sub-values Kk

c, f (i,σ,θ) for all
failure types f of the component c. During production, each such sub-value is assumed to
equal an equivalent-age-based exponential inefficiency penalty for the respective KPI type
k, component c and failure type f , i.e.,

Kk
c, f (i,σ,θ) = vk + b

sc, f (i,σ,θ)

k,c − 1. (3)

In the above formula, sc, f (i,σ,θ) stands for the equivalent age of component c with respect
to failure type f at time i given policies σ and θ. In addition, vk is the ideal value of KPI
k divided by the average yearly working timestamps (i.e., within the potential working
hours of the production line, whether or not there are any irregular stops among the
aforementioned) and the number of machine components (with ∑k∈K wkvk < 0, since
the production of the production line is profitable only for negative g) and bk,c > 1.
Because it is not straightforward to define bk,c directly, the user defines the inefficiency
(bs∗c

k,c − 1) · 1day
l , where s∗c (equivalent age of component c corresponding to the inefficiency)

is either manually defined by the user or automatically selected as 90% of METTF of
component c. The METTF of a component is defined as the harmonic mean of METTF
values of its failure types, with respect to either the time-to-failure distributions based on
equivalent age or the failure probability distributions due to process-data-related reasons
(see later).

Then, the auxiliary KPIs K̂k
c, f (i,σ,θ), aiming at distributing the KPI sub-values

Kk
c, f (i,σ,θ) among the failure types of the respective component, are computed as

K̂k
c, f (i,σ,θ) =

Kk
c, f (i,σ,θ)

|Fc|
, (4)

where Fc is the set of possible failure types of component c.
If a failure f starts at time i in component c, its direct impact on each KPI as defined by

the user (see later) is added to both Kk
c, f (i,σ,θ) and K̂k

c, f (i,σ,θ). If a strategy s starts at time
i in component c, its user-defined direct impact on each KPI as defined by the user is added
initially to Kk

c, f (i,σ,θ). [The fact that it is not added to K̂k
c, f (i,σ,θ) is compensated later,

as will be explained right after.] Apart from the above, at the other timestamps without
production from component c, it is

Kk
c (i,σ,θ) = Kk

c, f (i,σ,θ) = K̂k
c, f (i,σ,θ) = 0∀k ∈ K, f ∈ Fc. (5)

Let K̃c,s(i,σ,θ) be the instant total modified KPIs for every component c and strategy
s, based on which the average values compared to the respective thresholds are computed
according to the short interval lengths of 1D, 7D and 30D for maintenance, replacement
and refurbishment, respectively. If strategy s does not start at time i in component c, these
are defined as
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K̃c,s(i,σ,θ) = ∑
f∈Fc

(1− qc,h(s), f ) ∑
k∈K

wkK̂k
c, f (i,σ,θ), (6)

where qc,h(s), f is the remaining equivalent age percentage with respect to failure of type f
after the application of a strategy belonging to the high-level group h(s), including s to c.
The rationale for considering the factors 1− qc,h(s), f is that the more a strategy reduces in
percentage the equivalent age of a component with respect to some of its failure types, the
higher the importance of reducing inefficiency, as quantified by the K̂k

c, f (i,σ,θ) values for
every k. This way, the inefficiency is mapped from the failures to the strategies, and there is
no need to consider combinations of strategies and failure types in the thresholds, which
would significantly increase the number of decision variables.

If strategy s starts at time i in component c, the above value is increased by the
weighted sum of direct impacts of the strategy on the KPIs, which had previously been
added only to Kk

c, f (i,σ,θ) and not to any K̂k
c, f (i,σ,θ), for every k.

If strategy s ends in component c at time i, the values of K̃c,s∗(i,σ,θ) for every equiv-
alent or lighter strategy s∗ and every j ≤ i are not considered afterwards in the average
values compared to the respective thresholds, based on the assumption that strategy s
addressed successfully, and better than s∗ could do, any problem observed before through
the above KPIs.

As mentioned above, some machine components may not be considered by the DSF
Core model in question but may be considered by other DSF Core models. Then, the
downtime impact of stops of considered components on out-of-model ones is taken into ac-
count by uniformly charging the potential KPI differences in the out-of-model components
(comparing with the ideal values) due to stops of considered ones to the respective KPIs of
all considered components at the same timestamps.

Stop duration Weibull distribution parameters: The duration of each stop type is assumed
to follow the 2-parameter Weibull distribution with user-defined scale η and shape β
parameters dependent on the stop type. These can be selected based on the coefficient of
variation (CV) and mean (MSD) of stop duration, since theoretically they depend on each
other based on the following well-known 1-1 functions:

CV =

√
Γ(1 + 2/β)− Γ2(1 + 1/β)

Γ(1 + 1/β)
, (7)

MSD = ηΓ(1 + 1/β), (8)

where Γ denotes the gamma function. The parameter values may rely on prior domain
expertise or analysis of historical data. Given that duration S = s has already passed, the
probability distribution of the remaining duration U is computed as follows, considering
that V := S + U follows the Weibull distribution with scale η and shape β:

P(U > u|S = s) = P(V > s + u|V > s) =
P(V > s + u)

P(V > s)
=

e−(
s+u

η )β

e−(
s
η )

β
= e(

s
η )

β−( s+u
η )β

, (9)

where in every case P denotes the probability of the event in the brackets, and u ≥ 0. For
the purpose of simulation, the probability P(U < l|S = s) (i.e., for the next time step,
which has length l) is computed. Usually, the sampling step is selected as comparable
to (rather than negligible with respect to) the minimum MSD to balance time granularity
and computational (or also memory) complexity. Thus, to avoid bias in the estimated
downtime, when U < l given that S = s based on the above probability and the random
number generator, it is assumed that

U =
l
2

, (10)

and the relevant effects on KPIs apply accordingly, based on the above.



Sensors 2023, 23, 1332 21 of 58

Equivalent Time To Failure (ETTF) distribution parameters based on equivalent age: As
mentioned above, the equivalent age of a component partly determines the probability
of future failures in this component. Like stop duration, ETTF follows the 2-parameter
Weibull distribution for the purpose of simulation, but it applies only to failures and also
considers load depending on the usage of the equipment during working hours apart
from the working hours themselves for the measurement of time passed (hence the term
“equivalent time”). Mathematically, equivalent time teq passed within a regular time interval
[0, t] is defined, as mentioned in [11,12], as

teq =
∫ t

0
a(τ) dτ, (11)

where a denotes load, expressed as a function of the timestamp τ. Within short intervals,
load can be assumed as nearly constant, so equivalent time may be approximated as

teq = at. (12)

This approximation is taken into account in the computation of the failure probability of
each component within the next time step for each of its failure types given the component’s
equivalent age similar to the remaining stop duration case. In cases of dependent failure
types, according to the failure type dependencies discussed above, after a strategy happens,
the Weibull parameters along with the equivalent age remain the same as those that would
apply without considering the stop correlation.

Mean Time To Failure (MTTF) values for process-data-related component failures and fre-
quency of their probabilities’ change during production: Apart from equivalent aging, compo-
nent failures may also occur for other reasons, which may be captured by anomaly detection
and predictive maintenance algorithms. For the purpose of simulation during training,
depending on the failure type, the failure probability within the next time step is considered
as a random variable from the Beta probability distribution β(α, β) (so that it ranges from 0
to 1), with probability density function Γ(α+β)

Γ(α)Γ(β)
xα−1(1− x)β−1, x ∈ (0, 1). For a particular

failure type of a component, this probability is not updated at every timestamp; it is always
updated right after the end of a strategy applied to the same component, otherwise it is
updated with a probability based on a user-defined frequency. The failure probabilities
are considered only for working components, since it is assumed that a component may
fail due to a process-data-related reason only while working (even if aged equivalently
with respect to some failure types during periods without production by this component).
The Beta distribution parameters are related with the MTTF, as well as the mean (MP) and
coefficient of variation of the random variable (in this case, failure probability) (CVP) based
on the well-known formulas

MP =
1

MTTF
=

α

α + β
, (13)

CVP =

√
β

α(α + β + 1)
, (14)

where MTTF is measured in number of time steps based on the considered sampling step.
The Beta distribution parameters may be defined as a function of MP and CVP by solving
the above system:

α =
1−MP(1 + CV2

P)

CV2
P

=
1−MP

CV2
P
−MP, (15)

β = α

(
1

MP
− 1
)

. (16)

In the following, it will always be realistically assumed that α = 0.1.
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Cost input: This stop-related input must be either defined manually or computed
by a third-party algorithm. The detailed methodology of estimating the various cost
elements during stops is described in [15]. The cost elements required by the DSF Core are
the following:

• One-off strategy costs: These costs are defined per machine, component and strategy
combination. When multiple strategies start simultaneously to be applied to compo-
nents of a particular machine, only the maximum one-off strategy cost of the started
strategies instead of the sum of all of them is paid and is added to the net costs
described later.

• Net costs: The stop-type-dependent costs per component are paid during the stop
interval. (The DSF Core assumes that they are paid at the beginning of the interval.)
They do not include indirect costs, such as cost due to downtime and long-term
economic impact, which are taken into account separately.

Direct impacts of stops on other KPIs: These are defined by the user and behave like the
net costs.

KPI and failure probability percentiles resolution: This is defined as r as it appears in
Algorithm 2.

2.2. Scenarios of Running a Trained DSF Core Model

The following two run scenarios have been envisioned:

• Real-time recommendations scenario: The trained model runs (near-) real-time (automat-
ically, and periodically, based on the sampling step considered for training) for the
next timestamp (based on the sampling step). When a strategy is needed, relevant
recommendation is shown. This requires the following real-time input:

– Stops (production line failures, strategies);
– Predictions from other DSF algorithms (failure probabilities, degradation levels);
– Process data related to the KPIs (unless already used directly by other DSF

algorithms instead).

• Simulation scenario: The trained model runs (manually) for a future time interval, thus
simulating (under the trained optimal strategy selection policy and considering the
current status of the production line) the following:

– When–what failures will happen;
– When–what strategies will be recommended;
– Future independent KPIs;
– Future production time percentage.

2.3. DSF Core Internal Architecture (Information Flow)

The architecture of the DSF Core corresponding to the overall methodology discussed
above is outlined in Figure 1. It consists of the following elements:

• Database: data repository where sensorial data and outputs of algorithms may be
stored for future use by the same or other algorithms within the DSF;

• User Interface: helps the end user interact with the DSF Core by inserting inputs and
visualizing outputs;

• Processed arguments calculator: computes additional training input arguments based on
those defined by the user or on output of third-party algorithms;

• Pre-optimizer: optimizes the corrective strategies based on Algorithm 1;
• Main optimizer: optimizes the preventive strategy application policy based on

Algorithm 2;
• Simulator: simulates the evolution of the production line condition to evaluate the

objective function;
• Model repository: working directory where files including the input, processed and

trained parameters related to the trained DSF Core models are stored so that the
models can run in the future;
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• Run function: runs trained DSF Core models based on the aforementioned run scenarios.

Figure 1. DSF Core architecture. The numbers indicate the sequence of information flows.

3. Results and Discussion

This section includes the training results from the application of the DSF Core to
the three aforementioned pilots, as well as examples of running the respective trained
models based on the simulation scenario assuming a new production line in the beginning.
For GORENJE and HWH, an indicative DSF Core model is discussed in this paper. For
ZORLUTEKS, two representative models are discussed in detail, whereas high-level results
for the other trained models for this pilot are also presented in the end.

3.1. Application to GORENJE

The spraying cabin is the only machine from the white enameling line of this pilot
which is studied by the DSF Core because it involves the most important failures in terms
of average yearly impact. The following 48 important components have been selected
for analysis:

• 12 power supply units;
• 12 pumps;
• 12 hoses;
• 12 spraying guns.

The components from the different types are in 1-1 correspondence, i.e., there are
12 power supply unit–pump–hose–spraying gun quartets, working in parallel for production.

Due to the high number of components, as well as the assumed independence among
components of different quartets in terms of stops, it was decided to train the DSF Core
algorithm for only one representative quartet, so that the trained model is used for all
of them. Due to the independence of model execution for different quartets, the stop
duration corresponding to each quartet is unavoidably charged separately, even in cases
when strategies are applied simultaneously to multiple quartets.

3.1.1. Training Input for GORENJE

Machines of the production line studied by the DSF Core model, components of each machine,
as well as potential strategies and failure types corresponding to each component: According
to the above, the model includes one power supply unit, one pump, one hose and one
spraying gun. A single failure type has been considered for each such movable component.
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Maintenance and replacement are the candidate strategies for each component, except for
the hose, which may only be replaced.

Components to be always replaced along with refurbishment: None.
Stop types corresponding to decision variables to be excluded from the optimization: These

are the power supply unit and pump strategies, because they are not part of preventive
strategies. (The failures of these components are not excluded in order for the DSF Core to
select between corrective maintenance and replacement.)

Lightest compulsory corrective strategies:

• Power supply unit/pump: maintenance;
• Hose/spraying gun: none.

Failure type dependencies: Failures of different types are assumed as independent.
Sampling step: 15 min.
Working hours (from which the gross profit rate is computed): Working time lasts 8 h per

business day (where the working hours have been considered as 9:00–17:00 from Monday to
Friday), i.e., 40 h/week, i.e., 2087 h/year (23.81% of total time). Every working hour (woh),
380 parts are produced on average. (This rate corresponds to parts with a width of 50 cm,
which is almost always the case. In the following, it will be assumed that all parts have this
width). Thus, the ideal production rate is 793,114 parts/year. Under normal conditions,
every part is good within the first two processing attempts with 99.6% probability. If it is
bad, with the remaining 0.4% probability, it is discarded as scrap. From this percentage
and under the assumption that normally each of the two processing attempts has equal
probability to produce a good part, it is concluded that this probability is

√
0.4% = 6.3%.

Then, 0.996/(1 + 0.063) = 1 − 0.063 = 93.7% of the produced parts (356 parts/woh) yield
profit. The indicative selling price is EUR 7.5/part. Therefore, the estimated ideal gross
profit rate is EUR 2669.750/woh = 5,572,150 EUR/year. This is uniformly distributed
among all working timestamps based on the relevant sampling step.

Indication if strategies and failure fixations may take place only during working hours: Pre-
ventive strategies may also take place during non-working time by workers who are in
charge during that time; this does not lead to extra labor cost.

Simulation interval length: 200 years.
Remaining equivalent age after strategy compared to before (percentage):

• Any component—replacement: 0%;
• Pump—maintenance: 10%;
• Spraying gun—maintenance: 5%;
• Power supply unit—maintenance: 20%.

Load specifications: The load specifications follow below:

• Range: Load is assumed to equal one during production andzero during intervals
without production for any analyzed failure type.

• Maximum absolute first-order difference within 1 day: Load is sectionally constant;
• Multiplier during production due to high failure probability until the next timestamp: One in

all cases (no effect assumed);

KPI types considered: Economic, scrap.
Measurement units of KPIs:

• Economic: Euros;
• Scrap: discarded parts.

KPI weighting coefficients: Based on the rate EUR/part during production, the following
weighting coefficients of the KPIs are proposed:

• Economic: one;
• Scrap: 7.5.

Ideal average yearly values of KPIs:
The production costs of non-degraded equipment follow below:

• Energy: 0.03 kW·2087 woh/year·0.202 EUR/kWh = 12.65 EUR/year = 0.00606 EUR/woh;
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• Gas: 0.6 m3/part·793,114 parts/year·1.01 EUR/m3 = 480,627 EUR/year =
230.280 EUR/woh;

• Material: 2.35 kg/part·793,114 parts/year·1.42 EUR/kg = 2,646,621 EUR/year =
1268.06 EUR/woh

• Labor: (as computed in the “cost input” paragraph below) EUR 258,871/year =
124.03125 EUR/woh.

Thus, the production costs of non-degraded equipment are EUR 3,386,132/year =
1622.377 EUR/woh. So, since the average gross profit rate during production is EUR
5,572,150/year = 2669.750 EUR/woh, the average net profit rate would be EUR
2,186,018/year = 1047.374 EUR/woh, i.e., EUR 45,542.05/year = 21.82028 EUR/woh =
5.4551 EUR/(15 womin) for each of the 48 components, if no equipment stop (failure or
strategy) occurred (womin = working minutes). (The equipment production efficiency is
always assumed as perfect, since no impact of degradation on the KPIs during production
has been defined for this pilot.)

Regarding the scrap KPI, as mentioned above, it is known that under normal condi-
tions every part is good within the first two processing attempts with 99.6% probability. If
it is bad, with the remaining 0.4% probability, it is discarded as scrap. From this percentage,
and under the assumption that normally each of the two processing attempts has equal
probability to produce a good part, it is concluded that this probability is

√
0.4% = 6.3%.

Then, 0.004/(1 + 0.063) = 0.38% of the produced parts (1.4 parts/woh = 2984 parts/year)
are discarded.

KPIs evolution and dependencies: As mentioned above, no impact of degradation on the
KPIs during production has been defined for this pilot.

Stop duration Weibull distribution parameters:
In contrast to the other DSF Core models, the one-off cost coincides with the duration-

dependent cost, as explained later, so the gross duration of simultaneous application
of strategies has not been analysed. The gross durations of the individual strategies
follow below:

• Replacement of power supply unit: 1 woh;
• Maintenance of power supply unit: 0.3 woh;
• Replacement of pump: 0.45 woh;
• Other: 0.25 woh.

The additional time to fix failures has been defined as follows:

• Power supply unit: negligible, assumed as 0 (because both fixing the failure and
maintenance takes about 20 womin);

• Pump: 0;
• Hose: 15 womin = 0.25 woh (for shortening of the hose);
• Spraying gun: 15 womin = 0.25 woh (for disassembly and cleaning of the gun).

The above positive durations are assumed to have coefficient of variation CV = 0.1.
The Weibull distribution parameters are computed from the above as mentioned in

the methodology. Particularly, CV = 0.1 corresponds to shape β = 12.153434. The scale (η)
values for stops of positive duration prove to be as follows:

• Replacement of power supply unit: 1.0430377 woh = 0.043459903 woD (woD = work-
ing days);

• Maintenance of power supply unit: 0.31291130 woh = 0.013037971 woD;
• Replacement of pump: 0.46936696 woh = 0.019556957 woD;
• Other strategy/hose failure/spraying gun failure: 0.26075942 woh = 0.010864976 woD.

ETTF distribution parameters based on equivalent age: These are shown in Table 3.
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Table 3. ETTF distribution parameters and METTF for the spraying cabin (GORENJE), ignoring the
already occurring lifetime extension thanks to time-based inspection.

Component Scale (η) Shape (β) METTF

Power supply unit 144 D = 34.3 woD 2 128 D = 30.4 woD

Pump 4.8 years = 1.1 working years = 417
woD 2 4.3 years = 370 woD

Other 33 D = 7.9 woD 2 29 D = 7.0 woD

MTTF values for process-data-related component failures, and frequency of their probabilities’
change during production: Failure occurrences at the components of this machine due to
reasons irrelevant to degradation have not been considered.

Cost input:
The direct costs during application of strategies are split into duration-dependent

(only costs for labor time, since no machines are involved in the application of strategies
for this pilot) and duration-independent (costs to buy new components, consumables costs
and other costs to apply a strategy which do not depend on its duration). The duration-
dependent costs are proportional to the durations of strategies mentioned above. However,
usually workers do not work overtime to apply the analysed strategies and are not paid
extra for them compared to their fixed reward. The total labor rate is independent of the
production and stop time percentages and is defined as 7.5 h/(business day) · 10.5 persons
· EUR 12.6/Ph · 5(business days)/week = EUR 4961.25/week = 258,871 EUR/year =
124.03125 EUR/woh (Ph = person hour). During stops, this rate remains constant, but the
relevant cost corresponding to the strategy duration is characterized as one-off strategy
cost instead. Thus, when multiple strategies are applied simultaneously, the one-off cost
corresponding to the strategy that takes longer applies, and the whole duration-dependent
cost is considered as one-off. Therefore, the one-off costs, which coincide with the gross
duration-dependent costs, are defined as follows:

• Replacement of power supply unit: EUR 124.03125;
• Maintenance of power supply unit: EUR 37.209375;
• Replacement of pump: EUR 55.8140625;
• Other: EUR 31.0078125.

From the above, it also follows that the duration-independent costs coincide with the
total net costs.

Table 4 summarizes the direct costs during strategies.

Table 4. Direct costs (EUR) during strategies for the spraying cabin (GORENJE).

Component Strategy Gross Net

Power supply unit Maintenance 257.209375 220
Replacement 3334.03125 3210

Pump Maintenance 76.0078125 45
Replacement 840.8140625 785

Hose Replacement 146.0078125 115
Spraying gun Maintenance 181.0078125 150

Replacement 3686.0078125 3655



Sensors 2023, 23, 1332 27 of 58

Any failure, depending on its duration, is assumed to have additional cost for labor
time (which would be paid also in case of production, as happens with strategies). This
means EUR 31.0078125 for a hose and a spraying gun and 0 for the other components. The
additional advantage of preventing hose and spraying gun failures is to avoid downtime
during working intervals.

Direct impacts of stops on other KPIs: When some component fails, this is recognized
quickly, so the extra scrap rate applies for a negligible duration. Thus, the extra scrap may
be considered as negligible.

KPI and failure probability percentiles resolution: 10%.

3.1.2. Training Results for GORENJE
Optimal Solution

Corrective strategies and actuators: In this case, the initial and corrective solutions
coincide. That is, the corrective strategies after failures are the lightest compulsory ones.
However, the actuators remained active only for the compulsory maintenance of the power
supply unit and the pump after the failure of the corresponding component. A simple fix
instead of a strategy is proposed after hose and spraying gun failure.

Preventive strategies:

• Preventive replacement is proposed for the hose when its failure probability within
the next time step (15 min) exceeds 0.001510.

• Preventive maintenance is proposed for the spraying gun when its failure probability
within the next time step (15 min) exceeds 0.001557.

The original training had also proposed preventive maintenance of the power supply
unit based on its failure probability, but this was not considered because of the pilot
information that preventive maintenance of the power supply unit is impossible.

Evaluation Metrics

These are shown in Tables 5–7.

Table 5. KPIs yielded from training the model for the spraying cabin (GORENJE).

Economic (EUR/Year) Scrap (Discarded Parts/Year) Total

Ideal
Per Component −45,542 62.167 −45,076

Total −182,168 248.667 −180,303

Component Actual Extra Actual Extra Actual Extra

Initial =
corrective
solution

Hose −39,639 5903 57.086 −5.081 −39,211 5865
Power supply unit −40,965 4577 57.086 −5.081 −40,537 4539
Pump −41,799 3743 57.086 −5.081 −41,371 3705
Spraying gun −39,080 6462 57.086 −5.081 −38,652 6424

Total −161,482 20,686 228.343 −20.323 −159,770 20,533

Final
solution

Hose −41,412 4130 60.474 −1.692 −40,958 4118
Power supply unit −43,446 2096 60.474 −1.692 −42,992 2084
Pump −44,281 1261 60.474 −1.692 −43,827 1248
Spraying gun −40,735 4807 60.474 −1.692 −40,281 4795

Total −169,873 12,295 241.897 −6.770 −168,059 12,244



Sensors 2023, 23, 1332 28 of 58

Table 6. Numbers of stop instances yielded from training the model for the spraying cabin (GORENJE)
within the simulation interval (200 years). Underlined and italic contents correspond to failures and
strategies, respectively.

Component Stop Type Initial = Corrective
Solution Final Solution

Hose Failure 2464 1275
Replacement 2464 3726

Power supply unit
Failure 665 666
Maintenance 665 666
Replacement 0 0

Pump
Failure 56 56
Maintenance 56 56
Replacement 0 0

Spraying gun
Failure 2585 1436
Maintenance 2585 3726
Replacement 0 0

Table 7. Production time percentage for every component yielded from training the model for the
spraying cabin (GORENJE).

Ideal Initial = Corrective Solution Final Solution

23.8095% 23.6471% 23.7553%

3.1.3. Run Results (Simulation Scenario) for GORENJE

Figure 2 presents the time series of the total KPI per component within an interval of
8 years, and the subsequent ones (Figures 3–6) show how each KPI is decomposed into
individual KPIs. Every perpendicular line corresponds to a stop. The lower-length lines
correspond to stop instances of lower impact. When applicable, the downtime impact
of stops on the considered components of the production line which are out of this DSF
Core model is incorporated in the perpendicular lines. Apparently, during production, the
economic and the total KPI per component are negative because overall the production is
advantageous. In Figure 2, the values for some components are almost not visible. The first
reason for this is that hose replacement and spraying gun maintenance (almost) coincide
in time, as also discussed later. Secondly, the pump theoretically fails (and is maintained
in a corrective way) only every 4.3 years, based on Table 3, so it is reasonable not to see
many pump stops in the 8-year run simulation interval. (A larger simulation interval for
the run results was not chosen in this case because stops from other types are very frequent
and would hinder the visibility of figures.) Mainly, the downtime impact of stops of other
components on the pump is depicted in Figure 4, and this downtime impact coincides in
time for all components. As shown in these figures, as well as in Table 5, in this pilot, the
total KPI is almost exclusively affected by the economic one.



Sensors 2023, 23, 1332 29 of 58

Figure 2. Total KPI time series yielded from running the model for the spraying cabin (GORENJE).
The simulation interval has a length of 8 years.

Figure 3. Individual KPI time series for the power supply unit yielded from running the model for
the spraying cabin (GORENJE). The simulation interval has a length of 8 years.

Figure 4. Individual KPI time series for the pump yielded from running the model for the spraying
cabin (GORENJE). The simulation interval has a length of 8 years.
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Figure 5. Individual KPI time series for the hose yielded from running the model for the spraying
cabin (GORENJE). The simulation interval has a length of 8 years.

Figure 6. Individual KPI time series for the spraying gun yielded from running the model for the
spraying cabin (GORENJE). The simulation interval has a length of 8 years.

3.1.4. Discussion of the Training Results for GORENJE

The conclusion from training the model for this pilot is that the lightest possible pre-
ventive strategies in the hoses and the spraying guns considerably help to improve the total
KPI since they prevent numerous failures and the respective bad consequences. In addition,
it was concluded that no corrective strategy should be applied to these components, but the
temporary repair solutions should be preferred instead. A hose and a spraying gun have
the same lifetime and almost equal failure probability thresholds triggering the preventive
strategies on them, and since no corrective strategies are proposed for them, it is preferable
to perform preventive strategies for multiple such components simultaneously. In relation
to this, it should be noted that the same number of preventive strategies happened in the
hose and the spraying gun during the simulation interval under the strategy application
policy of the final solution, as shown in Table 6. What is more, regarding the components
included in the DSF Core model, preventive replacement of the hose and preventive mainte-
nance of the spraying gun (almost) coincide in time, as shown in Figure 2. Table 8 contains
the total KPIs with respect to components obtained from the above trained model and
their total in the last row of each sub-table. The scrap penalty is slightly negative (due to
downtime), as expected, because no inefficiency during production has been defined for it.
Thus, the extra total KPI values, which appear in the bottom right cell of each sub-table
and refer to the whole production line, depend almost only on the economic factor. These
values indicate that the application of the optimal strategy application policy proposed
above may reduce the yearly unnecessary total KPI penalty by 99,467 (40%) compared to
the lightest compulsory corrective strategy application policy without preventive strategies.
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However, as mentioned above, time-based inspection is already taking place at the plant,
and based on it, preventive maintenance helps to avoid most failures. In the future, the
cost of the time-based inspection policy will be evaluated, thus enabling its comparison
with the policy proposed by the DSF Core.

Table 8. Total KPIs with respect to components with summation for the whole production line,
yielded from training the model for GORENJE.

Economic (EUR/Year) Scrap (Discarded Parts/Year) Total (Yearly)

Model Actual Extra Actual Extra Actual Extra

Initial = corrective solution
Quartet (×12) −161,482 20,686 228.343 −20.323 −159,770 20,533

Total −1938 K 248,229 2740.12 −243.88 −1917 K 246,400

Final solution
Quartet (×12) −169,873 12,295 241.897 −6.770 -168,059 12,244

Total −2038 K 147,542 2902.76 −81.24 −2017 K 146,933

3.2. Application to HWH

A friction welding machine from HWH is studied by the DSF.

3.2.1. Training Input for HWH

Machines of the production line studied by the DSF Core model, components of each machine,
as well as potential strategies and failure types corresponding to each component: Table 9 shows
the components of the friction welding machine (one static and four movable), as well as
the failure and strategy types considered for each component.

Table 9. Stops per component of the friction welding machine (HWH).

Component Failures Strategies

Static single failure type refurbishment
Motor mechanical fatigue 1, lubricant maintenance 2, replacement
Spindle mechanical fatigue, lubricant maintenance, replacement
Sample-holder single failure type replacement
Sample-detector single failure type replacement

1 This is bearing mechanical fatigue for both the motor and the spindle. 2 This coincides with lubrication for both
the motor and the spindle.

Components to be always replaced along with refurbishment: The replacement of the motor
and the spindle in case of refurbishment is compulsory.

Stop types corresponding to decision variables to be excluded from the optimization: None.
Lightest compulsory corrective strategies:

• Static component—failure: refurbishment;
• Motor/spindle—lubricant: none;
• Any other failure type: replacement.

Failure type dependencies: Based on prior pilot knowledge, failures of different types
are independent, except for the cases of lubricant failure, which immediately cause also
mechanical fatigue in the same component.

Sampling step: 3 h.
Working hours (from which the gross profit rate is computed):
Working time lasts 6 h per business day (Monday-Friday 9:00–15:00), i.e., 30 h/week,

i.e., 1565 h/year (17.85% of total time). Each welding action corresponds to one produced
part. Welding time lasts 416.67 h/year (0.5 min/part, 50,000 actions/year), so welding time
is 416.67/8766 = 4.7533% of total time. Consequently, working time is split into welding
time (416.67/1565 = 26.62%) and idle time. Idle time also includes time to repair failures
and time to perform strategies, but it is not increased due to these stops, since the lost



Sensors 2023, 23, 1332 32 of 58

time is compensated with faster production later. There is no need to produce more than
50,000 parts per year, so this is not calculated, since human work is needed for production.
Therefore, the gross profit rate is EUR 500,000/year (from the production of 50,000 parts
with a selling price of EUR 10 each). Based on the above, during working time, the
average time between welding activities is 0.5·1565/416.67 = 1.878 min (0.5 min welding +
1.378 min idle). The DSF Core does not need such fine time granularity, so welding and
idle time will not be distinguished from now on.

During working time, the average gross profit rate from production is EUR 10/
(1.878 min) = 319.4 EUR/h. This verifies that the average gross profit rate is EUR 500,000/year
(EUR 10 · 50,000 welding activities).

Indication if strategies and failure fixations may take place only during working hours: The
restoration of production may also be completed during non-working intervals.

Simulation interval length: 292 years.
Remaining equivalent age after strategy compared to before (percentage):

• Static component—refurbishment—failure: 0%;
• Motor—maintenance:

– Mechanical fatigue: 100%;
– Lubricant: 0%.

• Motor—replacement:

– Mechanical fatigue: 0%;
– Lubricant: 0%.

• Spindle—maintenance:

– Mechanical fatigue: 100%;
– Lubricant: 0%.

• Spindle—replacement:

– Mechanical fatigue: 0%;
– Lubricant: 0%.

Load specifications: The load specifications follow below:

• Range: In most cases, it is assumed that normal usage corresponds to average load of
1, ranging from 0.5 to 1.5, as it depends on the way the equipment is used, expressed
by potential sensorial data relevant to load calculation throughout working (instead of
welding) time. Exceptionally, the load during working time for the static component
is assumed by the pilot to range from 0.9 to 1.1. Furthermore, for the sample-detector
failure type, load is assumed to exactly equal one during working time (and zero
otherwise) only for the purpose of economic penalty evaluation as a function of
equivalent age, because the sample-detector failures may be better forecast based on
process data anomalies rather than equivalent age. In addition, for the lubricant failure
type of the motor and the spindle, load is assumed to exactly equal one during the
whole time, including non-working intervals.

• Maximum absolute first-order difference within 1 day: 0.72.
• Multiplier during production due to high failure probability until the next timestamp: one in

all cases (no effect assumed).

KPI types considered: economic.
Measurement units of KPIs: Euros.
KPI weighting coefficients: one.
Ideal average yearly values of KPIs: The production costs of non-degraded equipment

follow below:

• Energy: EUR 520/year = 0.33 EUR/woh;
• Gas: 0.025 m3/part·50,000 parts/year· EUR 1.6/kg·1.225 kg/m3 = 2450 EUR/year =

1.565 EUR/woh;
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• Labor: 0.05 min/part·50,000 parts/year· EUR 27.4/h = 1141.67 EUR/year =
0.7293 EUR/woh;

• Pressurized air: EUR 220/year = 0.14 EUR/woh;
• Cooling water: EUR 200/year = 0.13 EUR/woh.

Thus, the production costs of non-degraded equipment are EUR 4531.67/year. There-
fore, since the average gross profit rate is EUR 500,000/year, the average net profit rate
would be EUR 495,468.33/year, i.e., EUR 63.3/woh = 189.9 EUR/(3 woh) for each of the
five components, if no equipment stop (failure or strategy) occurred, and the equipment
production efficiency was always perfect.

KPIs evolution and dependencies: The extra production costs due to degradation (sup-
posedly at 0.9 METTFc, where METTFc is the METTF of component c based on equivalent
age) are caused by extra power of 0.01 kW, i.e., 0.002 kW = 0.048 kWh/(working day) for
each of the five components. During working time, this costs 0.048 kWh/D·0.14 EUR/kWh
= 0.00672 EUR/D per component.

Stop duration Weibull distribution parameters:
The gross durations of strategy combinations are:

1. Refurbishment of static component (excluding the compulsory simultaneous replace-
ment of the motor and the spindle): TTRstatic,refurbishment + TTRfwm = 16 woh;

2. Replacement of motor: TTRmotor,replacement + TTRfwm = 8 woh;
3. Replacement of spindle: TTRmotor,replacement + TTRfwm = 8 woh;
4. Replacement of sample-holder: TTRsh,replacement + TTRfwm = 1 woh;
5. Replacement of sample-detector: TTRsd,replacement + TTRfwm = 1 woh;
6. Refurbishment of static components and replacement of all movable components:

TTRstatic,refurbishment + TTRmotor,replacement + TTRspindle,replacement + TTRsh,replacement +
TTRsd,replacement + TTRfwm = 20 woh.

TTRfwm stands for the one-off duration required during every group of simultaneous
strategies applied to the friction welding machine.

Solving the above system of six equations with six unknown variables with respect
to these variables (independent net durations and TTRfwm) yields negative values for
TTRsh,replacement and TTRsd,replacement, so this solution should be rejected. To face this issue,
TTRfwm is removed from the fourth and fifth problematic equations, which yields the
following acceptable solution:

• One-off duration: TTRfwm = 7 woh;
• Refurbishment of static component (excluding the compulsory simultaneous replace-

ment of the motor and the spindle): TTRstatic,refurbishment = 9 woh;
• Replacement of any movable component: TTRmotor,replacement = TTRspindle,replacement =

TTRsh,replacement = TTRsd,replacement = 1 woh.

Thus, it seems that the one-off duration appears if and only if at least one component
among the static ones, the motor and the spindle undergo some strategy, i.e., it does not
apply when only the sample-holder and/or the sample-detector is replaced. Therefore, the
gross duration of refurbishment, including the compulsory simultaneous replacement of
the motor and the spindle, is 18 woh.

In addition, it has been assumed that maintenance of motor and spindle has the same
duration as replacement of these components, respectively.

Based on the above, the downtime does not cause indirect cost due to lost production
profit because the lost time is compensated. Thus, no downtime is modelled. The dura-
tions were computed only to evaluate the costs of strategies on the movable components,
including the duration-dependent costs, which have been explicitly provided by the pilot
only for refurbishment.

Since the lost time is compensated, the duration of failures has not been modelled. No
duration-dependent failure costs have been analyzed.

To conclude, the duration of every stop from the downtime viewpoint has been
assumed as 0.
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ETTF distribution parameters based on equivalent age: These are shown in Table 10.

Table 10. ETTF distribution parameters and METTF for the friction welding machine (HWH).

Component Failure Type Scale (η) Shape (β) METTF

Static Failure 1179.02 woD
127.53015316411776

(so that
CV = 0.01) 1

18 years 2 =
1173.75 woD

Motor/Spindle
Mechanical
fatigue

24.9 years =
4.45 working years

= 1625.36 woD
1.5 22.50 years =

1467.29 woD

Lubricant 5 years =
1826.25 D 2 4.43 years =

1618.47 D

Sample-holder Failure
150,000 parts =

3 years =
195.63 woD

3 2.68 years =
174.69 woD

1 Such a low CV value was selected to avoid high uncertainty in evaluation, since static failures rarely happen and
imply high costs from the failures themselves and the compulsory subsequent refurbishment and motor–spindle
replacement strategies. 2 Since an 8-year extension of a 10-year old machine was expected.

MTTF values for process-data-related component failures, and frequency of their probabilities’
change during production: The relevant failure is the remaining sample-holder failure. The
MTTF related to process-data-related reasons for this failure type has been assumed as
1.5Γ(1 + 1/2) years = 1.33 years = 86.68 working days = 553.89 weh (weh = welding hours).
Apart from the cases of strategies, the probability obtained from the above distribution
changes with a new random value every 5 woDon average.

Cost input:
The direct costs during application of strategies are split into duration-dependent

(costs for machine time and labor time) and duration-independent (costs to buy new
components, consumables costs and other costs to apply a strategy which do not depend on
its duration). Since the machine time always equals the labor time in the case of this pilot,
the duration-dependent costs are proportional to the durations of strategies mentioned
above, according to the sum of the defined labor rate (EUR 27.4/h) and machine rate
(0.5 EUR/h), so EUR 27.9/h. The one-off cost, corresponding to the one-off duration,
is EUR 195.3, so this is the difference between gross and net costs. This is paid only
once for every group of strategies applied simultaneously to the machine, unless only the
sample-holder and/or sample detector are/is involved, where this cost is not paid.

Table 11 summarizes the direct costs during strategies.

Table 11. Direct costs (EUR) during strategies for the friction welding machine (HWH).

Component Strategy
Duration-

Dependent
(Gross)

Duration-
Independent

Total
(Gross) Total (Net)

Static Refurbishment not studied not studied 21,730 21,534.7
Motor Maintenance 223.2 1070 1293.2 1097.9

Replacement 223.2 3120 3343.2 3147.9
Spindle Maintenance 223.2 1060 1283.2 1087.9

Replacement 223.2 5810 6033.2 5837.9
Sample-holder Replacement 27.9 101 128.9 128.9
Sample-detector Replacement 27.9 121 148.9 148.9

Fixing of any failure without application of some strategy is assumed to have a direct
cost of EUR 2000.

Direct impacts of stops on other KPIs: No other KPIs have been considered for this model.
KPI and failure probability percentiles resolution: 5% (10% proved to be too high).
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3.2.2. Training Results for HWH
Optimal Solution

Corrective strategies and actuators: In this case, the initial and corrective solution coincide.
That is, the corrective strategies after failures are the lightest compulsory ones. However,
the actuators remained active only for the compulsory strategies after failures. A simple
fixing instead of a strategy is proposed after motor and spindle lubricant failure, which is
reasonable because mechanical fatigue always follows lubricant failure, which necessitates
replacement of the component anyway.

Preventive strategies:

• Preventive maintenance is proposed for the:

– Motor when:

* The short-interval average modified KPI for the maintenance of this compo-
nent exceeds 6.750156 · 10−14;

* Its lubricant failure probability within the next time step (3 h) exceeds
1.13 · 10−4.

– Spindle when the short-interval average modified KPI for the maintenance of this
component exceeds 5.684342 · 10−14.

• Preventive replacement is proposed for the

– Sample-holder when its failure probability within the next time step (3 h) exceeds
3.44 · 10−4;

– Sample-detector when its failure probability within the next time step (3 h) ex-
ceeds 2.38 · 10−4.

Evaluation Metrics

These are shown in Tables 12 and 13.

Table 12. KPIs (EUR/year) yielded from training the model for the friction welding machine (HWH).

Component Ideal
Initial = Corrective Solution Final Solution

Actual Extra Actual Extra

Motor −99,094 −97,301 1793 −97,695 1398
Sample-detector −99,094 −97,931 1162 −98,166 927
Sample-holder −99,094 −98,336 758 −98,870 223
Spindle −99,094 −96,314 2780 −97,317 1776
Static −99,094 −97,801 1293 −97,801 1293

Total −495,468 −487,682 7786 −489,850 5618

Table 13. Numbers of stop instances yielded from training the model for the friction welding machine
(HWH) within the simulation interval (292 years). Underlined and italic contents correspond to
failures and strategies, respectively.

Component Stop Type Initial = Corrective Solution Final Solution

Motor Lubricant 46 29
Mechanical fatigue 60 38
Maintenance 46 82
Replacement 76 54

Sample-detector Failure 158 14
Replacement 158 1631

Sample-holder Failure 104 16
Replacement 104 258

Spindle Lubricant 57 28
Mechanical fatigue 66 34
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Table 13. Cont.

Component Stop Type Initial = Corrective Solution Final Solution

Maintenance 57 82
Replacement 82 50

Static Failure 16 16
Refurbishment 16 16

Apparently, since no downtime has been modelled for this pilot, the production time
percentage for every component equals the ideal (17.8572%) in every case.

3.2.3. Run Results (Simulation Scenario) for HWH

Figure 7 presents the time series of the total KPI (which coincides with the economic
KPI, since no other KPIs have been considered for this pilot) per component within an
interval of the same length as the simulation interval during training, and the subsequent
ones (Figures 8–12) show this KPI for each component separately. Every perpendicular line
corresponds to a stop. The lower-length lines correspond to stop instances of lower impact.

Figure 7. KPI time series for every component yielded from running the model for the friction
welding machine (HWH). The simulation interval has the same length as for training (292 years).

Figure 8. KPI time series for the static component yielded from running the model for the friction
welding machine (HWH). The simulation interval has the same length as for training (292 years).
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Figure 9. KPI time series for the motor yielded from running the model for the friction welding
machine (HWH). The simulation interval has the same length as for training (292 years).

Figure 10. KPI time series for the spindle yielded from running the model for the friction welding
machine (HWH). The simulation interval has the same length as for training (292 years).

Figure 11. KPI time series for the sample-holder yielded from running the model for the friction
welding machine (HWH). The simulation interval has the same length as for training (292 years).
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Figure 12. KPI time series for the sample-detector yielded from running the model for the friction
welding machine (HWH). The simulation interval has the same length as for training (292 years).

3.2.4. Discussion of the Training Results for HWH

The conclusion from training the above model for this pilot is that the lightest possible
preventive strategies in the movable components considerably help to improve the KPI,
since they prevent numerous failures and the respective bad consequences. Based on the
simulations, the number of replacement strategies in the sample-detector under the optimal
strategy application policy is much higher than the number of replacement strategies in
the sample-holder. This happens not only because the sample-detector has about half
lifetime, but also because the sample-detector failure probabilities have been modelled
as process-data-related instead of equivalent-age-based (which is the case for the other
components), and as a result, the prevention thanks to the strategy has more short-term
effect; 5 working days on average, based on the input.

The results indicate that the application of the optimal strategy application policy
proposed above may reduce the yearly unnecessary total KPI penalty by EUR 2168/year
(27%) compared to the lightest compulsory corrective strategy application policy without
preventive strategies.

3.3. Application to ZORLUTEKS

The bleaching machine of the production line is studied in this work. The following
51 important components have been selected for analysis:

• 14 roller coatings (one for each of the 16 analysed rollers except the 2 standalone—the
other 14 coated rollers are in pairs);

• 16 double bearing-lubricant pairs (one for each roller);
• 10 inverters;
• 11 motors.

Due to the high number of components and the similarity among many of them, it
was decided to train the DSF Core algorithm separately for different components, except
for those with correlated failures and load. While strategies are applied simultaneously
to components which belong to the same DSF Core model, the corresponding duration
and the one-off strategy cost related to the waiting time to insert fabric into the machine
are considered only once. In all other cases, due to the independence of the models,
unavoidably the duration corresponding to each component and the one-off strategy cost
are charged separately.

To keep its content concise, this paper will only discuss two indicative DSF Core
models for ZORLUTEKS. The first is related with one of the seven motors with two
associated paired coated rollers each. The other models for motors with two rollers are
not presented in detail, since they only differ in the METTF of some components. The
second model for this pilot discussed in this paper is related with any of the two motors
with one associated roller each. These two rollers are the uncoated ones. The model for
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motors without associated rollers and the models for inverters are also not discussed in
detail because they are simpler, and in these cases the benefit from applying preventive
strategies is less significant.

3.3.1. Training Input for ZORLUTEKS

Machines of the production line studied by the DSF Core model, components of each machine,
as well as potential strategies and failure types corresponding to each component:

Table 14 shows the types of movable components of the bleaching machine considered
by the two DSF Core models, as well as the failure and strategy types considered for each
component. Based on the above, the first model considers five components; two roller
coatings, two double bearing-lubricant pairs (each corresponding to one roller) and one
motor connected to the two rollers. The second model considers two components; one
double bearing-lubricant pair of a uncoated roller and one associated motor.

Table 14. Stops per component of the bleaching machine (ZORLUTEKS) involved in the relevant
models discussed in this paper.

Component Failures Strategies

Roller coating single failure type maintenance (=grinding),
replacement

Double bearing-
lubricant pair

left bearing mechanical fatigue,
right bearing mechanical fatigue,

left bearing lubricant, right
bearing lubricant

maintenance (=lubricant
replacement for both bearings),

replacement

Motor complete, lubricant maintenance (lubrication and
winding alternatives), replacement

Although there are several other stop types, they have not been modelled because
they have been considered as non-controllable or of insignificant impact on the KPIs, and
according to a preliminary statistical stop correlation analysis based on [78], there was no
(reliable) conclusion about their dependence with the important failure types mentioned
above. Thus, for simulation purposes, the production time is uniformly distributed outside
intervals of important failures and application of strategies. (As discussed later, all hours
of the week are considered as working hours.)

Components to be always replaced along with refurbishment: None.
Stop types corresponding to decision variables to be excluded from the optimization: None.
Lightest compulsory corrective strategies: maintenance of the failed component (winding

for complete motor failure, and lubrication for motor lubricant failure).
Failure type dependencies: Based on prior knowledge of the domain experts, any bearing

lubricant failure immediately causes also mechanical fatigue in the bearing-lubricant pair.
There are also load-related dependencies, as explained later.

Sampling step: 30 min.
Working hours (from which the gross profit rate is computed):
Based on the cost modelling template, about 3 Mm2 of fabric are produced per month.

More accurately, based on a preliminary analysis of a production dataset from 2020 and
2021, the time and average yearly output area of fabric are distributed as shown in Table 15.

Table 15. Production metrics (2020–2021) for the bleaching machine (ZORLUTEKS).

Operation
Mean Output Fabric Area (Mm2/Year) Time Percentage (%)

Bleaching Washing Total Bleaching Washing Total

Route 27.72 0.34 28.06 54.28 0.72 55.00
Repair 3.33 1.63 4.96 7.55 4.25 11.80
Sample 0.00 0.00 0.00 0.01 0.00 0.01

Total 31.05 1.97 33.02 61.84 4.97 66.81
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The bleaching route operation is the only one considered as related to profit. Its time
percentage may be improved thanks to third quality optimization algorithms with respect
to process parameters by up to 7.55 percentage units (from 54.28% to 61.83%), i.e., the
percentage of the bleaching repair operation timestamps, which can be avoided thanks to
improvement of the initial quality of products (i.e., after the first process and before any
potential reprocess). Since, based on the above table, the average bleaching speed during
route operation is 27.72 Mm2/year, there is potential to increase the yearly production
rate of profitable bleached fabric to 31.58 Mm2/year (33.55 Mm2/year including washing),
which corresponds to gross profit rate of EUR 25.90 M/year, since the unit gross profit is
0.82 EUR/m2. No fixed non-working hours within the week exist, and the DSF Core is
generally impossible to know a priori the intervals without bleaching route operation, so,
for the simulations, it uniformly distributes the profitable production rate (considering
gross profit) as 60.04 m2/min (63.79 m2/min including washing) = 49.23 EUR/min =
2954 EUR/h. For the purpose of evaluation of the economic KPI per component, it is
assumed that each of the 51 components of the machine contributes equally to the gross
profit rate by EUR 2954/h/51 = 57.92 EUR/h.

Indication if strategies and failure fixations may take place only during working hours: non-
applicable (all hours are working hours).

Simulation interval length: 200 years.
Remaining equivalent age after strategy compared to before (percentage):

• Any component—replacement: 0% for each failure type;
• Roller coating—maintenance: 10%;
• Double bearing-lubricant pair—maintenance:

– Bearing mechanical fatigue: 100%;
– Bearing lubricant: 0%.

• Motor—maintenance (lubrication):

– Complete: 100%;
– Lubricant: 0%.

• Motor—maintenance (winding):

– Complete: 10%;
– Lubricant: 100%.

Load specifications: The load specifications follow below:

• Range: Normally, load is assumed to equal one during production and zero during
intervals without production for any mechanical fatigue of bearing and complete
motor failure. For the other failure types, load is assumed asone all the time. The only
exceptions which apply are related to the multipliers discussed below.

• Maximum absolute first-order difference within 1 day: load is sectionally constant.
• Multiplier during production due to high failure probability until the next timestamp: Ac-

cording to the orange arrows in Figure 13, load with respect to a particular failure
type (arrow end) is assumed to be multiplied by the respective number when the
probability of failure of another type (arrow start) within the next elementary time
interval (i.e., interval with length equal to the sampling step) is relatively high (i.e.,
higher than the theoretical degradation-based probability corresponding to 90% of
METTF). The red arrows indicate the aforementioned failure correlations.
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Figure 13. Failure-type dependencies and load multipliers for the bleaching machine (ZORLUTEKS).

KPI types considered: economic, energy, other environmental (water, steam, material)
Measurement units of KPIs:

• economic: EUR.
• energy: kWh.
• other environmental: kg.

Ideal average yearly values of KPIs:
The production costs of non-degraded equipment follow below:

• Water: 0.0023 m3/(m2 of fabric) · 33.55 (Mm2 of fabric)/year · 0.165 EUR/m3 =
12,732 EUR/year = 1.4525 EUR/h;

• Energy: 0.0051 kWh/(m2 of fabric) · 33.55 (Mm2 of fabric)/year · 0.07 EUR/kWh =
11,977 EUR/year = 1.3663 EUR/h;

• Steam: 0.41 kg/(m2 of fabric) · 33.55 (Mm2 of fabric)/year · 0.012EUR/kg =
165,066 EUR/year = 18.8303 EUR/h

• Material (fabric): 31.58 (Mm2 of fabric)/year · 0.48 EUR/(m2 of fabric) =
15,158,400 EUR/year = 1729 EUR/h;

• Labor: 225 Phs/month·2.3 EUR/Ph = 517.5 EUR/month = 6210 EUR/year =
0.7084189 EUR/h (may be considered as negligible compared to the other production
costs—paid also during stops).

Therefore, production costs of non-degraded equipment are EUR 15.35 M/year =
1751 EUR/h. Thus, since the average gross profit rate is EUR 25.90 M/year, the average
net profit rate would be EUR 10.55 M/year = 1203 EUR/h, i.e., EUR 206,863/year =
23.58 EUR/h = 11.79 EUR/(30 min) for each of the 51 components if no equipment stop
(failure or strategy) or any bleaching repair operation occurred. (The equipment production
efficiency is always assumed as perfect, since no impact of degradation on the KPIs during
production has been defined for this pilot.)

Accordingly, the environmental impact of non-degraded equipment due to produc-
tion is:

• Energy: 0.0051 kWh/(m2 of fabric) · 33.55 (Mm2 of fabric)/year = 171,105 kWh/year
= 19.5192 kW→ 3355 kWh/year = 0.382729 kW = 0.191365 kWh/(30 min) for each of
the 51 components;

• Other environmental (total resulting from the following): 14,084.3 t/year =
1606.70 kg/h → 276,163 kg/year = 31.5039 kg/h = 15.7520 kg/(30 min) for each
of the 51 components:
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– Water: 0.0023 m3/(m2 of fabric) · 33.55 (Mm2 of fabric)/year = 77,165 m3/year =
77,165 kg/year;

– Chemicals: 0.0075 kg/(m2 of fabric) · 33.55 (Mm2 of fabric)/year =
251,625 kg/year;

– Steam: 0.41 kg/(m2 of fabric) · 33.55 (Mm2 of fabric)/year = 13,755.5 t/year.

KPI weighting coefficients: Based on the average yearly rates EUR/kWh and EUR/kg
during production obtained from the above, the following weighting coefficients of the
KPIs are proposed:

• Economic: 1;
• Energy: 0.07;
• Other environmental: (12,732 + 124,741 + 165,066)/(77,165 + 251,625 + 13,755,500) =

0.021481.

KPIs evolution and dependencies: As mentioned above, no impact of degradation on the
KPIs during production has been defined for this pilot.

Stop duration Weibull distribution parameters:
The gross durations of strategies (replacement/maintenance) for the involved compo-

nents are:

• Roller coating: 435 min = 7.25 h;
• Double bearing-lubricant pair: 80 min = 1.33. . . h (the maintenance is applied in parallel

to the production);
• Motor: 210 min = 3.5 h (except for lubrication, for which the duration is 20 min =

0.33. . . h—the lubrication is applied in parallel to the production).

Unless stated that a strategy is applied in parallel to the production, in which case
the strategy duration is considered as 0 in the sense that it does not imply downtime, the
fabric should have been removed from the machine so that it takes place. This results in
additional waiting time of 23 min, which is the time needed for the fabric to go through
the machine.

The above durations are assumed to have coefficient of variation CV = 0.1.
The Weibull distribution parameters are computed from the above as mentioned in

the methodology. Particularly, CV = 0.1 corresponds to shape β = 12.153434. The scale (η)
values for strategies not applied in parallel to the production prove to be as follows:

• Replacement/maintenance of roller coating: 7.5620232 woh = 0.31508430 woD;
• Replacement of double bearing-lubricant pair: 1.3907169 woh = 0.057946538 woD;
• Replacement/maintenance (winding) of motor: 3.6506319 woh = 0.15210967 woD.

Based on the analysis of stop data from 2016 to 2021 for the mechanical, electrical and
power failures, the mean and CV statistics were computed for the involved component
types. Based on them, the most appropriate scale and shape of two-parameter Weibull
distribution parameters were computed, as shown in Table 16, so these distributions are
used for the simulation of failure intervals for the evaluation of the objective function of
the optimization algorithm.

Table 16. Time to recover from roller coating (appeared as “roller and shaft” in the stop dataset),
double bearing-lubricant pair (appeared as “bearing and mounting guide” in the stop dataset) and
motor failures in the bleaching machine (ZORLUTEKS).

Component Mean (min) CV Weibull Scale
(min)

Weibull
Shape

Roller coating 65.031579 1.8217826 41.612199 0.5832355
Double bearing-lubricant pair 53.293333 2.9996844 17.292100 0.4113669
Motor 31.915254 0.4667525 36.030221 2.2688522
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As discussed below more extensively, each failure causes bad fabric whiteness with a
probability dependent on its type. If bad whiteness is detected at the exit of the production
line, the same fabric is re-inserted into the machine and reprocessed, which is supposed to
require another 23 min. However, when the failure happens, the fabric does not need to
be removed from the machine to fix the failure. This may be required only by the strategy
applied after the failure, according to the above.

ETTF distribution parameters based on equivalent age: These are shown in Table 17.

Table 17. ETTF distribution parameters and METTF for the models discussed in this paper for the
bleaching machine (ZORLUTEKS).

Component Failure Type Scale (η) Shape (β) METTF

Roller coating Failure 2 years =
730.5 D 3 1.785959 years

= 652.3215 D

Double
bearing-
lubricant
pair

Mechanical fatigue of par-
ticular bearing (model with
paired coated rollers)

7 years =
2556.75 D 1.5 6.319217 years

= 2308.094 D

Mechanical fatigue of par-
ticular bearing (model with
standalone uncoated roller)

4.5 years =
1643.625 D 1.5 4.062354 years

= 1483.775 D

Lubricant for particular bear-
ing

3 years =
1095.75 D

1 15 2.896992 years
= 1058.126 D

Motor

Complete (model with
paired coated rollers)

3 years =
1095.75 D 1.5 2.708236 years

= 989.1832 D
Complete (model with stan-
dalone uncoated roller)

2 years =
730.5 D 1.5 1.805491 years

= 659.4554 D

Lubricant 4 years =
1461 D 3 3.571918 years

= 1304.643 D
1 In the respective degradation model β = 3 was defined, but since it is assumed that lubricant failure in a
particular bearing-lubricant pair may be well-forecast thanks to vibration anomalies detection, the value was
increased to reduce the variance of the distribution.

MTTF values for process-data-related component failures and frequency of their probabilities’
change during production: Failure occurrences at the components of this machine due to
reasons irrelevant to degradation have not been considered. As mentioned above, it is
assumed that lubricant failure in a particular bearing-lubricant pair may be well-forecast
thanks to vibration anomalies detection, but this is already considered by the respective
modified degradation model, since it is considered as degradation-related.

Cost input:
No costs for machine time and consumables costs have been defined for this pilot, and

the costs for labor time should not be considered, because the total payment for the staff is
constant. Thus, all in all, there are no direct duration-dependent costs during application
of strategies, and all direct costs are duration-independent (costs to buy new components
and other costs to apply a strategy which do not depend on its duration). The one-off cost,
corresponding to the waiting time to insert fabric into the machine after its removal for
the purpose of application of a strategy, leads to economic impact equal to the respective
gross profit loss, i.e., 23 min · EUR 49.23/min = EUR 1132, i.e., EUR 22.20 for each of the
51 components. This is the difference between gross and net costs when applicable, i.e., for
strategies for which the removal of the fabric is necessary.

Table 18 summarizes the direct costs during strategies for the involved components.
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Table 18. Direct costs (EUR) during strategies for every roller coating, double bearing-lubricant pair
and motor of the bleaching machine (ZORLUTEKS).

Component Strategy Gross Net

Roller coating Maintenance 1307 175
Replacement 1582 450

Double bearing-lubricant pair Maintenance 6 6
Replacement 1458 326

Motor Maintenance (lubrication) 21 21
Maintenance (winding) 1282 150
Replacement 4132 3000

On average, any failure, no matter the strategy to be applied afterwards, is assumed to
have additional cost because it involves a probability that whiteness becomes bad, defined
by the pilot experts as shown in Table 19, in which case the fabric needs to be reprocessed.
Thus, the average gross profit lost during the waiting time for the fabric of bad whiteness to
exit the machine (assumed as 23 min) should be considered extra. The aforementioned bad
whiteness probabilities should be multiplied by this duration to compute probabilistically
the expected additional waiting time shown in the column “Expected waiting time due
to bad whiteness” of the table and the respective additional cost based on the rate EUR
49.23/min.

Table 19. Direct failure costs for every failure type of roller coating, double bearing-lubricant pair
and motor of the bleaching machine (ZORLUTEKS).

Component Bad Whiteness
Probability

Expected Waiting
Time Due to Bad

Whiteness

Expected Gross
Profit Loss Due to

Bad Whiteness

Roller coating 41% 9.4 min EUR 464
Double bearing-lubricant pair 43% 9.9 min EUR 487
Motor 14% 3.2 min EUR 159

The additional advantages of preventing failures is to avoid the downtime during the
failure and the negative impact of anomalies and failures on the lifetime of neighboring
components, according to the above.

Direct impacts of stops on other KPIs:
The assumptions about the average waste per discarded component follow below:

• Roller coating: 36 kg;
• Double bearing-lubricant pair: 13 kg;
• Motor: 100 kg (lubricant: 0.1 kg).

This waste is assumed to appear when the respective component is replaced. (Motor
lubricant waste corresponds to motor lubrication.)

KPI and failure probability percentiles resolution: 10%.

3.3.2. Training Results for ZORLUTEKS—Model with Paired Coated Rollers
Optimal Solution

Initially, the optimal strategy application policy for the double bearing-lubricant pair
of the bottom roller was different from the policy for that of the top one, but the latter
proved to be better and more stable across simulations, so it was selected for both double
bearing-lubricant pairs.

Corrective strategies and actuators: The corrective strategies are mentioned in Table 20.
All actuators are active because there is always some compulsory strategy after any failure,
according to the above.
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Table 20. Optimal corrective strategies for the model with paired coated rollers for the bleaching
machine (ZORLUTEKS).

Component Failure Type Corrective Strategy

Coating of any roller Failure replacement

Double bearing-lubricant
pair of any roller

Left bearing lubricant maintenance
Left bearing mechanical fatigue replacement
Right bearing lubricant maintenance
Right bearing mechanical fatigue maintenance

Motor Complete maintenance (winding)
Lubricant maintenance (lubrication)

Preventive strategies: Preventive maintenance is proposed for the

• Coating of the bottom roller when its failure probability within the next time step
(30 min) exceeds 4.6 · 10−5;

• Coating of the top roller when its failure probability within the next time step (30 min)
exceeds 4.4 · 10−5 (close to the case of the coating of the bottom roller);

• Double bearing-lubricant pair of any roller when the short-interval average modified
KPI for the maintenance of this component exceeds −5.723695048214355;

• Motor (lubrication) when the short-interval average modified KPI for the maintenance
(lubrication) of this component exceeds −5.723695048214355.

Although the increase of KPI inefficiency due to equivalent aging has been defined
as negligible for this pilot, KPI thresholds are still proposed, as shown above. Thus, the
effective run of the model without surprising results requires precise evaluation of KPIs and
definition of their thresholds. Otherwise, the optimal policy found after training the model
with standalone uncoated rollers (Section 3.3.4) should be considered instead for the double
bearing-lubricant pairs and the motor, because it depends only on failure probabilities
(which increase much faster in absolute values due to degradation) and not on KPIs.

Evaluation Metrics

These are shown in Tables 21–23.

Table 21. KPIs yielded from training the model with paired coated rollers for the bleaching machine
(ZORLUTEKS).

Economic Energy Other Environmental Total (Yearly)(EUR/Year) (kWh/Year) (kg/Year)

Ideal
Per Component −206,863 3355 276,163 −200,696

Total −103,4314 16,775 1,380,814 −1,003,478

Component Actual Extra Actual Extra Actual Extra Actual Extra

Initial
solution

Coating of bottom roller −199,778 7084 3269 −86 269,093 −7070 −193,769 6927
Coating of top roller −199,761 7102 3269 −86 269,093 −7070 −193,751 6944
Double bearing-lubricant
pair of bottom roller −200,623 6240 3269 −86 269,093 −7070 −194,614 6082

Double bearing-lubricant
pair of top roller −200,628 6235 3269 −86 269,093 −7070 −194,619 6077

Motor −200,889 5974 3269 −86 269,093 −7070 −194,880 5816

Total −1.002 M 32,635 16,346 −429 1.345 M −35,349 −971,632 31,846
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Table 21. Cont.

Economic Energy Other Environmental Total (Yearly)(EUR/Year) (kWh/Year) (kg/Year)

Ideal
Per Component −206,863 3355 276,163 −200,696

Total −103,4314 16,775 1,380,814 −1,003,478

Component Actual Extra Actual Extra Actual Extra Actual Extra

Corrective
solution

Coating of bottom
roller

−200,199 6664 3278 −77 269,854 −6309 −194,173 6523

Coating of top roller −200,148 6715 3278 −77 269,855 −6308 −194,122 6574
Double bearing-lubricant
pair of bottom roller −201,406 5457 3278 −77 269,824 −6339 −195,381 5315

Double bearing-lubricant
pair of top roller −201,387 5476 3278 −77 269,824 −6339 −195,361 5335

Motor −201,415 5448 3278 −77 269,820 −6342 −195,389 5306

Total −1.005 M 29,759 16,390 −385 1.349 M −31,637 −974,425 29,053

Final
solution

Coating of bottom
roller

−202,717 4145 3297 −58 271,432 −4731 −196,656 4040

Coating of top roller −202,686 4177 3297 −58 271,434 −4729 −196,621 4075
Double bearing-lubricant
pair of bottom roller −202,391 4472 3297 −58 271,426 −4737 −196,326 4370

Double bearing-
lubricant pair of
top roller

−202,351 4512 3297 −58 271,426 −4737 −196,286 4410

Motor −202,084 4779 3297 −58 271,425 −4738 −196,019 4677

Total −1.012 M 22,084 16,487 −288 1.357 M −23,672 −981,922 21,556

Table 22. Numbers of stop instances yielded from training the model with paired coated rollers for
the bleaching machine (ZORLUTEKS) within the simulation interval (200 years). Underlined and
italic contents correspond to failures and strategies, respectively.

Component Stop Type Initial
Solution

Corrective
Solution

Final
Solution

Coating of bottom
roller

Failure 202 187 47
Maintenance 202 0 113
Replacement 0 187 47

Coating of top
roller

Failure 204 192 57
Maintenance 204 0 104
Replacement 0 192 57

Double
bearing-lubricant
pair of bottom
roller

Left bearing lubricant 5 20 0
Left bearing mechanical fatigue 204 50 33
Right bearing lubricant 1 23 0
Right bearing mechanical fatigue 173 46 28
Maintenance 383 89 3291
Replacement 0 50 33

Double
bearing-lubricant
pair of top roller

Left bearing lubricant 2 21 0
Left bearing mechanical fatigue 184 51 33
Right bearing lubricant 4 17 0
Right bearing mechanical fatigue 191 55 34
Maintenance 381 93 3259
Replacement 0 51 33

Motor Complete 87 90 75
Lubricant 57 54 6
Maintenance (lubrication) 57 54 3025
Maintenance (winding) 87 90 75
Replacement 0 0 0
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Table 23. Production time percentage for every component yielded from training the model with
paired coated rollers for the bleaching machine (ZORLUTEKS).

Ideal Initial Solution Corrective Solution Final Solution

100.0000% 99.7490% 99.7748% 99.8318%

3.3.3. Run Results (Simulation Scenario) for ZORLUTEKS—Model with Paired
Coated Rollers

Figure 14 presents the time series of the total KPI per component within an inter-
val of same length as the simulation interval during training, and the subsequent ones
(Figures 15–19) show how each KPI is decomposed into individual KPIs. Every perpen-
dicular line corresponds to a stop. The lower-length lines correspond to stop instances of
lower impact. When applicable, the downtime impact of stops on the considered compo-
nents of the production line which are out of this DSF Core model is incorporated in the
perpendicular lines, which explains the negative values of the other environmental KPI.

Figure 14. Total KPI time series yielded from running the model with paired coated rollers for
the bleaching machine (ZORLUTEKS). The simulation interval has the same length as for training
(200 years).

Figure 15. Individual KPI time series for the coating of the top roller yielded from running the model
with paired coated rollers for the bleaching machine (ZORLUTEKS). The simulation interval has the
same length as for training (200 years).



Sensors 2023, 23, 1332 48 of 58

Figure 16. Individual KPI time series for the coating of the bottom roller yielded from running the
model with paired coated rollers for the bleaching machine (ZORLUTEKS). The simulation interval
has the same length as for training (200 years).

Figure 17. Individual KPI time series for the double bearing-lubricant pair of the top roller yielded
from running the model with paired coated rollers for the bleaching machine (ZORLUTEKS). The
simulation interval has the same length as for training (200 years).

Figure 18. Individual KPI time series for the double bearing-lubricant pair of the bottom roller
yielded from running the model with paired coated rollers for the bleaching machine (ZORLUTEKS).
The simulation interval has the same length as for training (200 years).
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Figure 19. Individual KPI time series for the motor yielded from running the model with paired
coated rollers for the bleaching machine (ZORLUTEKS). The simulation interval has the same length
as for training (200 years).

3.3.4. Training Results for ZORLUTEKS—Model with Standalone Uncoated Roller
Optimal Solution

The solution below, which was found from the original training, proved to be com-
parable with the solution based on the optimal strategy application policy for double
bearing-lubricant pairs and motors as selected for models for motors with two rollers.

Corrective strategies and actuators: The corrective strategies are mentioned in Table 24.
All actuators are active because there is always some compulsory strategy after any failure,
based on the above.

Table 24. Optimal corrective strategies for the model with standalone uncoated roller for the bleaching
machine (ZORLUTEKS).

Component Failure Type Corrective Strategy

Double bearing-lubricant pair Left bearing lubricant replacement
Left bearing mechanical fatigue replacement
Right bearing lubricant replacement
Right bearing mechanical fatigue maintenance

Motor Complete maintenance (winding)
Lubricant maintenance (lubrication)

Preventive strategies: Preventive maintenance is proposed for the

• double bearing-lubricant pair when:

– Its left bearing lubricant failure probability within the next time step (30 min)
exceeds 9.113753 · 10−9;

– Its right bearing lubricant failure probability within the next time step (30 min)
exceeds 3.796748 · 10−8.

• Motor when its lubricant failure probability within the next time step (30 min) exceeds
3.840225 · 10−5 (in which case the maintenance is lubrication).
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Evaluation Metrics

These are shown in Tables 25–27.

Table 25. KPIs yielded from training the model with standalone uncoated roller for the bleaching
machine (ZORLUTEKS).

Economic Energy Other Environmental Total (Yearly)(EUR/Year) (kWh/Year) (kg/Year)

Ideal
Per Component −206,863 3355 276,163 −200,696

Total −413,725 6710 552,325 −401,391

Component Actual Extra Actual Extra Actual Extra Actual Extra

Initial
solution

Double bearing-
lubricant pair −202,088 4774 3301 −54 271,717 −4446 −196,020 4675

Motor −202,611 4251 3301 −54 271,717 −4446 −196,544 4152

Total −404,700 9026 6602 −108 543,434 −8891 −392,564 8827

Corrective
solution

Double bearing-
lubricant pair −203,472 3390 3318 −37 273,083 −3080 −197,374 3322

Motor −203,643 3220 3318 −37 273,077 −3086 −197,544 3151

Total −407,115 6611 6635 −75 546,160 −6165 −394,918 6473

Final
solution

Double bearing-
lubricant pair −204,185 2678 3323 −32 273,512 −2650 −198,077 2619

Motor −204,001 2862 3323 −32 273,509 −2654 −197,893 2803

Total −408,186 5540 6646 −64 547,021 −5304 −395,970 5421

Table 26. Numbers of stop instances yielded from training the model with standalone uncoated roller
for the bleaching machine (ZORLUTEKS) within the simulation interval (200 years). Underlined and
italic contents correspond to failures and strategies, respectively.

Component Stop Type Initial
Solution

Corrective
Solution

Final
Solution

Double
bearing-lubricant
pair

Left bearing lubricant 2 23 1
Left bearing mechanical fatigue 298 64 55
Right bearing lubricant 0 10 0
Right bearing mechanical fatigue 286 55 45
Maintenance 586 55 1184
Replacement 0 97 56

Motor Complete 121 119 117
Lubricant 55 57 31
Maintenance (lubrication) 55 57 61
Maintenance (winding) 121 119 117
Replacement 0 0 0

Table 27. Production time percentage for every component yielded from training the model with
standalone uncoated roller for the bleaching machine (ZORLUTEKS).

Ideal Initial Solution Corrective Solution Final Solution

100.0000% 99.9369% 99.9562% 99.9623%
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3.3.5. Run Results (Simulation Scenario) for ZORLUTEKS—Model with Standalone
Uncoated Roller

Similar to before, Figure 20 presents the time series of the total KPI per component
within an interval of the same length as the simulation interval during training, and the
subsequent ones (Figures 21 and 22) show how each KPI is decomposed into individual
KPIs. Every perpendicular line corresponds to a stop. The lower-length lines correspond
to stop instances of lower impact. When applicable, the downtime impact of stops on the
considered components of the production line which are out of this DSF Core model is
incorporated in the perpendicular lines, which explains the negative values of the other
environmental KPI.

Figure 20. Total KPI time series yielded from running the model with standalone uncoated roller for
the bleaching machine (ZORLUTEKS). The simulation interval has the same length as for training
(200 years).

Figure 21. Individual KPI time series for the double bearing-lubricant pair yielded from running the
model with standalone uncoated roller for the bleaching machine (ZORLUTEKS). The simulation
interval has the same length as for training (200 years).
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Figure 22. Individual KPI time series for the motor yielded from running the model with standalone
uncoated roller for the bleaching machine (ZORLUTEKS). The simulation interval has the same
length as for training (200 years).

3.3.6. Discussion of the Training Results for ZORLUTEKS

The conclusion from training the above models for this pilot is that the fast and
economic preventive maintenance strategies, which usually may happen in parallel to
production, help to considerably improve the total KPI, since they prevent numerous
failures and the respective bad consequences. In addition, the fact that replacement instead
of maintenance is preferred for a double bearing-lubricant pair after bearing mechanical
fatigue for one of its bearings is because maintenance does not decrease at all the equivalent
age with respect to mechanical fatigue. Table 28 contains the total KPIs with respect to
components obtained from all seven trained models and their sum in the last row of each
sub-table. (As mentioned above, the details about the extra five models are omitted in
this paper to avoid extending its content too much.) As shown in the table, all but the last
model correspond to solutions better than the respective initial ones; thus these models
improve the total KPI. The models discussed above in detail correspond to the names
“Motor of type 2_3_7” (for paired coated rollers) and “Motor of type 1” (for a standalone
uncoated roller). Similar to GORENJE, the multipliers in the second column indicate the
number of identical (groups of) components, to all of which the respective models apply.
The energy and other environmental penalties are slightly negative (due to downtime), as
expected, because no inefficiency during production has been defined for them, whereas
the only defined non-economic penalty during stops is waste, which is almost negligible for
the selected KPI weighting. Thus, the extra total KPI values, which appear in the bottom
right cell of each sub-table and refer to the whole production line, depend almost only
on the economic factor. These values indicate that the application of the optimal strategy
application policies proposed above may reduce the yearly unnecessary total KPI penalty
by 88,000 (33%) compared to the lightest compulsory corrective strategy application policy
without preventive strategies. For the models discussed in this paper, this percentage is
32% (for the model with paired coated rollers) and 39% (for the model with a standalone
uncoated roller).



Sensors 2023, 23, 1332 53 of 58

Table 28. Total KPIs with respect to components with summation for the whole production line,
yielded from training all models for ZORLUTEKS.

Economic Energy Other Environmental Total (Yearly)(EUR/Year) (kWh/year) (kg/Year)

Model Actual Extra Actual Extra Actual Extra Actual Extra

Initial
solution

Motor of type 2_2 (×5) −1.000 M 34236 16323 −452 1.344 M −37,219 −970,074 33,404
Motor of type 2_3_7 −1.002 M 32,635 16,346 −429 1.345 M −35,349 −971,632 31,846
Motor of type 2_3_4.5 −994,133 40,180 16,251 −524 1.338 M −43,150 −964,261 39,217
Motor of type 1 (×2) −404,700 9026 6602 −108 543,434 −8891 −392,564 8827
Motor of type 0 (×2) −202,585 4277 3302 −53 271,766 −4396 −196,516 4179
Inverter of type 9 (×6) −206,686 177 3352 −2.6 275,947 −216 −200,524 172
Inverter of type 10 (×4) −206,742 121 3353 −1.8 276,017 −145 −200,578 118

Total −10.28 M 272 K 167.5 K −3558 13.79 M −293 K −9.97 M 266 K

Corrective
solution

Motor of type 2_2 (×5) −1.002 M 31,900 16,363 −412 1.347 M −33,862 −972,335 31,143
Motor of type 2_3_7 −1.005 M 29,759 16,390 −385 1.349 M −31,637 −974,425 29,053
Motor of type 2_3_4.5 −1.004 M 30,275 16,383 −392 1.349 M −32,196 −973,923 29,556
Motor of type 1 (×2) −407,115 6611 6635 −75 546,160 −6165 −394,918 6473
Motor of type 0 (×2) −202,585 4277 3302 −53 271,766 −4396 −196,516 4179
Inverter of type 9 (×6) −206,686 177 3352 −2.6 275,947 −216 −200,524 172
Inverter of type 10 (×4) −206,742 121 3353 −1.8 276,017 −145 −200,578 118

Total −10.31 M 243 K 168.0 K −3116 13.83 M −256 K −10.0 M 237 K

Final
solution

Motor of type 2_2 (×5) −1.011 M 23,197 16,473 −302 1.356 M −24,840 −980,836 22,642
Motor of type 2_3_7 −1.012 M 22,084 16,487 −288 1.357 M −23,672 −981,922 21,556
Motor of type 2_3_4.5 −1.010 M 23,864 16,467 −308 1.355 M −25,341 −980,180 23,298
Motor of type 1 (×2) −408,186 5540 6646 −64 547,021 −5304 −395,970 5421
Motor of type 0 (×2) −202,790 4073 3304 −51 271,967 −4195 −196,717 3979
Inverter of type 9 (×6) −206,723 139 3353 −2.1 275,993 −169 −200,560 136
Inverter of type 10 (×4) −206,742 121 3353 −1.8 276,017 −145 −200,578 118

Total −10.37 M 182 K 168.7 K −2356 13.89 M −194 K −10.1 M 178 K

4. Conclusions, Limitations and Future Work

This work demonstrated that the DSF Core is a generic, but also complex, algorithmic
component, which finds the optimal lifetime extension strategy application policy for
industrial equipment, considering various dependencies among machine components and
their stop types. It relies on simulation to evaluate the mean total KPI (dependent on the
economic and environmental factors using the MCDA method along with an automatic
objective weighting method) for each tested policy within a large time interval covering the
life cycle of the production line and finds a near-optimal policy with only a few evaluations
of the objective function, also considering the number of variables to be optimized by
carefully updating their values. The optimization starts from the lightest compulsory
corrective strategy application policy without preventive strategies to avoid searching
very far from the optimal and simplest solution possible. Indeed, there is usually no
unique optimal policy. In the first phase of training, the optimal corrective strategies are
found, still assuming that no preventive strategies take place, and, in the second phase, the
optimization continues by updating the decision variables related to the preventive policy.
Based on the above, the DSF Core enables direct comparison of the considered KPIs among
the initial, (optimal) corrective and final solution. The conclusion was that there is margin
for KPI improvement for all three pilots discussed in this paper, by 30–40% approximately.
Of course, these KPIs may be further improved (or have already been improved) for every
pilot by third-party algorithmic services discussed above, as well as thanks to the direct
real-time monitoring of the accurate sensorial data and the software-irrelevant activities
performed at the pilots.

Regarding the limitations of the work, as mentioned above, the time complexity of
each simulation is quadratic with respect to the number of stop types. In addition, it is
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linear with respect to the number of timestamps. Between the two optimization phases,
the most time-consuming is the second one because the candidate values per variable to
be optimized are more, and the number of variables is higher. The algorithm can find a
near-optimal solution with few function evaluations in each of the two optimization phases
(about 2MJ with respect to the case during the second phase, where M is the number of
variables to be optimized and J is the number of epochs during that phase, and M ≤ 23,
J ≤ 4 for the models trained). However, each individual function evaluation corresponds
to a simulation of the production line operation during an interval large enough to include
tens of instances for (almost) each stop type and with a sampling step not much higher than
the shortest modelled mean stop duration of the specific stop type. These two conditions
should be met so the numbers of stops and their downtime impact may be estimated
accurately enough. Since about 1000 timestamps were processed per second during the
simulation, the whole training usually takes hours or a few days. The memory complexity
is linear with respect to both the number of components and the number of timestamps.
Most of the trained models do not involve memory concerns, but the most complex models
for ZORLUTEKS, that is, those involving motors with two rollers, consume significant
memory. Although memory could be reduced with a small adaptation of the algorithm, this
would lead to a further increase of execution time, so this idea was not implemented. The
simulation approach may be more time- and memory-complex than an analytic solution in
a simple case, but it is more generic and easily scalable.

The DSF Core is going to be deployed at the above pilot locations. The integration
with the other relevant algorithms is ongoing as well. After deployment, the benefit offered
by the DSF Core to the pilots will be evaluated. As future research work, the plan is to find
the fastest but equally generic KPI evaluation methods that will avoid a significant part of
the calculations during a normal simulation.
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AHP analytic hierarchy process
CAGR compound annual growth rate
CO2 carbon dioxide
CV coefficient of variation
DSF Decision Support Framework
Easy-LCA name of software mentioned in [18]
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EoL End of Life
EOLI EoL impact
ETTF Equivalent Time To Failure
FMOLP fuzzy multi-objective linear programming model
GDL gas diffusion layer
ISO International Organization for Standardization
KPI Key Performance Indicator
LCA Life Cycle Assessment
LCC Life Cycle Cost
LCPlanner name of software mentioned in [18]
MCDA multi-criteria decision analysis
MCDM multi-criteria decision methodology
MEA membrane electrolyte assembly
METTF Mean ETTF
MINLP mixed integer non-linear programming
MRO Maintenance, Repair and Overhaul
MSD mean stop duration
MTTF Mean Time To Failure
NOx any mono-nitrogen oxide
NRV net recoverable value
Ph person hour
PQI process quality improvement
QFD quality function deployment
QFDNavi name of software mentioned in [18]
RUP remaining usage potential
SCR setup cost reduction
SOx any sulphur oxide
weh welding hours
woD working days
woh working hours
womin working minutes
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