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Abstract: Generalization has always been a keyword in deep learning. Pretrained models and
domain adaptation technology have received widespread attention in solving the problem of general-
ization. They are all focused on finding features in data to improve the generalization ability and to
prevent overfitting. Although they have achieved good results in various tasks, those models are
unstable when classifying a sentence whose label is positive but still contains negative phrases. In
this article, we analyzed the attention heat map of the benchmarks and found that previous models
pay more attention to the phrase rather than to the semantic information of the whole sentence.
Moreover, we proposed a method to scatter the attention away from opposite sentiment words to
avoid a one-sided judgment. We designed a two-stream network and stacked the gradient reversal
layer and feature projection layer within the auxiliary network. The gradient reversal layer can
reverse the gradient of features in the training stage so that the parameters are optimized following
the reversed gradient in the backpropagation stage. We utilized an auxiliary network to extract the
backward features and then fed them into the main network to merge them with normal features
extracted by the main network. We applied this method to the three baselines of TextCNN, BERT, and
RoBERTa using sentiment analysis and sarcasm detection datasets. The results show that our method
can improve the sentiment analysis datasets by 0.5% and the sarcasm detection datasets by 2.1%.

Keywords: deep learning; text classification; two-stream networks; feature fusion; sentiment
classification; sarcasm detection

1. Introduction

Text classification is an essential and vital branch of the natural language process (NLP).
It has received widespread attention from many scholars who utilize neural networks
to extract high-quality semantic features from inputs such as sentences and documents.
The most classic model among the neural network models is the convolutional neural
network [1]. This model can extract highly representative semantic features for classification.
Although the CNN-based model can effectively capture local- and fixed-position features,
its accuracy still needs to be improved. The most recent model is BERT, proposed by
Kenton et al. [2]. BERT and RoBERTa [3] use pretrained technology on large datasets to
capture the universal information to improve the generalization ability.

However, even if these algorithms could achieve a state-of-the-art performance, there
would still be room for improvement. From the perspective of features, these algorithms
make mistakes in specific sentences. For example, when the trained RoBERTa judges the
sentence, a “charming and funny (but ultimately silly) movie”, RoBERTa classifies it as
a negative comment. However, it is a positive comment. We analyzed the attention heat
map and can assume that RoBERTa pays more attention to the phrase “but ultimately silly”
rather than “charming and funny”, which is the reason for the mistake. The heat map of
RoBERTa’s analysis of this sentence is shown in Figure 6.

To address this point, our study follows the research ideas and processes presented in
this paper to allow models to be able to scatter the attention of opposite sentiment words
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given to core sentiment words. In this paper, we utilize a two-stream network structure
to further study the relative differences between the backward features of the auxiliary
network and normal features of the main network to improve the representation ability
of feature vectors. For example, we first extract backward features through an auxiliary
network and then use a feature projection layer to obtain the extra vector, which has the
same direction as the normal feature. After that, to leverage the balance between normal
feature vectors and extra vectors, we study a method to aggregate normal features and
extra vectors that are projected after the projection layer. We assume that such a design has
the potential to analyze more information about the context through end-to-end training.

Inspired by the feature purification network (FP-Net) [4], we propose a method called
the feature augmentation network (FA-Net). Separately, F-Net refers to the main network,
and A-Net refers to the auxiliary network. The A-Net uses the gradient reversal layer [5] to
extract the backward features that contain backward contextual information. Meanwhile,
the F-Net is a normal network such as a CNN or BERT. This means the major work carried
out by the F-Net is meant to extract normal feature vectors. Before feeding the normal
vector into the classifier, we calculate an extra vector through feature projection that is in
the same direction as the normal vectors. After that, we concatenate normal vectors and
extra vectors together, creating a new feature vector. Finally, the model feeds a new vector
into the classifier. This study makes three main contributions:

• The parameters of our model are acceptable. Even in the BERT-based model, our
model only has one or two additional encoder layers.

• Our algorithm is efficiently utilized at different benchmarks, such as with the CNN and
BERT, and it is not conflicted with other operations that improve
generalization capabilities.

• We analyze the influence of the auxiliary network on the attention score of the main
network, expressing the efficiency of the auxiliary network through the attention
heat map.

To better explain the proposed methods, we introduce relevant research on text clas-
sification and feature fusion and briefly describe their practices in Section 2. In Section 3,
we describe the six open-source datasets and three open-source models that are used
as the experiment materials. We also focus on introducing our model’s structure in
Section 3. Later, we list our experimental data in Section 4. To show the effectiveness
of our method, we implement it on sentiment analysis and sarcasm detection datasets. We
list the average results under five seeds and illustrate the stability of the model through
deviation. We also analyze our experimental results and discuss the projection type, the
number of subnetworks, and the type of subnetworks. We also prove that our idea is
consistent with the hypothesis from the perspective of the attention heat map. In Section 5,
we explain our conclusions and future prospects.

2. Related Works

The well-known RNN model used for text classification is long short-term memory
(LSTM) [6,7]. LSTM uses the forget gate to choose whether to retain the previous infor-
mation or not. Thus, LSTM is good at processing long-term-dependent input. However,
compared to CNNs, LSTM does not run fast, causing some scholars to turn their attention
to the CNN models, which can operate fast and parallel to the training stage.

The TextCNN [1] sets fixed filter sizes that work on embedded vectors to capture
context information. Then, the maxpooling focus is used on salience features. To obtain
more information on these features, Wang et al. [8] proposed a method that uses a concen-
tration mechanism to pick out the key features for short text classification. However, the
problem with TextCNN is that it is hard to obtain the long-term information because of the
n-gram mechanism of convolution filters, which can only operate on several consecutive
words simultaneously. Therefore, Lai et al. [9] combined the advantages of the TextCNN
and RNN and designed the TextRCNN algorithm. They utilized the Bi-RNN to build the
left and right contexts, then concatenated those vectors with embedding vectors to feed
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them into one neural layer and generate the latent semantic vector and finally extracted the
feature through max pooling, as is performed via the TextCNN. After the TextCNN, many
advent approaches related to neural networks were proposed, such as, e.g., the DCNN [10],
HAN [11]. The DCNN uses dynamic k-max pooling to extract long-distance features that
were separated dynamically. The HAN uses a multilayer recurrent neural network and an
attention mechanism to extract long-sentence semantic features.

Although some people are still studying the RNN and CNN model structures for
text classification, the naive attention [12] mechanism was proposed. After this, many
variants of attention mechanisms appeared, such as local attention, global attention, and
soft attention. The most effective attention mechanism is self-attention. As proposed by
Vaswani et al. [13], this model effectively reduces the calculation cost by parallel computing
the attention score of each word in the text or document. Furthermore, based on transformer
and attention mechanisms, some scholars utilized other fields’ technologies to improve the
model’s performance. BERT combines pretrained technology, transformer encoders, and
the training of a vast corpus to extract more comprehensive feature vectors and achieve an
SOTA performance for a wide range of tasks. Based on BERT, some scholars proposed more
effective models, such as RoBERTa. This method changed static masking to the dynamic
masking of sentences and removed next-sentence prediction (NSP); thus, its main difference
with BERT is in the pretraining stage. Indeed, this way improves the performance of BERT.

Due to the highly expressive ability of BERT’s encoder, many scholars take the features
extracted by the encoder as their research focus. Qin et al. [4] proposed a feature projection
layer to eliminate the redundant information of features and improve the quality of features.
G Niu et al. [14] proposed a new Encoder1–Encoder2 structure, where Encoder1 is a
global information extractor and Encoder2 is a local information extractor. The global
information vectors are merged with the local information vectors for a higher performance.
Ying et al. [15] proposed an unsupervised saliency detection approach, which utilizes an
elastic-net-based hypergraph model to discover the group structure relationships of salient
regional points. They also use a saliency map to obtain high-level semantic features. Then,
they fused the low-level deep and high-level semantic features into a similarity matrix.
Wang et al. [16] proposed a novel structure comprising three modules. One of the modules
is responsible for multiscale feature alignment fusion. The other modules are focused on
different scale channels and the adaptive weighted fusion of spatial locations, as well as
the multiscale fusion of global and local features. Long et al. [17] proposed a method for
mining the relationships between labeled and unlabeled data. They used the co-occurrence
of words in all documents to build a neighbor table and use multidimensional scaling
(MDS) to extract the feature representation of the adjacency table. Then, they integrated the
new graph-based representation and the document–term representation as the new hybrid
augmented feature representation. Huang et al. [18] added other cheap modules, called
Ghost Modules, to capture more semantic information and then fused them with normal
features extracted by the base model. They studied the 2D convolutional operation and
1D convolutional operation of the Ghost Modules. Additionally, they also analyzed which
position was better when inserting their Ghost Modules within the transformer encoder.

3. Materials and Methods
3.1. Methods

In this paper, we mainly studied the deep learning approach to improve the quality of
feature vectors. Our method has a built-in feature projection layer and gradient reversal
layer in the auxiliary network. For the projection layer, in our implementation, we de-
composed the backward features in two directions and chose the one that has the same
direction as the normal feature, keeping in line with our assumption. Another direction is
not suitable for our method because the effectiveness is not apparent. The gradient reversal
layer is vital to help the model scatter the attention score of a phrase whose semantic
meaning is opposite to that of the sentence. Because the gradient reversal layer can reverse
the gradient of backward features, a normal feature fused with the extra feature generated
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by the projection layer can contain the reversed gradient information to force the model to
focus on core words other than the contradictory words. We conducted our experiments
under the different types and sizes of the subnetwork to show the different results. For
example, we cut down the number of filter sizes in the CNN model to find an appropriate
and time-effective extractor for the auxiliary network. Additionally, we did not use the
convolution layer to extract extra features except in the CNN models. In contrast, we
utilized the transformer encoder to extract additional features, as it can generate more
explainable features than the convolution layer. The overview of the structure of our FA-Net
is described in Figure 1.

Extractor

…

The film is one of the year’s best

Embedding

GRL

Extractor

Feature Feature

Projection Layer

Positive

MLP

Normal features 𝒗𝒇 Backward features 𝒗𝒂

Projection layer

F-Net
A-Net

Extractor

𝐸f

𝐸𝑎

𝒗𝒇 𝒗𝒂

𝒗𝒇
∗Fusion features 𝒗𝒇

∗

ഥ𝒗𝒇

…

Figure 1. The architecture of FA-Net. The right structure shows the detail of the projection layer. The
left one displays the whole network as part of the right boxed figure. Each component is the same
except for the extractor of F-Net and A-Net. Note that the “Embedding” concludes with the blue box,
but it is not the embedding layer. Rather, it is an abstract layer. The outputs of “Embedding” may be
produced by the embedding layer or by one of the transformer encoder layers.

As shown in Figure 1, our network consists of two networks. The F-Net attentively
extracts the normal features v f by utilizing the extractor E f with perturbation from the
A-Net. On the other side, the A-Net is focused on extracting backward features va through
the gradient reversal layer. In our implementations, the type of Ea is the same as that of
E f , which means the layer type of the A-Net follows that of the F-Net. If the F-Net utilizes
the convolutional layer to extract the features, the A-Net does the same. The other exciting
settings are the size and inputs of Ea. The size of extractor Ea is smaller than the size of E f .
The input of Ea is the cloned output from one of the encoders of E f . After feeding the cloned
feature vector into the A-Net, the output of the A-Net is entered into the projection layer
with the output of the F-Net. The final feature vector is obtained through the projection
layer and fed into the classification layer to generate the output of the whole network.

In the backpropagation stage, we initialized two optimizers. The optimizer of the F-
Net is responsible for updating the F-Net’s parameters and the parameter of the embedding
layer, and the optimizer of the A-Net is accountable for updating the A-Net’s parameters.
To explain the algorithms directly, we list the algorithm procedure in Algorithm 1.
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Algorithm 1: Feature Augmentation Network

input :Dataset D = {(xi, yi)
N
i=1}, and Xi is the embedding outputs of xi

1 Initialize the paramaters θ of the model;
2 for each iteration b = 1, 2, . . . , M do
3 Sample one batch of data from D;
4 Use BERT tokenizer to tokenize the batched data;
5 F-Net part:
6 Generate all hidden states Vf via E f ;
7 if model is BERT-based, then clone one of the hidden states v from Vf ;
8 else clone the embedding outputs Xi as v;
9 C-Net part:

10 Feed v to Ea to genrate the hidden state va by using Equation (6);
11 va go through GRL by using Equations (7)–(9);
12 Projection part:
13 Generate v f by using Equation (10);
14 Concatenate v f and v f and then feed into Equation (13);
15 Update parameters:
16 Backpropagation of the gradient according to loss L;
17 Update the parameters θ f of the F-Net;
18 Update the parameters θa of the A-Net;
19 end

Although our network consists of two networks, both networks share one loss function
L. The advantage of this is that the amount of time consumed by the model is reduced.
The loss function of the whole network is as follows:

L = L f = La (1)

We introduced the proposed method by following the structure of the FA-TextCNN as
an example. The FA-TextCNN is a model that applies our method to the TextCNN. Each
part is as follows:

F-Net Module: For the FA-TextCNN, a dataset D = {(xi, yi) | i ∈ 1, . . . , N} is given,
where xi is a sentence or document with the corpus length L (after padding or cutting), N is
the size of the training data, and yi is the label of xi. Here, xi feeds into the embedding layer
with a fixed embedding size e to generate the embedded output Xi ∈ RL×e. Whereafter,
Xi feeds into the feature extractor E f with convolutional filters and n-gram to generate
features v f as follows:

cj
i = f (W · Xi[j : j + n− 1, :] + b) (2)

ci = [c0
i , c1

i , . . . , cL−n
i ] (3)

where j ∈ 0, . . . , L− n and W ∈ Rn×e is the weight of the convolution filter, and n is the
n-gram size of each convolutional filter. Moreover, f is the active function, similar to ReLU.
The outcome of feature fc under the n-gram and a filter is as follows:

fc = [c0, c1, c2, . . . , cL−n] (4)

After this, we used the maxpooling operation over the feature map and took a max-
imum value m f = max{ fc} as the most characteristic feature under the one filter. In
our experiments, we initialized q filters, and each filter initialized m kinds of parameters.
Therefore, a filter can generate one of the most characteristic values of a parameter. Finally,
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we concatenated those characteristic values. Obviously, the v f ∈ Rq·m is extracted by E f
as follows:

v f = CNN f (Xi) (5)

A-Net module: This module is our designed network. The output of the embedding
layer Xi is cloned, and then Xi is fed into Ea, which is similar to E f . Because the Ea is also
a convolution filter that can set the n-gram and kinds of parameters, it can generate the
feature va of Xi under a specific convolution filter:

va = CNNa(Xi) (6)

Upon Ea, we innovatively stacked the GRL on the extractors of the A-Net and used
the projection layer to eliminate the harmful semantic information of backward features va.
The procedure of the gradient reversal layer is as follows:

GRLλ(x) = x̃ (7)

∂GRL
∂x

= −λI (8)

where λ is a hyperparameter of the gradient reversal layer, and x̃ is a new feature vector
passed through the gradient reversal layer. We noted that the classification of our whole
model is mainly completed through the F-Net. Therefore, to reduce the influence of the
A-Net at the beginning of training, we gradually increased the λ as follows:

λ =
2

1 + exp(−γ · p) − 1 (9)

where γ was set to 10 in all experiments, and p represents the iteration ratio of training
from 0 to 1.

When ready, v f and va were both fed into the projection layer to generate v f and va:

v f = Proj(va, v f ) (10)

va = Proj(v f , va) (11)

where v f is the projected feature suited for us, and va is the tested feature that we con-
catenated with the normal feature, as is explained in the Discussion section of this paper.
Additionally, Proj is a projection function that projects a vector to another:

Proj(vx, vy) =
vx · vy

|vy|2
· vy (12)

After the projection layer, we concatenated two features, v f and v f , as a new vector
v∗

f , then fed v∗
f into the classifier. Finally, we utilized the Softmax function to achieve the

classification and used the CrossEntropy function as our Loss function:

v∗
f = concat(v f , v f ) (13)

Yf = So f tmax(v∗
f ·W f + b f ) (14)

Loss f = CrossEntropy(Ytruth, Yf ) (15)

where W f ∈ Rq·m⊕qa ·ma×C, qa is the number of filters of Ea, ma is the kind of initialized filter
for each filter, and b f ∈ RC, C is the number of labels. Ytruth is the marked label, and Yf
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is the label predicted by the F-Net. The entire model that is used in the experiments on
the FA-TextCNN is shown in Figure 2. Furthermore, we used a two-dimensional vector
projection process to more intuitively express what the feature projection layer does in
Figure 3.

Embedding Layer

Embedding size

𝑥𝑖

Normal features

GRL

Max poolingConvolutional layer 

with multi-filters
Fully connected layer

Projection layer

Figure 2. The total structure of the FA-TextCNN. The purple line is the extractor of the auxiliary
network that utilizes a gradient reversal layer. As shown in the figure, we concatenated the features
after maxpooling and fed the features together to form a fully connected layer.

Figure 3. Two-dimensional progress of projection function. va is the feature vector extracted by
A-Net, and v f is the feature vector extracted by F-Net. v f is the new feature vector that v f projected
to va, and va is the new feature vector that va projected to v f .

Keep in mind that we implemented our method not only on CNN-based, but also on
BERT-based models. To express our idea more clearly, we also drew a figure of the FA-Net
being used on the BERT-based model, as shown in Figure 4. In the BERT-based model, some
details do not align with the TextCNN. We weighed the time consumption and accuracy of
the FA-Net by referred to the analysis of Sun et al. [19]. Consequently, we identified the
high-level encoder from the base BERT as the encoder of Ea because its layers’ output had
a good classification ability. We noticed that the gradient of the A-Net is climbed up and
then went back to the F-Net, influencing the parameters of the F-Net further. We decided to
feed different kinds of the output of extractor E f to extractor Ea to study the different types
of projection operations. Therefore, we chose different n-gram sizes in the FA-TextCNN
model and different encoder layers in the FA-BERT and FA-RoBERTa models. One reason
we tried different inputs of Ea is that there are two projection types. For each type, we
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tried the same input to verify which is better. Another reason is that the input of Ea is
cloned from the F-Net. Naturally, the A-Net gradient can go back to the F-Net. The higher
the number of encoder outputs picked up by Ea, the more the encoders of the F-Net are
influenced by the gradient of the A-Net.

On the one hand, we want to feed high-quality feature vectors to Ea. On the other
hand, we want the gradient of the A-Net to affect the F-Net as little as possible. Thus,
experiments on different inputs of Ea are necessary.

Token Embedding

Segment Embedding

Position Embedding𝑃0 𝑃1 𝑃2 𝑃3 𝑃4 𝑃5 𝑃6 𝑃7 𝑃8 𝑃9 𝑃10 𝑃11

𝑆0 𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 𝑆7 𝑆8 𝑆9 𝑆10 𝑆11

𝑇1 𝑇2 𝑇3 𝑇4 𝑇5 𝑇6 𝑇7 𝑇8 𝑇9 𝑇10 [𝑆𝐸𝑃]

𝐸cls 𝐸1 𝐸3𝐸2 𝐸4 𝐸5 𝐸7𝐸6 𝐸8 𝐸9 𝐸sep𝐸10

Encoder1

Encoder3

[𝐶𝐿𝑆]

Encoder12

Encoder7

Encoder11

…
…

…

Encoder12

Projection Layer

Multilayer perceptron

A-Net

F-Net

Encoder8

Encoder4

GRL

Figure 4. The figure shows the entire structure of the FA-Net + BERT. We implemented it based on
our assumptions; thus, there are inputs for Ea in the auxiliary network. In this figure, A-Net can
extract different features according to different inputs of A-Net. For example, when the A-Net obtains
the output of Encoder7, the backward features are extracted by Encoder8 rather than Encoder12.
Additionally, the projection layer only works on the CLS token of two features. The encoder in dark
green is the best encoder of Ea that we tested in FA-Net + RoBERTa models.

3.2. Materials

To verify the effectiveness of our algorithm, we experimented with it by using six
corpora, including a multilabel corpus and a binary-label corpora. The summarization of
each corpus is shown in Table 1.

MR (https://www.cs.cornell.edu/people/pabo/movie-review-data/(accessed on 17
January 2023)): This corpus contains data on a document level, sentence level, sentiment
scale, and subjectivity level. In our algorithm, we chose a sentence-level dataset to conduct
the experiment on. It contains 4796 positive samples and 4796 negative samples.

SST2 (https://nlp.stanford.edu/sentiment/(accessed on 17 January 2023)): This cor-
pus contains 67350 positive and negative samples in the training dataset and 1821 samples
in the testing dataset [20]. To conduct the experiment faster, we determined the difference
between the benchmarks and our algorithm. We cut it down to 6920 training samples and
1821 testing samples.

SemEval-2018 task 3 (https://github.com/Cyvhee/SemEval2018-Task3(accessed on
17 January 2023)): This task is named “Irony detection in English tweets.” [21] The task is
part of the 12th workshop on semantic evaluation. It contains two labels: non-irony and

https://www.cs.cornell.edu/people/pabo/movie-review-data/
https://nlp.stanford.edu/sentiment/
https://github.com/Cyvhee/SemEval2018-Task3
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irony. There are 1916 non-irony and 1901 irony samples in the downloaded training dataset
and 472 non-irony and 310 irony samples in the downloaded test dataset.

Sem-2017 task 4 (https://github.com/cbaziotis/datastories-semeval2017-task4
(accessed on 17 January 2023)): This task is the subtask of SemEval-2017 [22]. Task 4
contains five tasks. This research only needs three tasks: A, C, and E. Task 4A contains
1188 negative, 2724 neutral, and 4088 positive samples. The label of task 4CE is the five-
point scale for sets of tweets and topics. It contains 4159 1point, 2237 0point, 901 -1point,
585 2point, and 118 -2point sets.

Waimai-10k (https://gitee.com/sprite0153/ChineseNlpCorpus/tree/master/datasets
(accessed on 17 January 2023)): This is a Chinese corpus. The data come from user reviews
of a particular food delivery platform. It is a binary-label database containing 3612 positive
examples and 7176 negative examples.

Table 1. The summarization of each corpus.

Corpus Language Labels Samples of Training Data Samples of Test Data

MR English 2 7460 2132
SST2 English 2 6920 1820
SemEval-2018 task 3 English 2 3817 782
Sem-2017 task 4A English 3 6000 2000
Sem-2017 task 4CE English 5 6000 2000
Waimai-10k Chinese 2 8390 2398

Note that some of those corpora have not separated data into training datasets. There-
fore, we split the data into 80% training and 20% testing datasets if the original data was
not split. We kept the split ratio if the original data had been split.

3.3. Experimental Benchmarks

To expressively verify the effectiveness of our model, we conducted experiments with
three benchmarks to obtain the discrepant results. As BERT achieved state-of-the-art results
for productive tasks, we utilized the vocabulary table of BERT to tokenize the original
sentence at each benchmark to decrease the preprocessing time of the corpus.

TextCNN: As the extractor, we utilized the most representative model, CNN-rand,
which is a TextCNN [1]. It uses a set of filters to capture the semantic feature maps and pool
them. Then, it concatenates the features of different filter sizes to make the classification.

BERT: We utilized a pretrained BERT-based model, which includes 12 layers and
756 hidden sizes, to fine-tune the parameters of our datasets.

RoBERTa: The RoBERTa model also has huge pretrained models. Like BERT, we
fine-tuned our corpus in the pretrained RoBERTa-based model.

Although we implemented three benchmarks, there is no difference in the settings
between our algorithm and benchmarks, such that the batch size and convolution filters
or other settings were not changed between the benchmarks and our FA-Nets model.
Moreover, as we know, the initial seed greatly influences the model. We further considered
the influence of seeds on the model, and thus, we calculated the average result under
five seeds.

3.4. Experimental Settings

We fixed the embedding size to be 128-dimensional for each experiment, except for
when using BERT and RoBERTa because the pretrained models cannot be changed. The
setting details at each benchmark of our experiments are as follows:

FA-Net of TextCNN: The filter sizes are 3, and the n-grams are set to be (3, 4, and 5).
The parameter of L2-norm is 0.001. The parameter of Dropout [23] is 0.5. In the A-Net, we
empirically fixed the length of the filter sizes to 1 and set n-gram to be 4.

FA-Net of RoBERTa: Because our experiments contain four corpora, including English
and Chinese datasets, we not only used the English pretrained model, which is called
roberta-base (https://huggingface.co/roberta-base(accessed on 17 January 2023)), but

 https://github.com/cbaziotis/datastories-semeval2017-task4
https://gitee.com/sprite0153/ChineseNlpCorpus/tree/master/datasets
https://huggingface.co/roberta-base
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we also chose the Chinese pretrained model, which is called hfl/chinese-roberta-wwm-
ext (https://huggingface.co/hfl/chinese-roberta-wwm-ext(accessed on 17 January 2023)).
However, we utilized the cardiffnlp/twitter-roberta-base-sentiment (https://huggingface.
co/cardiffnlp/twitter-roberta-base-sentiment(accessed on 17 January 2023)) pretrained
model for the sarcasm detection datasets.

FA-Net of BERT: Keeping it the same as RoBERTa, we utilized bert-base-uncased
(https://huggingface.co/bert-base-uncased(accessed on 17 January 2023)) and bert-base-
chinese (https://huggingface.co/bert-base-chinese(accessed on 17 January 2023)) pre-
trained models to conduct our experiments.

In the training stage, we fixed some hyperparameters corresponding to datasets at
all benchmarks, such as batch size and the length of samples. The length of samples in
all experiments was fixed to be 32 in waimai_10k, 64 in SST2, 64 in MR, and 256 in R8. In
addition, the batch size was set to 32. For the other parameters in the BERT-based models,
such as attention dropout, dropout, and weight decay, we kept the default setting that is
applied by Hugging Face.

Because we utilized the different optimizers for the backpropagation stage and set
different learning rates, except for the CNN-based models, the optimizer of the F-Net is
Adam [24] with β1 = 0.9,β2 = 0.999. However, in the A-Net, the optimizer is the SGD
optimizer where moment = 0.9. The difference between the CNN-based and BERT-based
models and our FA-Nets have two optimizers and networks. Thus, the setting of the
learning rate differs between models. Therefore, we set the learning rate to 0.001 in both
optimizers in the FA-TextCNN models. However, in the FA-BERT-based models, we tried
three kinds of learning rates (1e-5, 2e-5, and 3e-5) for the F-Net’s optimizer and set the
learning rates to 0.001 for the optimizer of the A-Net.

4. Results and Discussion
4.1. Results

The evaluation indicator of the multicategory dataset is F1-score, and the evaluation
indicator of the binary classification dataset is accuracy because all the datasets are classifi-
cation corpora. The total parameters of the models are shown in Table 2 and the experiment
results are shown in Table 3.

Table 2. Comparison of total parameters between base models and our models: +1En means the
auxiliary network has one transformer encoder, and +2En means two transformer encoders exist in
the auxiliary network.

TextCNN FA-Net + TextCNN

#param 40M 41M

RoBERTa FA-Net + RoBERTa

#param 125M 134M(+1En) 141M(+2En)

BERT FA-Net + BERT

#param 109M 119M(+1En) 126M(+2En)

The models that start with “FA-” mean we added our auxiliary network to the original
models. Additionally, we carried out different kinds of experiments to analyze the influ-
ences of different extractor sizes of the A-Net. The columns represent different datasets,
and indices represent different algorithms.

https://huggingface.co/hfl/chinese-roberta-wwm-ext
https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment
https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment
https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-chinese
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Table 3. The contrast between benchmarks and our models is shown in this table. The results of
BERT-based models are conducted under the five seeds, including benchmarks and FA-Nets. Task 3
means SemEval-2018 task 3, task 4A means Sem-2017 task 4A, and task 4CE means Sem-2017 task
4CE. In the TextCNN model, n_gram=n means the filter is set to n when initializing the A-Net’s
convolution layer. In the BERT and RoBERTa models, s means the sth F-Net’s encoder is copied as
the first encoder at A-Net, and e means the eth F-Net’s encoder is copied as the last encoder at A-Net.
The input of A-Net is the output of the (s− 1)th encoder of F-Net. Furthermore, the “OGRL” means
that we removed the GRL in the A-Net. The Avg is the average result from the sentiment analysis
and sarcasm detection datasets. The best results in our implementation are marked with bold font.

Model SST2 MR waimai_10k Avg

TextCNN [1] 82.17 (±0.48) 76.68 (±0.27) 90.10 (±0.20) 82.98
BERT [2] 91.59 (±0.23) 86.38 (±0.22) 91.27 (±0.27) 89.74
RoBERTa [3] 94.43 (±0.31) 88.66 (±0.28) 88.73 (±0.34) 90.61

FA-TextCNN (n_gram = 3) 81.86 (±0.88) 76.68 (±0.56) 90.14 (±0.37) 82.89
FA-TextCNN (n_gram = 4) 82.67 (±0.37) 77.28 (±0.51) 90.48 (±0.26) 83.47
FA-TextCNN (n_gram = 5) 82.56 (±0.62) 76.99 (±0.42) 90.32 (±0.21) 83.29

FA-BERT (s = 12, e = 12) 91.93 (±0.29) 86.91 (±0.45) 91.63 (±0.30) 90.16
FA-BERT (s = 11, e = 12) 91.79 (±0.35) 86.91 (±0.24) 91.39 (±0.23) 90.03
FA-BERT (s = 8, e = 8) 91.85 (±0.30) 87.14 (±0.22) 91.69 (±0.20) 90.23
FA-BERT (s = 7, e = 8) 91.81 (±0.41) 86.88 (±0.21) 91.39 (±0.20) 90.03
FA-BERT (s = 5, e = 5) 91.97 (±0.22) 87.21 (±0.24) 91.60 (±0.16) 90.26
FA-BERT (s = 4, e = 5) 91.59 (±0.34) 86.82 (±0.33) 91.18 (±0.50) 89.98

FA-RoBERTa (s = 12, e = 12) 95.05 (±0.39) 89.11 (±0.46) 89.36 (±0.24) 91.17
FA-RoBERTa (s = 11, e = 12) 94.61 (±0.40) 88.91 (±0.37) 89.20 (±0.24) 90.91
FA-RoBERTa (s = 8, e = 8) 95.11 (±0.32) 88.96 (±0.24) 89.25 (±0.17) 91.11
FA-RoBERTa (s = 7, e = 8) 94.62 (±0.15) 88.97 (±0.50) 89.23 (±0.24) 90.94
FA-RoBERTa (s = 5, e = 5) 95.03 (±0.34) 88.93 (±0.27) 89.35 (±0.29) 91.10
FA-RoBERTa (s = 4, e = 5) 94.82 (±0.14) 88.97 (±0.62) 89.34 (±0.09) 91.04

Model task 3 task 4A task 4CE Avg

TextCNN 70.56 (±0.73) 45.04 (±1.07) 27.09 (±0.44) 47.56
BERT 71.17 (±1.58) 60.02 (±0.73) 39.99 (±0.90) 57.06
RoBERTa 72.70 (±0.71) 64.53 (±0.46) 43.50 (±1.62) 60.97

FA-TextCNN (n_gram = 4) 71.62 (±0.87) 46.39 (±0.73) 27.85 (±0.89) 48.62
FA-TextCNN (n_gram = 4, OGRL) 71.32 (±1.19) 44.83 (±1.48) 26.07 (±1.45) 47.40

FA-BERT (s = 5, e = 5) 72.42 (±1.06) 60.95 (±0.52) 41.62 (±0.65) 58.33
FA-BERT (s = 5, e = 5, OGRL) 71.48 (±0.79) 60.69 (±0.36) 41.03 (±0.56) 57.73

FA-RoBERTa (s = 12, e = 12) 73.45 (±1.08) 65.52 (±0.27) 45.67 (±1.52) 61.55
FA-RoBERTa (s = 12, e = 12, OGRL) 72.16 (±0.93) 65.10 (±0.55) 44.44 (±1.24) 60.57

Following the different results in Table 3 for each line, we made some observations
as follows:

In the sentiment analysis datasets, the accuracy of the TextCNN in three of the corpora
is 82.17%, 76.68%, and 90.10%. However, the accuracy can become higher, reaching 82.67%,
77.28%, and 90.48%, and the average accuracy under those corpora received a 0.5% boost
when the model added our auxiliary network. This shows that our auxiliary network can
boost the original models by adding acceptable parameters in the TextCNN. The same
results occurred in BERT and RoBERTa. The average accuracy of BERT and RoBERTa can
also receive a 0.5% boost due to our auxiliary network. The accuracy can receive a 0.8%
boost for MR and SST2 when our auxiliary network is added to BERT and RoBERTa.

We utilized the best hyperparameters from the experiments on the sentiment analysis
datasets to implement our methods on the sarcasm detection datasets. The effectiveness of
our proposed method is higher than that of the sentiment analysis. Compared with the
TextCNN, the FA-TextCNN models have an average improvement of 1% for three datasets.
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Compared with BERT, FA-BERT has an average improvement of 1.3% in the SemEval-2018
task 3, 0.9% in the Sem-2017 task 4A, and 1.6% in the Sem-2017 task 4CE. Compared with
RoBERTa, FA-RoBERTa has an average improvement of 0.8% in the SemEval-2018 task
3, 1% in the Sem-2017 task 4A, and 2.1% in the Sem-2017 task 4CE. Even if we removed
the GRL, our proposed algorithms still cause an improvement, but the magnitude of the
improvement is lower than in the models that are stacked with the GRL. The difference
that boosts the effectiveness between the sentiment analysis and sarcasm detection datasets
is caused by the proposed method, since its core idea is to scatter the semantic information
of contradictory words to other words in a sentence. Additionally, the sarcasm detection
datasets have many of the sentences that contain contradictory words. Therefore, the
boosted effectiveness of our proposed method on the sarcasm detection datasets is higher
than on the sentiment analysis datasets. As seen in Table 3, the results show that even
in different settings, our algorithm still can improve the benchmarks’ performance. In
the CNN-based model, our FA-TextCNN is more stable than the TextCNN when the A-
Net chooses a filter that fixed the n-gram = 4 as an extractor. However, compared to
the other settings, the algorithms are not stable. Our algorithms are worse than CNN
benchmarks when the n-gram = 3. We assumed that unstable conditions are due to the
dropout because the corresponding deviation of the CNN benchmark is close to 0.5% in the
SST2 and MR datasets. This means that the original CNN model is unstable, as it is simply
uninterpretable. Therefore, when we fused the projected features that were extracted from
normal features, the property further influences the stability of our FA-TextCNN models.

The results echo our previous assumption that semantic information can still be
exploited in the backward features at high-level layers in BERT-based and RoBERTa-based
models. After conducting the different experiments, we also studied the influence of the
FA-Net on the attention heat map, which is explained in the Discussion.

4.2. Discussion

We studied the influence of the number of encoders and the projection types on the FA-
Net. As the CNN is poor at extracting high-quality features, fusing the backward features
directly through Equation (10) can hurt the performance of the CNN model. Thus, this
discussion omits the CNN models. Both further experiments are focused on the BERT-based
and RoBERTa-based models. Equation (10) projects va to v f . In other words, the result
of Equation (10) acquires the subfeature of v f . From this point, we can discuss another
projection type, which projects v f to va, to further study which projection type is better for
our idea.

Projection type: Figure 5 shows the experiments that change the projection type to
Equation (11). According to Table 3, the best results appear in different types of the A-Net.
In the FA-Net + BERT model, the most effective focuses on the encoder in the middle, but
in FA-Net + RoBERTa, the most effective is the encoder at the top. Thus, we implemented
more experiments by using Equation (11) for SST2 with different encoders.

As seen in Figure 5, there is improvement when the first encoder of the A-Net is
between four and six, but the improvements are minor for Equation (10). Additionally, the
accuracy becomes lower when the A-Net’s first encoder is copied from the top of the F-Net.
This means that Equation (11) is too unstable to conflict with our idea. We assumed that
the gradient of va can influence several encoders of the F-Net when x is larger than nine
and then further influence the model’s performance even if we fuse a part of va.
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The deep-copied 𝑥𝑡ℎ Encoder from F-Net to A-Net 

in the FA-BERT.
The deep-copied 𝑥𝑡ℎ Encoder from F-Net to A-Net 

in the FA-RoBERTa.

(a) The conducted results of FA-BERT under the 

projection layer that projects 𝑣𝑓 to 𝑣𝑎.

(b) The conducted results of FA-RoBERTa under 

the projection layer that projects 𝑣𝑓 to 𝑣𝑎.

Figure 5. In this figure, we concatenate v f with va to implement our FA-Nets. Both models are
implemented in the SST2 dataset. Chart a is the BERT-based model, and chart b is the RoBERTa-based
model. All results shown in this figure are averaged from the five seeds. The blue line is labeled
by s = x, e = x, which means the first encoder and the last encoder in A-Net are copied from the
xth encoder in F-Net. Furthermore, the orange line means the last encoder of A-Net is fixed to 11,
but the first encoder is changed with x. Moreover, the dotted green line results from corresponding
benchmark models.

However, if we feed the outputs of the three to nine layers to the A-Net, our network’s
accuracy is also competitive. We discovered that the influence is lower when feeding
low-level outputs to the A-Net because the gradient of va only affects a few layers of the
low-level encoders. The influence becomes higher as the A-Net obtains the high-level
outputs. Because of the gradient of va, the feedback to the F-Net is early. According to the
projection type analysis and discussion, we empirically fused a part of v f to concatenate
more semantic information rather than fuse part of va in order to achieve our ideas. We
assumed that the normal vector v f is augmented by concatenating with v f , as it contains
the essential abstract information relative to high-gradient features. Concatenating with v f
also can avoid the A-Net feedback that reverses the gradient of va to the F-Net.

The number of encoders of the A-Net: The BERT and RoBERTa models are perplex-
ing; thus, the BERT-based model needs to consider how many encoders should be copied
to the A-Net. According to Table 3, the best results occurred when the A-Net had one
encoder. Furthermore, we can obtain average results for MR, SST2, and waimai_10k, as
shown in Table 3. The average results of the multi-encoder that exist in the A-Net are lower
than using a single encoder in the A-Net. This shows that the gradient reversal layer with
a multi-encoder can learn a higher gradient feature than a single encoder. Therefore, a
multi-encoder is more unsuitable than the single encoder in these corpora.

The attention heat map of an example sentence in FA-RoBERTa: We tested the sam-
ple we mentioned previously and drew an attention heat map. Compared to Figure 6, in
Figure 7, although attention is paid to the phrase “ultimately silly”, it does not focus on
just this phrase anymore. FA-RoBERTa focuses on the core phrase, “charming and funny”.
Then, FA-RoBERTa makes the right classification. This proves that our idea could scatter the
attention score of contradictory words to other words to reduce the destructive influence of
contradictory words. As long as the model spreads the attention score to other words, the
semantic information of other words can fuse with the normal features after concatenating.
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Thus, the classifier can capture more information about other words rather than focusing
on the contradictory words.

Figure 6. The attention heat map of phrase, “charming and funny ( but ultimately silly ) movie.”, in
the RoBERTa model.

Figure 7. The attention heat map of phrase, “charming and funny ( but ultimately silly ) movie.”, in
our FA-RoBERTa model.

5. Conclusions

In this paper, we proposed a concise two-stream network that combines the extracted
feature vectors to absorb more semantic information, allowing a sentence that contains
special phrases which are opposite to the semantic information of the whole sentence
to be classified correctly. In addition, we utilized the feature projection layer, gradient
reversal layer, and vector concatenate to achieve this goal. Based on the original model, we
considered the size of the parameters and the accuracy of the model, and we developed
a proper model to avoid huge parameters and low accuracy. To prove the effectiveness
of our algorithm, we conducted contrast experiments on sentiment analysis and sarcasm
detection datasets. Ultimately, the results show that our algorithms are effective for those
benchmarks. After implementing extra experiments, we further studied the influence of
projection type and the number of encoders of the A-Net. We determined the general
hyperparameters for three benchmarks in several datasets.

The current algorithm focuses on text classification. In the future, we will examine
other NLP tasks using the short- and long-length sentence corpus or document corpus, and
we will try to study the impact of data granularity in meta-learning.
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