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Abstract: The demands for a large number of sensors increase as the proliferation of Internet of
Things (IoT) and smart cities applications are continuing at a rapid pace. This also increases the cost of
the infrastructure and the installation and maintenance overhead and creates significant performance
degradation in the end-to-end communication, monitoring, and orchestration of the various connected
devices. In order to solve the problem of increasing sensor demands, this paper suggests replacing
physical sensors with machine learning (ML) models. These software-based artificial intelligence
models are called virtual sensors. Extensive research and simulation comparisons between fourteen
ML models provide a solid ground decision when it comes to the selection of the most accurate model
to replace physical sensors, such as temperature and humidity sensors. In this problem at hand, the
virtual and physical sensors are designed to be scattered in a smart home, while being connected and
run on the same IoT platform. Thus, this paper also introduces a custom lightweight IoT platform
that runs on a Raspberry Pi equipped with physical temperature and humidity sensors, which may
also execute the virtual sensors. The evaluation results of the devised virtual sensors in a smart home
scenario are promising and corroborate the applicability of the proposed methodology.

Keywords: virtual sensors; machine learning; regression; Internet of Things; IoT platform; smart
homes; Raspberry Pi

1. Introduction

The Internet of Things (IoT) has allowed for the digitization of almost every aspect
of our life by refurbishing applications, introducing new and smarter ones, and stressing
the capabilities of the current Internet to its full potential. This revolution of software
engineering and information technology creates a lucrative environment to host new ideas
for products and services that benefit and improve the productivity of mankind. Specifi-
cally, the IoT allows for gathering, storing, communicating, and processing information
anywhere and anytime [1]. To do so, IoT devices can extract knowledge by monitoring
their environment, making decisions, and automatically operate various types of services
or even machines.

The typical architecture of IoT consists of four layers: device layer, network layer,
platform layer, and service layer [2]. As shown in Figure 1, various types of IoT devices
can be found at the device layer, ranging from simple sensors, such as temperature sensors,
to fully operational machines equipped with multiple sensors, such as heating, ventila-
tion, and air conditioning (HVAC). All these devices are generating data that have to be
transferred to other IoT devices, applications hosted in the Cloud, or even to be consumed
directly by the end-users. Thus, the IoT is based on the integration of network interfaces
into devices [3], in which they will establish the necessary communication with the rest
of the Internet. Additionally, appropriate middlewares [4,5] can create a management
platform for the orchestration of IoT devices and applications. Finally, the data generated
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by the IoT devices do not remain raw, but they are processed at a service layer [6], in order
to allow the applications to make smarter decisions and control smart environments.

Figure 1. The four layers of IoT structure.

At the bottom of this architecture, the very first step to create an IoT system is to
select the IoT devices. These devices are so far considered as real devices, usually widely
dispersed, with low storage and processing capacity, aiming to improve the reliability,
performance, and quality of services in a multitude of applications. Obviously, the number
and capabilities of the devices depends on the type of application or industry that the IoT
services will be offered. For example, in smart city applications [7], such as transportation,
energy, and entertainment, there are significant IoT infrastructure and application require-
ments. These requirements are proportional to the size of the city population or the number
of buildings. This is a phenomenon which is also observed in smaller scale applications,
such as smart home [8] use cases, where the infrastructure requirements can be proportional
to the number of rooms. This happens because smart homes are controlled and monitored
based on the continuously generated data by the sensors placed in every room.

However, there are some serious challenges that need to be addressed, so that the full
potential of IoT can be understood. For instance, the increasing number of IoT devices
and the necessity of processing a significant amount of data have the disadvantage of
increasing (i) the number of transmitted packets [9], (ii) the resource requirements, and
(iii) the total overhead of device deployment and synchronization [10]. This growing
trend in the demand of IoT devices imposes limitations, regardless of the computing layer
it runs, i.e., Cloud, Edge, or Fog [11]. This set the motivation to conduct research on
how to offer the same functionalities in a smart home application, while minimizing the
number of IoT devices. Hence, this paper proposes the emulation of some physical sensors
with ML models. The ultimate goal of the proposed methodology is to make these new
virtual and ML-enabled counterparts output values close to the real ones of the replaced
physical sensors.

To achieve this goal, multiple experiments are conducted with time series measure-
ments of temperature and humidity in a smart home, and it is observed that, even though
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the values of the sensors placed in separate rooms are different, they are also related. Thus,
a set of different ML models, such as linear, bootstrap aggregating [12], boosting [13],
and artificial neural networks (ANNs) [14] are trained based on historical data and con-
cluded with the most accurate model for every room. To maximize the cost efficiency of
the proposed solution, only one physical sensor is kept, while the rest are replaced by the
proposed ML models. These software models work as virtual sensors that can run on the
same IoT device as the physical sensor. The achievement of this methodology is that one
physical sensor monitors the data of one room and provides the temperature/humidity of
all the rooms in a smart home using the ML models, while keeping a high accuracy.

In order to examine the applicability of the proposed methodology, a platform has been
developed that monitors the temperature and humidity in a central room with a DHT11
sensor connected to a Raspberry Pi (RPi). This platform visualizes the time series metrics of
one physical and five virtual sensors via a web graphical user interface. The contributions
of this paper can be summarized as follows:

• The use of virtual sensors is proposed, instead of physical ones, in order to decrease
the number of IoT devices in a smart home use case.

• A concrete discussion is provided, regarding the various technical decisions in the
design of virtual sensors in an IoT and smart home environment.

• An extensive experimental comparison among different ML models has been con-
ducted for the development of temperature and humidity virtual sensors.

• A brief guideline is provided of a basic IoT platform that integrates physical devices,
a socket API, a graphical user interface, data storage, and artificial intelligence vir-
tual sensors.

The rest of the paper is structured as follows: Section 2 highlights the related work in
IoT, smart homes, sensors, and the use of ML models. Section 3 presents the proposed IoT
platform with physical and virtual sensors. Section 4 discusses the utilization of ML models
for the development of virtual sensors. Section 5 presents the experimental outcomes
and the evaluation results. Section 6 concludes the paper, reports the limits of our work,
and suggests future directions.

2. Related Work

The related work of this particular research extends over six main research domains.
Firstly, the impacts of virtual sensors in various scientific domains are discussed. Secondly,
the current status in the development of IoT platforms is presented. Thirdly, it is explained
how the contemporary smart homes are equipped with IoT devices and controlled by IoT
platforms. Fourth, a presentation of physical sensors and virtual sensors connected with
or run on IoT devices is made. Fifth, a brief review of the ML models suitable to develop
virtual sensors is given. Towards the end of the section, it is explained how the proposed
model fills the research gaps of the related work. Finally, the impacts and other research
gaps of virtual sensors are presented.

2.1. Impacts of Virtual Sensors

Virtual sensors have applications and multiple impacts in domains such as health-care,
entertainment, fitness, sport, digital twins, and Industry 4.0. The first impact to mention
is that they extend the reliability and availability in applications, without adding extra
hardware complexity and maintenance [15]. They can be the basis for a fault detection
mechanism recognizing discrepancies between the sensor data and expected measure-
ments [16]. They provide an alternative when a physical sensor cannot be placed in the
preferred position, due to spatial conditions, such as a lack of space or a hostile environ-
ment, such as exposure to acids and extreme temperatures [17]. Virtual sensors can replace
physical sensors and deliver a higher level of information based on multiple heterogeneous
sensor signals [18]. Virtual sensors also have the impact that they overcome a number of
weaknesses of physical sensors, such as reducing signal noise [19] and drifts [20]. Drifts
constitute a well-known phenomenon rendering a physical sensor inaccurate over time,



Sensors 2023, 23, 1328 4 of 25

due to wear or pollution. The last impact to mention is that virtual sensors are extremely
flexible and can be redesigned as required, while physical sensors, once installed, often can
only be repositioned by mechanical intervention [21].

2.2. Internet of Things Platforms

As described in Section 1, an IoT ecosystem consists of four layers, namely the device,
network, platform, and service. In this part, more details for the IoT platform layer are given, also
referred to as IoT middleware. In particular, this layer is a composition of software components
that enable the communication of IoT devices and smart appliances with three purposes [4]:
First, to facilitate the acquisition, processing, transformation, organization, and storing of sensor
data. Second, to deliver situational awareness through warnings and a graphical user interface.
Finally, to take optimal decisions through the control of appliances and actuators.

Many articles discuss and provide reviews regarding the IoT platforms. Zdravkovic et al. [4]
presented seventeen IoT platforms and introduced a categorization of them into domain-specific,
technology-specific platforms for data acquisition and analysis, full-scale generic IoT platforms,
and platforms designed to offer specific services. Agarwal et al. [5] reviewed Cloud-based IoT
platforms, such as the AWS IoT Platform, Microsoft Azure IoT Hub, and Google IoT Platform.
They provided specific selection criteria, such as availability, deployment type, pricing model,
support for required hardware, security, type of communication protocol, storage technologies,
and data analytic methods. Nardis et al. [22] brought up the question of whether it is better to
use an existing IoT platform or develop a new platform from scratch. They concluded that it
is a better choice to develop a new IoT platform, when the goal is to introduce and test new
functionalities not available in existing platforms. At this point comes one of the contributions
of this paper. Specifically, a guideline is presented for new researchers describing the basic
components to develop an IoT platform that is compatible with contemporary technologies,
extensible, and works along with the virtual sensors that are also proposed.

2.3. Smart Homes

The proposed virtual sensor methodology has been designed and tested in a smart home
use case. Smart homes are inherently related to IoT and sensors’ technologies, since they use
sensory data to assess the current state of the home, predict the inhabitants’ intent, and act
preemptively based on the intent assumptions [23]. Hence, the integration of smart devices
with sensors, actuators, and decision-making units optimize the comfort, safety, and wellness
of the inhabitants, adapting the home to their behavior and providing ambient intelligence.

The data generated by the home sensors are the basis for context awareness that provides
building-focused event automation and user-focused remote monitoring and control [8].
Smart appliances, IoT devices, and specifically sensors work continuously and generate
massive amounts of data. These data should be transferred to Cloud infrastructures or should
be processed and stored locally at the smart home for optimal decision making and keeping
historical records [7]. Both computing and storing approaches incur overheads that come
from the number of IoT devices, the volume of the generated data, the speed at which data are
generated, stored, and processed, and the heterogeneity in data structures [24]. A continuous
transfer of large amounts of IoT data and from multiple devices to the cloud burdens the
network’s bandwidth and incurs privacy and security issues. Recent studies show that
edge computing is more suitable for IoT than other computing paradigms [9]. Nevertheless,
the edge incurs storage and processing limitations. In this research, ways to overcome these
resource limitations are examined, not by increasing the computing nodes, but by decreasing
the generated data. It has been observed that, very often, the sensing metrics, although they
are different from one from the other, are not independent. This observation led to the use
of the values of one sensor and inferred the values of the other sensors. In this way, the
amount of generated data can be significantly decreased, without sacrificing the smart home
context awareness. This approach is different from the existing works that try to achieve home
context awareness by using prediction ML algorithms for the activities of daily living, as in [6].
In contrast, in this paper, ML models are used to implement virtual sensors.
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2.4. Physical Sensors and Virtual Sensors

Brunello et al. define a sensor as a device which measures a physical quantity and
transforms it into sensor data that can be interpreted by an instrument or an observer [25]. Next,
they distinguish the physical sensors, which measure physical phenomena directly from
the virtual sensors that are software-based models. The virtual sensors produce sensor
data by fusing data received synchronously or asynchronously from physical or other
virtual sensors [18]. Comparing physical to virtual sensors shows that physical sensors
may be prone to noise, interfere with each other, lose accuracy over time, or their use is
even technically not feasible, due to spatial or environmental conditions. On the other
hand, virtual sensors replace a subset of physical sensors with virtual ones, allowing for
the monitoring of unreachable locations, reducing the sensors deployment costs, providing
a fallback solution, and finally, improving the reliability of physical systems [15].

There are three main types of approaches to designing a virtual sensor model:
(a) mechanism-based, (b) knowledge-based, and (c) data-driven. What distinguishes these
three types of approaches is how the relation between the input parameters and the output
sensor value is defined. The relations can be based on physical laws, expert knowledge,
or a model that recognizes data patterns. Specifically, the mechanism-based [26] virtual
sensors are constructed based on the behavior of the operating mechanisms to be measured,
describing the essential physical correspondence between the input and output quantities.
The knowledge-based sensors [27] use the knowledge of experts who explicitly define the
equations or rules between the input values and the sensor output. The data-driven [28]
methods have become the mainstream approach for training AI mechanisms based on histori-
cal data. Most data-driven virtual sensors apply a data fusion technique to provide precise
measurements of one specific phenomenon or an abstract representation of diverse sensor
inputs [29]. This paper’s proposed virtual sensor methodology, instead of aggregating the
inputs of physical sensors, replaces every single physical sensor with a virtual one.

Brunello et al.’s work [25] is the closest work to our paper. They also use virtual
sensors based on ML models to estimate the temperatures in indoor environments. The
main points in which the paper’s proposed methodology differs from Brunello et al.’s work
are the following:

• Brunello et al. proposed an automatic selection technique to find the minimum number of
physical sensors and their optimal positions in an indoor space, while the new proposed
model uses only one physical sensor that can be placed in any spot in a smart home.

• Brunello et al. input the measurements of the physical sensors into one global data-
driven model that provides virtual measurements, while the new proposed model uses
a separate data-driven model for every virtual sensor.

• Brunello et al.’s virtual sensors estimate only temperatures, while the new proposed
jointly estimates the temperature and humidity.

• Brunello et al. presented only the design of the virtual sensor, while the new proposed
methodology also takes into consideration the software platform and the processing
device on which the physical sensors are connected and the virtual sensors run.

2.5. Machine Learning

Virtual sensors based on data-driven models have been used for more than a decade.
Kaedlec et al. reviewed virtual sensors in a smart industry context [28]. They presented the
characteristics that ensure the accuracy and quality of sensor data including: (a) missing
values, (b) data outliers, (c) drifting values, (d) co-linearity, and (e) sampling intervals.
Missing values refer to the data values that have not been recorded and are not included
in the datasets. Data outliers refer to the data values that lie an abnormal distance from
other values and may be due to measurements errors, sampling problems, and natural
variations. Drifting values are inaccurate measurement readings caused by factors such
as contamination, vibration, or extreme temperature. Co-linearity refers to the correlation
between input values. This phenomenon hinders statistics models from making accurate
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predictions. The sampling interval is the time between the measurements taken and data
are recorded.

Kaedlec et al. also described a five-steps pipeline for the designing process of virtual sen-
sors. The pipeline includes the steps of: (a) data inspection, (b) data selection, (c) pre-processing,
(d) model selection—training—validation, and (e) sensor maintenance. The aim of data in-
spection is to gain an overview of the data structure and identify any obvious problems that
may be handled at this initial stage. Data selection refers to the selection of the appropriate
data features for the training and the inference of the ML model. In pre-processing, the data
are transformed in such a way that it can be more effectively processed by the actual model.
Model selection—training—validation includes the necessary steps to build and evaluate all the
candidate models, in order to select the most accurate one. Due to the changes of the data and
the dynamic environment, the sensors should be re-trained and tuned on a regular basis. This
constitutes the maintenance of the sensors.

Furthermore, Kaedlec et al. discuss various ML models that constitute the core of
virtual sensors. The proposed ML models are: (a) principal component analysis, (b) partial
least squares, (b) ANNs, (c) neuro-fuzzy systems, and (d) support vector machines. Fol-
lowing the same pipeline, new researchers have continued the design and development
of virtual sensors until today. Sun and Ge [30] present the applicability of deep learning
for virtual sensors. They discuss various deep learning models, tricks, and frameworks, in
order to help designers for the development of virtual sensors. In contrast, for the imple-
mentation of virtual sensors, in this work, ML regression methods are used. The models
are divided into five main categories, and, to the best of our knowledge, it is the first time
that such a comparative experimental study is provided.

2.6. Other Research Gaps of Virtual Sensors

Other research gaps that are not addressed in this paper regard the input and historical
data, which are provided to the virtual sensors for the training stage and during their
operation [31]. This includes the selection of the appropriate data sources, but also to
examine the robustness of virtual sensors, in case they work in outliers and abnormal
values [32]. Furthermore, the predictive models of virtual sensors should be capable of
performing interpolation and trend simulation. This means that the prediction mechanism
should be generalized, in case the input observations are significantly different from the
historical data [25]. This is an important challenge, since the internal process may change,
as well as the environment around the processes.

3. An IoT Platform for Virtual Sensors

This section has two purposes. First and foremost, the methodology and the required
IoT platform to train and run the virtual sensors have to be described. Specifically, the
goal is to provide a guideline to new researchers for developing a custom, lightweight,
and extensible IoT platform for testing new ideas, based on data-driven models, such
as our proposed virtual sensors. The reader is reminded that the virtual sensors are
based on ML models that replace the physical sensors and require training historical data.
This brings important design decisions that should be taken into consideration. Second,
this section describes the various physical and software components included in our IoT
platform, such as the RPis, DHT11 sensors, data persistence, data visualization, and the
graphical user interface. Furthermore, it is important to discuss how these components
are interconnected, providing the logical flow of our methodology. Last, but not least,
the described IoT platform architecture works as a proof of concept for the use of virtual
sensors. This means that the core of the architecture is kept simple, but extensible. Thus,
the presented components can be replaced with counterpart components developed with
different technologies, without affecting the other parts of the platform. As an example, if
the database management system (DBMS) is replaced from MySQL to MongoDB, in the
data persistence layer, the whole platform will continue to work smoothly.
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3.1. Overview and Utility of the IoT platform for Virtual Sensors

The proposed platform monitors the temperature and humidity physically or virtually
in each room of a smart home. To achieve this functionality, the platform utilizes IoT
devices, specifically RP is equipped with DHT11 sensors. The IoT platform can also include
actuators, provide warnings and take intelligent decisions based on the monitoring data.
In this paper, how the proposed IoT platform will use the monitoring data in different use
cases is considered out of scope, but there are multiple applications in the literature that
could benefit from our platform [33].

The proposed IoT platform is compared against a baseline approach. In the baseline
approach, one physical IoT device is placed in each room and gathers all monitoring metrics
in the IoT platform, following a centralized computing paradigm. This baseline approach
incurs the following drawbacks and difficulties. First, smart homes and buildings often
include many rooms, making the purchase cost for all the devices high. Next, the overhead
of using RPis, their programming, the peripheral tools needed (such as SD cards, DHT11
sensor, etc.), their fault tolerance, and their maintainability are also increased proportionally
to the number of the devices. In addition, the communication of multiple IoT devices uses
bandwidth and generates interference that burdens the network, especially when there
are frequent and continuous data transmissions. The aforementioned difficulties can be
alleviated if, instead of RP being used to measure temperature and humidity in every room
of the house, virtual measuring sensors built with ML could replace them. To sum up, the
benefits of using the virtual sensors, instead of physical sensors, are to: (a) keep the number
of devices low, (b) save energy, (c) decrease the bandwidth usage, and (d) minimize the
cost of creating an IoT network with physical devices.

3.2. Logical Workflow

Figure 2 illustrates the operational logical flow of the proposed solution. As it can
be seen, there are two pipelines. The first pipeline, aims to train the virtual sensors. This
includes all the steps, beginning from the deployment of physical sensors of the IoT devices,
until the construction of the ML models that will replace them. The second pipeline has
as a goal to extract the inference data from the virtual sensors. In particular, this inference
pipeline begins with the monitoring of one physical sensor, and it provides the physical
measurements to the virtual sensors that are the output of the training pipeline, and
eventually, the virtual sensors infer the temperature and the humidity in every room.

Figure 2. Logical flow of training and inference IoT virtual sensors.

3.2.1. Training Pipeline

In the training pipeline, two IoT devices need to be placed in two separate rooms.
The first room is called the reference room, which has one physical IoT device that never
moves, and it will not be replaced by the virtual sensors. In the second room, which is
named the target room, a physical IoT device is placed that will eventually be replaced by
the virtual sensor. Following, the data by these two IoT devices are monitored, creating
two time series data. This process of monitoring two separate rooms is repeated for all the
rest of the rooms, keeping the reference room constant, while the target room is variable.
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Figure 3 depicts the smart home that will be used in the experimental evaluation. The
bedroom is set as the reference room, where the permanent physical IoT device is placed.
The temperature and humidity measurements of the reference room are depicted in Figure 3
using black fonts. The corresponding measurements of the virtual sensors in the target
rooms are depicted with pink fonts. The monitoring data are depicted as time series plots in
Figures 4 and 5. Specifically, Figure 4 illustrates the time series metrics of the temperature
and humidity in the reference room, while Figure 5 depicts the monitoring data of the
second physical sensor in a target room that will be replaced by the virtual sensor.

Figure 3. Physical and virtual temperature and humidity in a smart home.

Figure 4. Temperature and humidity time plots in reference room.

Figure 5. Temperature and humiditytime plots in a target room.

The controller in the training pipeline monitors the pair of IoT devices and stores the
measurements using time series structures in a database. It is important to mention that the
two time series should be synchronized. They should begin at the same timestamp, and
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the sampling of the IoT devices will take place with a constant time step. The duration of
the time steps is a configurable variable that depends on the use case. When a sufficient
amount of data is gathered, a ML model is trained based on the historical data sequences.
The ML model takes the reference room measurements as input and learns to predict the
temperature and humidity of a target room. This process takes place sequentially for all
the rooms, in order to train a virtual sensor for each of them.

3.2.2. Inference Pipeline

In the inference pipeline, the controller takes the temperature and the humidity data
from the reference room with a socket connection and provides them to the virtual sensors.
Next, the predicted metrics go to a micro-service that visualizes them through a graphical
user interface. The micro-service is extensible and can provide more functionalities, such
as to manage other IoT devices, send signals to actuators, and make intelligent decisions
based on different use cases. In the next subsections, more details for each component of
the proposed IoT platform are provided.

3.3. Physical Sensor

The physical sensor that is used in the proposed IoT platform is the DHT11 module.
The DHT11 module [34] features a temperature and humidity sensor complex, with a cal-
ibrated digital signal output. By using the exclusive digital signal acquisition technique
and temperature and humidity sensing technology, it ensures high reliability and excellent
long-term stability. This DHT11 module sensor consists of two parts, the DHT11 sensor
and a module. DHT11 sensor includes a resistive-type humidity measurement component,
a negative temperature coefficient (NTC) temperature measurement component, and a high
performance 8-bit micro-controller, offering excellent quality, fast response, anti-interference
ability, and cost-effectiveness. The module is actually a printed circuit board (PCB) with some
required components, and, on top of that, it is placed the DHT11 sensor. The reason why this
sensor is chosen is the convenience of use it offers, in conjunction with its low cost.

3.4. Raspberry Pi 3

RPi devices are characterized as low cost, fully customizable, programmable, portable
size computer boards. These characteristics make them well-suited for IoT platforms. Their
high connectivity capabilities also allow them to directly connect to other devices and
applications through Wi-Fi, Bluetooth, and other access protocols. An additional physical
interface with the outside world is the general purpose input–output (GPIO) connector.
The GPIO is a 40-pin port that enables the RPi to communicate with physical devices such
as sensors and actuators. In the proposed IoT platform, a DHT11 sensor is attached to the
GPIO. Next, using the python libraries of RPi.GPIO (https://pypi.org/project/RPi.GPIO/
(accessed on 20 January 2023)) and dht11 (https://github.com/szazo/DHT11_Python
(accessed on 20 January 2023)), and a python script was written that takes the temperature
and humidity measurements.

RPis have the advantage, compared to other devices, such as Arduino, BeagleBone
Black, Phidgets, and Udoo, and offer a very good trade off between computational capa-
bilities and cost [35]. Specifically, Arduino, even if it is the cheapest device, has limited
CPU power, cannot run more than one program at the same time, and lacks a full operating
system. On the other side of comparison, Udoo has significantly better CPU power, but the
cost can reach three times the cost of a RPi. In addition, RPi has a large community of users
and developers that work on IoT projects, with better support and high contributions with
a large number of public GitHub repositories. RPis can run various Linux and Windows
distributions, but the Rasberry Pi operating system (previously called Raspbian) has been
significantly tailored to the ARM micro-architecture and the particularities of the RPis.
This gives the capability for one single device to receive data from the attached sensors,
store and process them on device, and make decisions. Finally, it communicates data and
decisions via our client-server IoT platform using a request–response messaging pattern.

https://pypi.org/project/RPi.GPIO/
https://github.com/szazo/DHT11_Python
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3.5. Socket Programming

Socket programming offers a means of communication between applications using the
transmission control protocol, following a server-client model. The server socket accepts
connections to a specific port and IP address, while the client socket requests a connection.
In this proposed IoT platform, the RPis with the DHT11 have the role of the server, while the
machine that hosts the controller, the DBMS, and the virtual sensors has the role of the client.
As it will be discussed in Subsection 3.9, the client can run on a Cloud VM, a node at the Edge,
or another RPi.

The servers communicate via Wi-Fi to the client at a specific IP address and port.
The client establishes a connection and receives the temperature–humidity measurements,
along with their timestamps. The socket-based communication is a stateful protocol that
facilitates the data storage. In the proposed framework, the client periodically sends a mes-
sage to the server to get the temperature and humidity measurements—after, it decodes and
splits them, and, finally, stores them in the database. It should be noted that other protocols
could be used, such as MQTT, without changing the design of the proposed IoT platform.
However, since in the proposed implementation, the Pi’s are relatively computationally
strong devices and the power supply for the particular implementation is available, it was
decided to use socket-based communication. For other types of applications, with more
constrained IoT devices and less efficient access networks, more light-weight protocols,
such as CoAP or MQTT, could be used instead.

3.6. Data Persistence

An IoT platform can handle a significant amount of data from devices and sensors,
in order to take decisions and give real-time responses. The data should be stored on
a disk, in case they do not fit in memory, for easy retrieval and further analysis. There
are three main approaches for the data persistence based on the volume, the frequency
of data, and the application requirements. The first option is to deploy a DBMS on the
RPi [36]. This solution has the benefit that it improves the latency, as it eliminates the
need to move data to cloud storage. It also improves the security and ensures the privacy
protection. Multiple lightweight DBMS work well on RPis such as SQLite, MySQL, TinyDB,
MariaDB, and PostgreSQL. In the proposed methodology, a MySQL DBMS was used, since
it is appropriate for small projects that do not require much scalability and come with zero
configuration. MySQL automates storing data in tables, following most of the SQL-92
standard, and it is characterized by the fact that it does not have a separate server process.

In case a larger database with more scalability, strong security, authentication features,
and the ability of multiple users access is required locally, a DBMS running on a workstation
at the Edge of the network will be a good solution. In case there is a need to store structured
data, an SQL DBMS will be chosen, while for unstructured data, a non-SQL DBMS, such as
MongoDB, is suitable. The time series temperature/humidity measurements can be stored
either in tables in an SQL DBMS or in a time series collection in MongoDB. The third option
is to connect the RPi with a cloud service, such as Microsoft Azure IoT, Google IoT Cloud,
Amazon AWS IoT, Oracle IoT Cloud, and Cloud4RPi. In this case, the RPi sends sensor
data to cloud services using a REST API, and the cloud services store and analyze the data,
following a pay-as-you-go policy model. In addition, the cloud services can also control
and send data to the RPis. This functionality has not been used on the platform, but can be
a potential extension for a different smart home, smart city, or industrial use case.

For the needs of the proposed humidity/temperature use case, the measurements are
stored and ordered by timestamps in different SQL tables. The SQL tables have the name
of the room id in which the sensors are placed and where the measurements are taken.
Moreover, the SQL queries to retrieve the data for the data visualization and the training
of the virtual sensors have been written. Special emphasis has been given to retrieve the
synchronized pairs of parallel measurements in two rooms for a variable time duration.
Further data preprocessing services have been developed, in order to ensure the good
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quality of data, such as the cleansing of duplicate records, imputation of missing values,
and an outlier detection mechanism.

3.7. Virtual Sensors

A virtual sensor is a software component that is based on a ML model and provides
indirect temperature and humidity measurements. In the proposed use case, a smart home
includes one physical sensor installed in a reference room and multiple virtual sensors
corresponding to the rooms in which we want to monitor the temperature and humidity
virtually. The virtual sensors work in two separate modes: (i) the training and (ii) the
inference. In the training mode, the pairs of time series measurements are retrieved by the
DBMS and train a ML model. A regression ML model learns the relationships between
the reference room and the room, which is monitored virtually, with the objective of
minimizing the errors in the forecast values. Every target room has a different relationship
with the reference room that is determined by factors such as its geographic orientation,
the type of wall insulation, and if it faces the sun and the wind. This relationship cannot be
represented by a simple linear regression function, since the data observations may include
non-linear and complicated patterns. After the training of virtual sensors is completed,
the IoT platform moves to the inference mode. In the inference mode, the virtual sensors
take the real measurements from the physical sensor in the reference room as input and
estimate the temperature/humidity in the other rooms.

The regression models have two inputs that correspond to the temperature and humidity
of the reference room. They also have one output that corresponds to the temperature or the
humidity of the target room. However, a question arises as to what is the most appropriate
regression ML model to use. In order to make this selection, the accuracy in the predictions,
the inference time, the training time, and also the accuracy, as a function of the training data
size, are under consideration [37]. This last point is an important factor that many times
has been misunderstood by the researchers. It is a common belief in the literature that the
performance is improved as the data size and the number of deep learning layers and neurons
increase. This is true for very complicated tasks that traditional ML models lack sufficient
capacity, compared with multi-layers perceptrons. However, this performance advantage
comes with the disadvantage of high demands in computational resources in the training
process. In the case that an IoT application runs at the Edge of the network, the computational
resources are limited, let alone, in this proposed use case, where a RPi is used. Thus, if a
lightweight ML model has satisfactory performance, it should be selected, instead of a deep
learning model that is infeasible to be trained at the Edge. Section 5 presents various ML
models and the methodology to build the virtual sensors around them.

3.8. Graphical User Interface

The proposed platform, in addition to making real and virtual measurements, must
also be able to present the final results in an understandable way to its user. In essence,
the virtual measurements that are carried out are displayed in detail to the final user of
the platform, together with some other interesting historical data. The graphical user
interface, in this case, is based on Flask Server. Flask is a small and lightweight Python
web framework that provides useful tools and features that make it easy to build web
applications in Python. Flask uses the Jinja templating engine to dynamically generate
HTML pages using familiar Python concepts, such as variables, loops, lists, and so on.

Through the application, the user has access to the measurements made for each
room (physical measurements for the reference room and virtual measurements for the
target rooms) in real time. Additionally, the user has the opportunity to see the historical
data, along with detailed information regarding the average, max, and min values of
the temperature and humidity for each day, since the start of the measurement period,
as depicted in Figures 4 and 5. Specifically, a graph presents the change of the average
temperature and humidity for the rooms in question over time, using the Matplotlib library,
which is a comprehensive library for creating static, animated, and interactive visualizations
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in Python. These data can be of great importance, if they can be used with other applications
of a smart home, such as smart metering, HVAC applications, etc., to create a better living
environment, while making energy and cost efficient decisions.

3.9. Architecture of the Platform

The hardware and software components, described in the previous subsections, coop-
erate with each other and constitute the final IoT platform illustrated in Figure 6. The phys-
ical temperature and humidity readings from the RPi are sent to a processing Edge node
through socket programming. Next, they are being prepossessed and stored in the local
database. The processing Edge node can also be a RPi or a workstation computer. In the
proposed implementation, a RPi is used to prove that the platform is lightweight and can
be executed and deployed flexibly in cheaper and smaller devices. The IoT platform also
includes the ML algorithm for the virtual sensors, which will be used for model training
based on the stored data. Which ML algorithm is appropriate for a temperature/humidity
virtual sensor is a research question that is discussed theoretically in Section 4 and answered
experimentally in Section 5.

Figure 6. Architecture of the IoT platform.

As explained in Subsection 3.2, the IoT Platform can work in two different states,
the training and the inference. The controller determines which of them will be activated
based on the interaction of the user with the GUI, the connected RPis, and the available
data in the database. In order to run the training, it requires an efficient amount of data
pairs in the database. In a similar way, in order to run the inference, it requires the train
to be completed. The controller makes these checks and runs the appropriate pipeline
components as explained in Sunsection 3.2. Last, but not least, it is important to clarify
that, in this work, the various types of protocols that can be used and the various security
threats that can arise are not examined. In case the reader is interested in these topics, the
following papers are suggested [3,38].

4. Utilizing Machine Learning for Virtual Sensors

The virtual sensors are implemented based on ML models that capture the relation-
ships between the reference room and a target room. In the training stage, historical data
are provided to the ML models, in order to learn the temperature/humidity values of the
target rooms based on the temperature/humidity values of the reference room. The training
process builds a model that minimizes the error between the predicted and true values
of the target variable through an iterative optimization process. After the training of the
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virtual sensor is completed, only the sensor values of the reference room can be used to
infer the temperature and humidity values of the target rooms.

Using two DHT11 sensors, one in the reference room and one in the target room,
the temperature/humidity values are recorded and the training dataset is constructed.
For every target room, two separate regression models are trained, one for the humidity
and one for the temperature. The example smart home, depicted in Figure 3, has six distinct
living areas. A DHT11 sensor is placed in the bedroom, which stands as the reference room,
and records the temperature/humidity with a constant interval. Next, there are five virtual
sensors, with each one corresponding to a target area for the prediction of the temperature
and five virtual sensors for the humidity. Predicting the future value of temperature or
humidity is a regression task because the value is a continuously valued attribute. This is an
important characteristic of the data that is taken into account for the selection, comparison,
and evaluation of the potential ML models that will be presented in this section.

4.1. Time Series Sensor metrics and Dataset Construction

The historical data used for the training of the ML models constitute of a set of time
series. A time series is defined as a series of values of a quantity obtained at successive
times, with equal intervals between them. In the context of a smart home, the temperature
and humidity conditions of each room are sampled with a constant time interval. It is
important to formulate parallel and synchronized measurements in every pair of rooms,
where one room (i.e., bedroom) always stands as a reference room and does not change.
The sensor measurements constitute data points indexed in time order, and for every pair
of rooms, there are four time series, which are the following:

• Reference room temperature;
• Reference room humidity;
• Target room temperature;
• Target room humidity.

While the historical data have a time series structure, the inference process of the virtual
sensors does not follow a statistical time series forecasting methodology, but a regression
ML. This is something that has to be explained. Statistical time series models, such as ARMA
and its variations, such as ARIMA and SARIMA, are based on the stationary assumption,
which means that its statistical properties do not change over time and use an auto-regressive
process to forecast the next value as a linear combination of past values of the target variable.
Thus, while the sensor metrics are recorded and presented as time series, the classical time
series forecasting models cannot capture the relationship between different variables and,
specifically, the relationship between the reference and the target metrics. Regression ML
models estimate the relationship between a dependent variable and one or more independent
variables, as will be discussed in the following subsection.

4.2. Regression Models

Regression analysis is the process of predicting the value of one continuous target
variable as a function of one or more input variables. In the proposed use case, this
takes place by training a model to map the independent variables, which are, jointly, the
temperature and humidity of the reference room, to the dependent variable of temperature
for the one virtual sensor and the humidity for the other virtual sensor. The type of relation
between the dependent and the independent variables is not known beforehand, and it is a
topic of research. The relation of the temperature of the target room to the temperatures and
the humidity of the reference room can depend on various factors, such as their geographic
orientation, the type of wall insulation, and whether they face the sun or the wind. How
these factors affect the relation of the temperature and humidity between rooms is a very
difficult problem to express with a numerical equation. This is the reason why non-linear,
or even black-box data-driven, solutions are chosen. The main categories of regression ML
models are presented in the following subsections. At this point, it is necessary to provide
a brief overview of the regression ML models. In the next section, the models will be
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experimentally evaluated, in order to conclude to the most accurate for the virtual sensors
use case. If the reader wants an extensive study of regression ML models, a reference to the
Christopher M. Bishop’s book Pattern Recognition and ML is suggested [39].

4.2.1. Linear Models

The simplest and most popular regression approach is linear regression. The general
form of linear regression defines the target or dependant variable as a linear function
of the independent or input variables. The advantage of linear regression, compared to
other methods, is that it has good analytical properties, but it does not perform well in
many natural phenomena that cannot be expressed by linear functions. Equation (1) gives
the temperature of the target room ytarget_room

temp as a linear function of the temperature in

the reference room yre f erence_room
temp and the humidity of the reference room yre f erence_room

hum .
The coefficients/weights wtemp0, wtemp1 and wtemp2 are learnable parameters that fit on
historical data to minimize the residual sum of squares between the true values of the
observations and the predicted ones. In the same way, Equation (2) gives the humidity
in the target room ytarget_room

hum as a linear function of the yre f erence_room
temp and the yre f erence_room

hum
using different coefficients whum0, whum1, and whum2. These coefficients express the relation
of the input variables with the target room humidity, instead of the temperature.

ytarget_room
temp = wtemp0 + wtemp1 · y

re f erence_room
temp + wtemp2 · y

re f erence_room
hum (1)

ytarget_room
hum = whum0 + whum1 · y

re f erence_room
temp + whum2 · y

re f erence_room
hum (2)

In case that the temperature and humidity of the reference room are highly correlated, the
phenomenon is named multicollinearity. Multicollinearity renders the ordinary least square
method for the estimation of temperature wt0, wt1, and wt2 and humidity wh0, wh1, and wh2
coefficients inefficient. Ridge regression [40] addresses the multicollinearity by imposing a
penalty on the magnitude of the coefficients. The minimization of the penalized residual
sum of squares converges to more optimal coefficient configurations for the regression model.
In the case that the priors for the coefficients are given by a spherical Gaussian, there is
the Bayesian ridge regression model [41]. Ridge regression can be effective, even if there
are non-linear data observations, by using the kernel trick [42]. Kernel ridge regression
performs ridge regression with a potentially infinite number of nonlinear transformations of
the independent variables. ElasticNet [43] is also an extension of ridge regression that includes
variable selection and regularisation, in order to improve the accuracy. Last, but not least,
instead of using the ordinary least square method for the training of the regression coefficients,
alternative optimization methods, such as stochastic gradient descent (SGD), can be used [44].

4.2.2. Support Vector Regression

Support vector regression (SVR) [45] is an effective regression model for real-value
problems, especially when the historical data are sparse. Sparse data means that the
number of data points is small, compared to the number of input variables. SVR has also
good performance, with non-linearly separable data observations using slack variables.
In addition to this, if the historical data observations are not characterized by linear decision
boundaries, they can be mapped to a higher dimensional space and apply SVR using the
kernel trick. The training of SVR takes place with a symmetrical loss function, which
equally penalizes high and low prediction errors.

SVR fits hyperplanes in an n-dimensional space and provides predictions, with func-
tion f , as given in Equation (3), based on a decision boundary and an error margin ε. The f
represents the temperature or humidity in the target room. The learning process tunes the ε
to gain an acceptable accuracy, minimizing the coefficients w and satisfying the constraints
in Equation (4). w is a feature vector including the learnable parameters of the hyperplanes,
and x is a feature vector that includes the temperature and humidity of the reference room.
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The learnable parameters of SVR are different from the learnable parameters of the linear
models because they follow different ML methodologies and they are based on different
mathematical models. Equation (4) can be solved using the Lagrange multiplier method.

f (x) = 〈w, x〉+ b with w ∈ X, b ∈ R (3)

minimize 1
2‖w‖2

subject to =
{

yi − 〈w, xi〉 − b ≤ ε〈w, xi〉+ b− yi ≤ ε
(4)

SVR is promising, in terms of generalizing unforeseen data observations. This has
practical applications for virtual sensors working in unusual weather phenomena that
differ from the conditions the historical dataset constructed. On the other hand, SVR
has some significant limitations that make it unsuitable as the basis for virtual sensors.
The limitations are that: (a) SVR using the kernel trick can be quite sensitive to overfitting,
(b) it is affected by noisy data, and (c) it fails to adapt in data observations with close input
feature vectors, but significantly different outcomes.

4.2.3. Bootstrap Aggregating

A ML regression approach that often performs very well is ensemble learning. Ensem-
ble learning is based on the principle of combining multiple base learners to form one strong
learner. The two ensemble learning categories that are examined for virtual sensors are the
bootstrap aggregating and boosting methods. Bootstrap aggregating [12], also named the
bagging process, often uses decision trees as base learners. The decision trees are trained
on separate variations of the original dataset, which are called bootstrapped data sets.
The bootstrapped data sets are generated by sampling with the replacement of the original
dataset of temperature and humidity. Every individual base learner in the ensemble has a
different perspective of the prediction task, promoting a diversity that removes the variance
of the single base learners and is less prone to overfitting. In the end, the ensemble’s overall
assessment is considered by the aggregation of the individual outputs.

One well-established implementation of bootstrap aggregating method is the random
forests [46]. Random forests are based on multiple decision trees trained on bootstrapped
data sets. Decision trees are base learners that rely on a tree-like data structure and
hierarchically partition the feature space using a sequence of tests on the individual features.
Decision trees have limitations, for instance, they memorise irregular data patters and
overfit the historical data. Random forests aggregating multiple decision trees overcome
these limitations and improve the robustness and predictive performance. The average
predictions of the individual decision trees is the final output of the random forests.

4.2.4. Boosting

Boosting [13] has a common characteristic with bootstrap aggregating that works
in different variations of the historical dataset. The main difference is that, in bootstrap
aggregating, the variations of the datasets are generated by sampling with a uniform
distribution, while in the boosting methods, the miss-predicted data instances have higher
probability to be sampled, compared with the correctly predicted instances. Therefore,
there are sequential rounds of dataset constructions and individual base learners training.
In the first variation of the dataset, all data instances have equal sampling probability.
From this dataset, the first base learner is trained and evaluated. Next, the second variation
of the dataset is generated with a sampling probability proportional to their evaluation
errors. The process of data generation, the training of the base learners, and the evaluation
continue until the evaluation error has been shrunk under a given threshold value or a
specific number of base learners is added to the ensemble. In the inference stage, the output
of the boosting method is the weighted average of all individual base learners.

Adaptive boosting (AdaBoost) [47] is one of the most widely used boosting algorithms,
with applications in numerous practical use cases. AdaBoost iteratively uses decision stumps
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in separate features, following the principle that each subsequent decision stump is forced
to concentrate on data instances that are significantly miss-predicted by the previous ones
in the sequence. Decision stumps are one-level decision trees with only one split. Gradient
boosting [48] goes a step further, using an optimization process on a differentiable cost function
to choose which decision stump will be added in the ensemble. Specifically, gradient boosting
applies the gradient descent algorithm on (a) squared error, (b) absolute error, or (c) huber
loss between the predicted values and the target values. Since the training of the virtual
sensor takes place on an IoT device, it is crucial to resort in lightweight boosting methods,
such as LightGBM (LGBM) [49] and Histogram-based gradient boosting [50]. These methods
significantly speed up the training process by reducing the number of values for continuous
input features. This takes place by discretizing or binning the temperature and humidity
instances into a fixed number of buckets. Last, but not least, it is mentioned that XGBoost (XGB)
[51] has won many prestigious ML competitions and has many improvements, compared to
other boosting methods, as it penalises the complexity on trees, shrinks the leaf nodes, uses
feature selection, and applies the Newton method, instead of a gradient descent.

4.2.5. Regression Artificial Neural Network

Regression artificial neural networks (RANN) [14] are based on hierarchical represen-
tations and transformations of the input feature vector, in order to predict a continuous
output variable. The representation of the input vector takes place by a number of neu-
rons that apply a non-linear activation function, such as ReLu and softmax to the input.
The artificial neurons are organized in sequential layers, forming a directed graph from the
input feature vector to the output continuous value. In case the hidden layers between the
input and the output are many, these models are named deep learning. Regression deep
learning models include many design decisions and became known as hyperparameters,
and they should be taken into consideration, in order to provide accurate results. Some
of the hyperparameters are the number of layers, the number of neurons in each layer,
the activation function, the optimization process, the loss function, and the percentage of
regularization. A hypertuning process, such as Bayesian optimization or a genetic algo-
rithm, can automatically search through many hyperparameter combinations, in order to
conclude to a close-to-optimal RANN.

The literature mentions different types of RANN, categorized according to the type
of problem they tackle and the data representation they use. Specifically, recurrent neural
networks are used for sequential data values and convolutional neural networks for grid-
like topologies. The prediction of temperature and humidity in a target room works as
a function of the sensor measurements in the reference room. In this process, a feature
vector representation and a feed-forward neural network are used. Lately, ANNs have
gained massive popularity and, indisputably, the majority of researchers conclude that they
outperform other ML and regression models [52]. The large number of parameters coded
as weights and biases in the synapses of neurons give plasticity to the models for efficient
adaptation and generalization to complicated tasks and data. This takes place without
memorization and without overfitting the historical observations.

F(x) = wT
3 · σ(wT

2 · σ(wT
1 x + b1) + b2) + b3 (5)

The hypertuning process concluded a feed-forward RANN with three layers, as given
in Equation (5), where σ is the ReLu activation function given as σ(x) = max(0, x), T
denotes the transpose matrices of the neurons weights w1, w2, w3 of each layer, and b1, b2, b3
are the neurons biases of the layers

5. Implementation of the IoT Platform and Experimental Evaluation

The IoT Platform has been implemented, as described in Section 3. During the op-
eration of the platform, the historical data are recorded, following the training pipeline,
as depicted in Figure 2. Following, the ML models that constitute the core of the virtual
sensors are built using the recorded historical data. In Section 5.1, the front-end of the
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IoT platform is presented, as displayed by the end user. In Section 5.2, the experimental
evaluation and comparison of the various ML models are provided. These models are
described in Section 4. The ML literature includes so many regression models that it is not
feasible to examine them all. Fourteen well-established regression models are implemented
and compered, in order to conclude which is the most accurate for the virtual sensors of
temperature and humidity. In addition, the pros and cons of each regression algorithm,
based on the target metric, the room, the magnitude, and the frequency of errors, are
discussed. This experimental comparison to select the regression ML model that will be
used for the virtual sensors took place only one time in the lab. Thus, it is possible to
observe the applicability of the proposed methodology and select the most accurate model.

5.1. Implementation of the IoT Platform

In Figure 3, we have seen the web GUI depicting the smart home where the exper-
iments took place. The bedroom was set as the reference room, and the last physical
measurements of temperature and humidity are indicated with black fonts. Additionally,
these physical sensor values are provided to the virtual sensors, and the inferred temper-
ature/humidity values for the remaining rooms are depicted with pink fonts. For more
information about the historical data, the user, by clicking on the Historical Data button
on the page, is transferred to the HTML page of ‘Historical Data’. On this page, and as
can be seen in Figure 7, there is information about the latest update from the physical
sensors. There are also graphical representations of the data for the reference and the target
measurements depicted in Figure 5. These historical metrics are used in the training stage,
in order to build the virtual sensors. In addition, the platform can provide basic statistical
measurements of the physical or virtual sensors on a daily basis, as shown in Figure 8.

Figure 7. Latest temperature/humidity update from indoor and outdoor sensor.

It is important to mention that the information and the GUI layout presented may
not be in the interest of end users looking for a commercial application. The proposed
IoT platform [53] is designed and developed as a roadmap for researchers that need a
lightweight, simple, extensible, and cost-effective alternative to commercial IoT platforms.
This platform could help the researchers to integrate and test their innovative ideas in the
domain of a smart home or a local IoT environment emphasizing the use of physical and
virtual sensors. The quality of experience was good, with a response time of less than
180 ms for all the services it offers, while the communication between the DHT11 equipped
RPis was established successfully via Wi-Fi through the socket connection.
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Figure 8. Statistical measures of temperature and humidity on a daily basis.

5.2. Experimental Comparison of Regression Models

The virtual sensors have been implemented and experimentally evaluated in the Python
3 programming language using the libraries NumPy, pandas, Scikit-learn, SciPy, and Keras.
The environment that was used for the experimental comparison was a Jupyter notebook of the
Google Colaboratory, while the final Python scripts were run on the RPi devices.

5.2.1. Evaluation Metrics

In the provided experiments, Celsius degrees were used as the unit of measurement
for temperature, as well as the relative humidity for humidity. For the evaluation and
comparison of the regression ML models, the mean absolute error (MAE) and the mean
squared error (MSE) evaluation metrics were used.

The MAE represents the difference between the original (real) and predicted (pred)
values extracted from the mean of the absolute difference in the data set.

MAE = 1
n ∑n

i=1

∣∣∣yreal
i − ypred

i

∣∣∣
MSE represents the difference between the original and predicted values extracted by

the square of the mean difference in the data set.

MSE = 1
n ∑n

i=1

(
yreal

i − ypred
i

)2

As MSE assigns a higher weight to larger prediction errors, it is more useful when
large prediction errors are undesirable. However, MAE is preferred when all errors have
the same importance. Furthermore, MSE is equal to or greater than MAE and may increase
more than MAE as the dataset increases.

5.2.2. Experimental Outcomes

For the experiments, multiple time series were recorded, which include synchronized
pairs of temperature and humidity of the reference room and one of the target rooms,
as depicted in Figure 3. Every time series has a one-minute time step and is sampled
over one week. The time series is split into a training set containing the first 66% part of
the sequential observations and the testing set including the last 34% of the observations.
For every virtual sensor, a separate ML model was used, trained from scratch, without
applying any transfer learning method among the models.

In Table 1, the experimental evaluation results were summarized, in terms of MAE and
MSE for the linear regression, the SVR, bootstrap aggregating, boosting, and RANN models
that are described in Section 4. Bold fonts is mark the best model in every target room.
In the case that two models have the same performance, they are both marked with bold
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fonts. Data scientists and ML researchers, when they make an experimental comparison
of different models, prefer to present one model that beats the others and has the best
performance. While this simplistic approach has many benefits, since it makes for straight-
forward data storytelling extolling and proposing one model that comes as an answer to
the research challenge, it is far from reality for many practical and daily challenges.

Table 1. Evaluation of algorithms for every room.

Balcony Road Balcony Yard Bathroom Kitchen Living Room

Method MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

AdaBoost 1.5979 7.9375 2.1441 11.4992 1.2489 4.6465 1.4622 5.6672 0.4514 0.5641

BayesianRidge 2.3006 13.8466 3.5628 31.6905 2.3008 15.9389 2.615 18.2141 0.6203 0.9227

CatBoost 1.7342 8.4643 2.7629 19.6283 1.5183 7.1468 1.6053 6.222 0.7497 1.5373

ElasticNet 3.2091 26.8315 6.1497 53.2716 3.7351 29.7033 3.1341 20.6357 1.5846 6.148

GradientBoosting 1.2766 6.7852 1.4735 7.8794 0.9742 3.286 1.175 4.4579 0.403 0.5164

HistGradientBoosting 1.2739 6.7954 1.4445 8.038 0.9616 3.3028 1.1699 4.4341 0.4086 0.527

KernelRidge 2.7284 17.9775 4.6942 36.4387 3.5894 29.4789 3.0437 20.3099 1.1785 2.1707

LinearRegression 2.3017 13.8427 3.5601 31.7293 2.2997 15.9374 2.6053 18.1556 0.6202 0.9223

LGBM 1.2739 6.7954 1.4445 8.038 0.9612 3.2955 1.1699 4.4341 0.4086 0.527

RandomForest 1.2687 6.81 1.4354 8.0045 0.9494 3.2712 1.1796 4.4817 0.403 0.5159

SGD 3.0123 23.4168 5.7962 46.7601 3.6078 26.5266 3.0486 19.0202 1.4105 4.266

SVR 4.7412 41.0185 6.3415 57.2641 3.8512 37.7262 3.2094 20.6586 1.6955 6.2129

XGB 1.6581 8.7605 2.4448 13.9481 1.0882 3.8424 1.1766 4.4844 0.4239 0.5275

RANN 1.4645 7.5782 1.4235 9.0569 1.3114 6.0497 1.2715 5.2777 0.4498 0.5973

By delving into the results of Table 1, it can be observed that the virtual sensors
perform very well, having a MAE close to one in most of the rooms and ML models. These
MAE values are indicative that, most of the time, the virtual sensor outputs are very close to
the real values. This conclusion will become more evident when the outcomes are discussed
in the next tables. It is to be noted that the MSE can not express what the potential worst
errors of the models are. However, it states which models should be avoided, in the case
that large errors are undesirable, even if they occur rarely. As it can be seen, in most cases,
the models that output small MAE also output small MSE. There is not one model that
has the best performance in all rooms, but random forest excels because it has the smallest
MAE in three of the five target rooms and the second best in the remaining two.

Tables 2–6 show the percentage of times that the ML models predicted exactly the
correct temperature and humidity and the percentage of times the predictions had an error
less than or equal to one degree for every target room. Again, it is understood that, even if
there is high accuracy, there is not one specific ML model that outperforms the others. Nor
yet, is there one category of regression models that performs better than the others, since
bootstrap aggregating, boosting, and linear models equally have the first position in some
circumstances. Nevertheless, it is obvious that the exactly correct prediction of temperature
varies in a range from 58.8% to 90.91%, and for all the rooms, the prediction with an error
equal or less to 1% ranges from 84.15% to 100%. These numbers give us confidence that,
almost always, the correct temperature will be predicted, and if the virtual sensor fails
to give a correct measurement, it will deviate for less than 1%, which is a smaller error
than the accuracy of the DHT11 sensor. The accuracy of DHT11 sensor is ±2 °C in the
temperature range of 0–50 °C and ±5% for the humidity in the range 20–90%.
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Table 2. Evaluation of algorithms for the measurements bedroom-road balcony.

Balcony Road % of Correct Value % of ±1 Value

Method Temp. Hum. Temp. Hum.

AdaBoost 59.81% 22.51% 99.50% 41.48%

BayesianRidge 21.83% 0.7% 68.66% 21.83%

CatBoost 26.41% 10.92% 66.2% 44.01%

ElasticNet 1.06% 0.0% 13.03% 0.35%

GradientBoosting 50.7% 24.3% 83.1% 62.68%

HistGradientBoosting 53.52% 30.99% 83.1% 69.01%

KernelRidge 1.06% 0.35% 4.93% 17.25%

LinearRegression 21.83% 0.7% 68.66% 21.83%

LGBM 53.52% 30.99% 83.1% 69.01%

RandomForest 54.23% 27.82% 82.75% 67.25%

SGD 1.41% 0.0% 5.28% 0.7%

SVR 13.38% 0.0% 40.49% 0.35%

XGB 30.99% 14.79% 71.83% 39.08%

RANN 58.80% 29.58% 84.15% 69.37%

Table 3. Evaluation of algorithms for the measurements bedroom-yard balcony.

Balcony Yard % of Correct Value % of ±1 Value

Method Temp. Hum. Temp. Hum.

AdaBoost 32.75% 15.49% 73.24% 45.42%

BayesianRidge 21.83% 0.7% 68.66% 21.83%

CatBoost 26.41% 10.92% 66.2% 44.01%

ElasticNet 1.06% 0.0% 13.03% 0.35%

GradientBoosting 50.7% 24.3% 83.1% 62.68%

HistGradientBoosting 53.52% 30.99% 83.1% 69.01%

KernelRidge 1.06% 0.35% 4.93% 17.25%

LinearRegression 21.83% 0.7% 68.66% 21.83%

LGBM 53.52% 30.99% 83.1% 69.01%

RandomForest 54.23% 27.82% 82.75% 67.25%

SGD 1.41% 0.0% 5.28% 0.7%

SVR 13.38% 0.0% 40.49% 0.35%

XGB 30.99% 14.79% 71.83% 39.08%

RANN 58.80% 29.58% 84.15% 69.37%

Table 4. Evaluation of algorithms for the measurements bedroom-bathroom.

Bathroom % of Correct Value % of ±1 Value

Method Temp. Hum. Temp. Hum.

AdaBoost 89.57% 6.75% 98.47% 45.09%

BayesianRidge 87.42% 3.07% 99.08% 25.77%
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Table 4. Cont.

Bathroom % of Correct Value % of ±1 Value

Method Temp. Hum. Temp. Hum.

CatBoost 87.42% 5.52% 98.77% 39.26%

ElasticNet 63.19% 1.53% 98.16% 6.13%

GradientBoosting 82.82% 7.36% 99.69% 59.82%

HistGradientBoosting 82.52% 12.27% 99.69% 60.12%

KernelRidge 27.91% 0.61% 57.36% 10.43%

LinearRegression 87.42% 3.07% 99.08% 25.77%

LGBM 82.52% 12.27% 99.69% 60.12%

RandomForest 82.52% 12.27% 99.39% 60.12%

SGD 34.05% 3.99% 99.39% 9.51%

SVR 34.97% 4.29% 100.0% 15.34%

XGB 83.44% 10.12% 99.69% 51.23%

RANN 87.42% 12.27% 98.16% 52.76%

Table 5. Evaluation of algorithms for the measurements bedroom-kitchen.

Kitchen % of Correct Value % of ±1 Value

Method Temp. Hum. Temp. Hum.

AdaBoost 72.44% 10.95% 99.29% 39.22%

BayesianRidge 68.2% 14.13% 100.0% 26.86%

CatBoost 73.14% 7.77% 99.29% 32.86%

ElasticNet 70.67% 0.35% 99.29% 1.06%

GradientBoosting 73.14% 15.9% 99.29% 51.94%

HistGradientBoosting 72.44% 15.19% 99.65% 52.65%

KernelRidge 22.61% 12.01% 60.78% 32.86%

LinearRegression 68.2% 13.78% 100.0% 25.09%

LGBM 72.44% 15.19% 99.65% 52.65%

RandomForest 72.44% 15.9% 99.65% 51.94%

SGD 39.93% 0.35% 86.22% 7.77%

SVR 22.61% 0.35% 93.99% 1.06%

XGB 73.14% 17.67% 99.29% 51.59%

RANN 72.44% 26.15% 99.29% 50.18%

Table 6. Evaluation of algorithms for the measurements bedroom-living room.

Livingroom % of Correct Value % of ±1 Value

Method Temp. Hum. Temp. Hum.

AdaBoost 90.91% 46.67% 100.0% 86.06%

BayesianRidge 81.82% 33.64% 100.0% 76.67%

CatBoost 88.18% 28.18% 100.0% 66.97%

ElasticNet 80.91% 8.18% 100.0% 26.06%

GradientBoosting 88.18% 51.82% 100.0% 87.58%
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Table 6. Cont.

Livingroom % of Correct Value % of ±1 Value

Method Temp. Hum. Temp. Hum.

HistGradientBoosting 88.18% 50.91% 100.0% 87.27%

KernelRidge 17.27% 24.85% 74.85% 70.91%

LinearRegression 90.91% 33.64% 100.0% 76.67%

LGBM 88.18% 50.91% 100.0% 87.27%

RandomForest 88.18% 51.82% 100.0% 87.58%

SGD 68.48% 8.18% 98.18% 33.94%

SVR 80.91% 8.18% 100.0% 26.06%

XGB 88.18% 51.21% 100.0% 87.58%

RANN 90.61% 49.09% 100.0% 83.33%

Another observation is that the accuracy for the humidity is significant lower than the
temperature. The reason behind this behavior is that the range of values for the humidity
is greater than that of temperature. Nonetheless, such deviation is insignificant in practical
applications and not easily perceived by humans. The exactly correct prediction of humidity
is in a range from 12.27% to 51.82%, and for all the rooms, the prediction with an error is equal
or less to 1% ranges from 52.65% to 87.58%. One more remark is that, many times, there are
two, three, or more regression models that have the best accuracy. This can be attributed to
the fact that the data observations include repeated patterns, and the models that capture
these data patterns have significantly better performance than the models that do not.

The virtual sensors should respond with low latency, in order to provide timely results
with no significant computational and transmission delays. Regarding the transmission
time of the data, it is as fast, or even faster, than physical sensors, since they run on the
same device that hosts the IoT Platform, eliminating any propagation delays or delays
from retransmissions due to weak channel conditions. Regarding the computational delay,
it can be distinguished in two different types, the inference time and the training time.
The inference time is defined as the time overhead, since the data came into the regression
model until the result was extracted. The inference time for one single prediction in the ML
models ranges from 0.8 ms to 40 ms, and for the RANN, it is close to 48 ms. The training
time is defined as the time it takes a model to fit its parameters, also known as learning
from historical data. The training time in ML models for one day historical data ranges
from 2 ms to 817 ms, and for the RANN, it is close to 172 s. A distinction is made between
RANN and the other ML models because RANN includes the hypertuning algorithm,
and, generally speaking, deep learning methods are notorious for being computationally
expensive. In any case, the training occurs sporadically when the virtual sensors need
updating, and these training times should not be of concern, even if the processing takes
place in a RPi.

The last comment is about the importance of selecting the correct ML model. The re-
sults in Tables 3–6 show that the selection of the ML model is a very important factor for
the good performance of the virtual sensors. As an example, in the target area of the road
balcony, the selection of ElasticNet gives an accuracy of 13.03%, while the selection of
AdaBoost gives an accuracy close to 99.50%. For this reason, it can be deduced that the
experimental comparison of the different ML models, even though they provide different
results for every target area, should be carried out, since it gives the most important answer
to the question of how to design a virtual sensor. This does not necessarily imply that the
researchers have to make tedious experiments and comparisons every time they need a new
virtual sensor. In contrast, an AutoML [54] approach can be applied that eliminates any
human intervention from the training and evaluation process and automatically concludes
which is the most accurate ML model.
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6. Conclusions and Future Work

This paper discusses how we can design and implement virtual sensors in an IoT environ-
ment, in the context of a smart home use case. First, a guideline of how researchers can build
their own custom IoT platform was provided, in order to test and develop a prototype virtual
sensor. Next, a detailed analysis was laid out of how ML models can learn the relationships
between the metrics of physical sensors, in order to replace most of them with virtual counter-
parts. The proposed methodology has been implemented and evaluated in a real environment,
while the experimental outcomes confirmed the applicability of our approach.

As future work, it is worth investigating the use of open data to improve the performance
of the proposed model or completely replace the physical sensors. It is important to examine
whether models can be built that take input of open weather APIs and learn to predict the
temperature and humidity in every room. Currently, virtual sensors are used only for monitoring
purposes. The aim is to manage heating/cooling devices and integrate physical actuators
together with virtual sensors. The ultimate vision of this future direction is to bring us closer to an
ambient intelligent environment that automatically makes decisions and interacts with humans.
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