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Abstract: The use of artificial intelligence to automate PV module fault detection, diagnosis, and
classification processes has gained interest for PV solar plants maintenance planning and reduction
in expensive inspection and shutdown periods. The present article reports on the development of an
adaptive neuro-fuzzy inference system (ANFIS) for PV fault classification based on statistical and
mathematical features extracted from outdoor infrared thermography (IRT) and I-V measurements of
thin-film PV modules. The selection of the membership function is shown to be essential to obtain a
high classifier performance. Principal components analysis (PCA) is used to reduce the dimensions to
speed up the classification process. For each type of fault, effective features that are highly correlated
to the PV module’s operating power ratio are identified. Evaluation of the proposed methodology,
based on datasets gathered from a typical PV plant, reveals that features extraction methods based on
mathematical parameters and I-V measurements provide a 100% classification accuracy. On the other
hand, features extraction based on statistical factors provides 83.33% accuracy. A novel technique is
proposed for developing a correlation matrix between the PV operating power ratio and the effective
features extracted online from infrared thermal images. This eliminates the need for offline I-V
measurements to estimate the operating power ratio of PV modules.

Keywords: CIGS thin film; PV modules; adaptive neuro-fuzzy inference system; operating power ratio

1. Introduction

A crucial technology for a sustainable energy supply is the adoption of PV modules.
According to recent statistics, the reliance on PV modules’ capacity has increased globally
from 17 GW in 2010 to 139 GW in 2020 and has reached 760 GW at the end of 2020 [1].
Several techniques have been proposed for fault detection and diagnosis in PV modules;
examples of these techniques include visual examination, infrared thermography (IRT),
electroluminescence (EL), photoluminescence (PL), and measurements of static characteris-
tics [2]. Based on the previously mentioned PV fault detection techniques, different types
of PV module defects have been addressed, such as cracks, delamination, burn marks,
potential-induced degradation (PID), soiling, snail trails, hotspots, faulty interconnections,
back sheet defects, corrosion, and shunts [3–5]. The continuous, safe, reliable, and effec-
tive functioning of PV systems depends on the development of automatic diagnosis and
classification techniques for PV monitoring systems. The huge number of solar modules
used in large-scale PV facilities has made it difficult to detect and classify faults [6–9]. The
automation of detection, diagnoses, and classification of PV system faults, using artificial

Sensors 2023, 23, 1280. https://doi.org/10.3390/s23031280 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23031280
https://doi.org/10.3390/s23031280
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5745-4538
https://orcid.org/0000-0003-2009-8335
https://orcid.org/0000-0002-7873-0586
https://doi.org/10.3390/s23031280
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23031280?type=check_update&version=2


Sensors 2023, 23, 1280 2 of 16

intelligence (AI) approaches, has attracted a great deal of research interest. Many AI tech-
niques have been suggested in the literature, such as particle swarm optimization [10],
ant colony optimization [11], support vector machine [12], k-nearest neighbors [13], linear
regression [14], decision tree [15], naive Bayes (NB) [16], neural network systems [17], and
fuzzy logic [18]. Additionally, hybrid systems, such as ANFIS [19] and artificial neural
network with genetic algorithm (ANN-GA) [20], have also been examined.

Previous research demonstrates a considerable interest in the development of intelli-
gent systems for automatic classification of faults in PV modules. Table 1 provides a general
review of the application of several AI approaches in fault detection and diagnosis in PV
plants. The previous work is categorized, based on the input datasets, into thermography
techniques (Table 1a), PV modules electrical I-V characteristics (Table 1b), PV modules elec-
trical I-V characteristics and environmental conditions (Table 1c), and using thermography
and I-V measurements (Table 1d). The input parameters, fault types, classification accuracy,
and limitations are summarized for each technique. The previously described methods,
however, are restricted to specific fault types and/or a single fault per module. In some
cases, the proposed techniques are capable of defining only a faulty module without being
capable of detecting the fault type. Additionally, I-V measurements are often carried out
when the PV module is offline; this introduces a significant difficulty for automation of
fault detection and classification processes. The use of IRT offers the advantage of possible
online operation of the diagnosis process. However, to the authors’ knowledge, there
is no research work on correlating the infrared (IR) images of faulty modules with their
I-V measurements. Such a correlation is very useful in developing an online-detection
classification system that is useful for maintenance planning. The importance of accurately
classifying faults lies in determining the required maintenance action and calculating the
remaining useful life (RUL) of the PV module. Moreover, previous studies in classifying
faults have focused on polycrystalline and monocrystalline PV technologies, and barely
any of this research has dealt with PV modules of thin-film technology.

Table 1. An overall review of using AI techniques for fault detection and diagnosis in PV plants.

Methodology Reference Fault Classification Accuracy of
Classification Remarks

(a) using thermography techniques.

Texture feature extraction
(TFE) and support vector
machine (SVM)

[12]

Cracks, hot spots due to
shading and soiling.
Categorize solar modules
into defective and
non-defective.

97%

- Limited to a single type
of fault per PV module.

- Only categorize
modules into defective
and non-defective

- No correlation with
module output power

K-nearest neighbor (KNN
[21]

Categorize solar modules
into defective and
non-defective.

80.3%

Support vector machine
(SVM) 56.8%

Neural network 92.8

Support vector machine
(SVM) [22] 91.2%

Deep-learning
convolutional neural
network (CNN)

[22] 89.5%

n Bayes: a binary class
density-based classifier [23] 98.4%

The automated edge
detection technique [24,25]

Defective solder junctions,
short circuits, and
bypassed substrings.

Not reported
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Table 1. Cont.

Methodology Reference Fault Classification Accuracy of
Classification Remarks

(a) using thermography techniques.

Deep learning neural
network [26]

Cracks, shadowing, diode,
soiling, hotspots, and
offline module.

Classify 12
anomaly
types with an
average of
86%

(b) with input datasets from PV modules electrical I-V characteristics.

Multi-class adaptive
neuro-fuzzy classifier [19]

Partial shading, increased
series resistance, bypass
diode short-circuited,
bypass diode impedance,
PV module short-circuited.

65–100%
depending on
fault type

- I-V datasets obtained
using a real time PV
emulator. Datasets
from real systems are
not considered.

Principal component
analysis (PCA) [27] Shading faults. 97%

- Real systems
configurations are not
considered.

AI nonlinear
autoregressive exogenous
neural network (NARX)

[28]
Open and short-circuit
degradation, faulty MPPT,
partial shading (PS).

98.2%
- Applicable for small

systems.

Multilayer neural network
with a scaled conjugate
gradient algorithm (SCG)

[29]
Short circuits, aging,
shading faults, and bypass
diode faults.

99.6%

- Consider
polycrystalline and
thin-film PV
technologies.

Convolutional neural
networks (CNN) [30]

Partial Shading (PS), high
impedance, low location
mismatch, maximum
power point tracking
(MPPT).

73.53%

- 2D scalograms
generated from I-V
characteristics using
continuous wavelet
transform.

(CWT)

- Low classification
accuracy.

Multiclass adaptive
boosting (AdaBoost)
algorithm, using multiclass
exponential (SAMME) loss
function based on the
classification and
regression tree (CART)

[31]

Short-circuit faults (SCF),
partial shading with the
bypass-diode on (PSBO),
partial shading with the
bypass-diode reversed
(PSBR), and abnormal
aging faults (AAF).

99.4%

- The results consider
only faulty modules.

- Time-consuming,
suitable for

a small number of modules.

Radial basis function (RBF)
kernel extreme learning
machine (ELM) optimized
by simulated annealing
algorithm,

[32] Short circuits, shading
faults, and aging.

Shadows
91.55%

Need real outdoor
experiments.

Short circuits
93.64%

Aging 90.91%
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Table 1. Cont.

Methodology Reference Fault Classification Accuracy of
Classification Remarks

(b) with input datasets from PV modules electrical I-V characteristics.

Artificial neural network [33] Partial shading Not reported A single type of fault.

Multiclass adaptive
neuro-fuzzy classifier
(MC-NFC) and ANN

[19]

Partial shading, high series
resistance, bypass diode
impedance and short
circuits.

Not reported The MC-NFC outperforms
the ANN-classifier.

(c) with input datasets from PV modules electrical I-V characteristics and environmental conditions.

Backward propagation NN
optimized by genetic
algorithm

[20] Short circuits, local
material aging, shading.

78% for short
circuits, 97%
for aging,
100% shadows

- Expensive real time PV
modules output
current, voltage,
irradiation, ambient
temperature
monitoring system for
each module.

- Limited number of
faults.

Neuro-fuzzy and
simulation [34]

Upper and lower earth
faults, diode short-circuit
faults, partial shading.

Not reported Limited number of PV
module circuit faults.

Cursive linear model and
an ANN [35]

Short circuits, open circuits,
partial shading, and
degradation.

92.64% Limited number of PV
module circuit faults.

ANNs [36] Disconnected modules. 97%

- Using solar radiation
and PV measured
output power.

- Limited to one type of
fault.

(d) with input datasets from thermography analysis and PV modules electrical I-V characteristics.

Statistical features
extraction and electrical
measurements
characteristics

[3]
Cracks, delamination, burn
marks, PID, soiling, and
open strings.

Not reported Applied for CIGS PV
modules.

Fuzzy inference system
(FIS) using Mamdani-type
fuzzy controller

[37]
Identify the six main types
of hotspots that influence
PV modules.

96.7%
Inability to detect hot spots
when there is a lot of partial
shading.

Novel feature extraction
based on mathematical
parameters

[38]
Cracks, delamination, burn
marks, PID, soiling, and
open strings.

Not reported
Detect all types of CIGS
thin-film PV modules, detect
modules with multi-faults.

To this end, this paper proposes using an ANFIS for automation of fault classification
of copper indium gallium selenide (CIGS) thin-film PV modules. The proposed ANFIS
approach is based on statistical and mathematical features of outdoor IRT and I-V mea-
surements of PV modules. A correlation matrix is proposed to be developed between the
operating power ratio (Pr) and the effective features extracted from thermal images. The
main scientific contributions made in this work are summarized as follows: (1) an automatic
ANFIS fault classification technique is developed for the detection and classification of PV
module faults; (2) new effective features for each type of fault are identified that are highly
correlated with the Pr of a PV module; (3) a correlation matrix is developed to address
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correlations between the Pr and the proposed effective features extracted from thermal
images. Thus, the need for offline I-V measurements is eliminated, and (4) the effectiveness
of the proposed scheme is evaluated using collected datasets from a typical plant with PV
modules with multiple faults.

2. Methodology

The procedure implemented in developing the present ANFIS scheme for fault classi-
fication using IRT and I-V measurements is shown in Figure 1. The datasets are prepared
by acquisition of input data of PV module thermal images and the corresponding I-V
curves. Thermal images are processed using image filtering, segmentation, and reshaping.
Image filtering and panels reshaping are performed using pixel-shifting techniques. In our
methodology, a moving average filter and multidimensional filter are used. The geometric
transformations are used to correct distortions caused by viewing geometry using pixel-
shifting techniques, and reshape that panel into a rectangular shape. The destination image
is filled by regular scan lines, taking the values from the source image by bi-cubic interpo-
lation. This is achieved by applying geometric transformations to images. After getting
the rectangular shape, the cropping process is easily completed to remove unwanted seg-
ments. The next step uses feature extraction methods. Statistical and mathematical feature
extraction techniques of IR images and I-V curves are employed. Once feature extraction
techniques have been deployed, ANFIS is utilized to classify CIGS module failures. ANFIS
is learnt using the training dataset, just like artificial neural networks. Faults are classified
according to their types (A, B, C, D, E, F, and G). The most effective features, correlated
with the power ratio, are identified to develop a correlation matrix between these effective
features and PV module operating power ratio. A regression model is applied, utilizing
the correlation matrix, to predict the PV module’s operating power ratio for each type of
fault. The value of the operating power ratio of each module is then used for evaluating the
overall plant power and for management of the power plant’s operation and maintenance.
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Figure 1. Procedure of development of ANFIS scheme for automation of fault detection and classifi-
cation.

3. Collection of Input Datasets

The datasets for this investigation were gathered from a PV power plant located in
Bani Mazar, Egypt. The plant consists of 84 TianWei solar films comprised of TW-SF-
W100 CIGS thin-film modules. I-V curves were obtained using a variable resistor and a
potentiometer. A total of 84 IRT images were captured with a Fluke Ti3 IR camera. The
IEC62446 [39] requirements for PV thermography testing were followed. Before the tests,
the junction boxes and all electrical connections were inspected. The solar irradiance (E)
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was around 900 W/m2 during the testing, and the ambient temperature was 19 ◦C, with a
low wind speed of about 18 km/hr. Cloud shading was avoided during filming to avoid the
appearance of warmer reflected areas and the resulting effect of fault misunderstanding [39].
The emissivity of PV panels was also considered, and all shots were taken from a 50 to 60◦

angle. The plant’s defective modules were previously identified; most of the modules that
were tested contained multiple faults.

The current study focuses on the most frequent defects that can occur in PV modules.
Table 2 shows how the faults are grouped. For each type of fault, an IRT image and I-V
measurements were acquired for each of the 84 modules. IRT imaging and I-V measure-
ments were conducted three times for each module to reduce measurement uncertainty.
In [3,38], the present authors have published a detailed set of IR pictures and I-V curves.
Figure 2 shows an example of IRT image and I-V curve for a PV module with Type-B fault.

Table 2. Categories of CIGS PV module faults.

Category/Type Description

A Soiling

B Cracking and soiling

C Cracks, burn marks, and soiling

D Potential-induced degradation (PID)

E PID and cracks

F PID, cracks, and delamination

G Open strings (HM)

H Dead modules
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4. Features Extraction Techniques

The feature extraction techniques applied in this study include statistical feature
extraction, mathematical parameters-based feature extraction, and electrical measurements-
based feature extraction. The parameters of IR image features are summarized in the
following subsections (Sections 4.1–4.3). The process of features extraction was carried out
using the MATLAB platform. Detailed description of these features is reported in [3,38].
The ratio of operating voltage, current, power, fill factor, and efficiency are all features of
the I-V characteristic curve. They are derived by comparing the PV module operational
value to its healthy equivalent. The investigated module is denoted by the subscript o,
while the healthy module is denoted by the subscript h. Because the healthy values of these
parameters alter with solar irradiation and electrical demand, they might be considered the
maximum operational voltage, current, and power of all PV modules in use. The mean,
standard deviation, skewness, and kurtosis are all statistical properties of an IRT image.
The capability of employing I-V measurements and statistical aspects of IR images for CIGS
module fault classification is discussed in [3]. Statistical features and I-V measurements
are used to generate a generic classification matrix for fault identification and diagnosis.
Statistical features, on the other hand, have demonstrated a limited ability to distinguish
and detect problems in defective modules with many types of defects occurring at the same
time. Faulty modules of the types (A, B), (B, E), (D, E), (E, F), (E, G), (E, H), (E, I), and (G, H)
are examples.

4.1. Statistical Parameters of IR images

The following equations summarize the statistical parameters of IR images features.

χ =
1
N
·

N

∑
i=1
χi (1)

σ =

√√√√ 1
N− 1

N

∑
i=1

(χi − χ)2 (2)

γ1 =
1
N

N

∑
i=1

[
χi − χ
σ

]3
(3)

γ2 =
1
N

N

∑
i=1

[
χi − χ

σ

]4
− 3 (4)

where Equations (1)–(4) represent the mean, the standard deviation, the skewness, and the
kurtosis of the images’ feature parameters. N is the total number of pixels, χi is the pixel
value, and σ is standard deviation of the image.

4.2. Mathematical Parameters of IR Images

The mathematical parameters of IR include the peak-to-peak value (PP), flatness
density measure (FDM), flatness continuity measure (FCM), global form factor (GFF),
maximum form factor in vertical and horizontal (FFmaxv, FFmaxh), mean form factor (FFmnv,
FFmnh), first-order zero temperature change rate (ω), second-order zero temperature change
rate (ώ), and cold area percentages measure (CPM). They are calculated using equations
5 to 17, where Nw is the number of rows, Nl is the number of columns, Ti,j is the pixel
temperature at (i, j), and (dTH, d2TH, dTV, d2TV) are the first- and second-order derivatives
in the horizontal and vertical axes using ε ≈ 0.01.

PP = Tmax − Tmin (5)

FDM = ((∑ peak pixels)/(totlal number of pixels)) (6)
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FCM =
∑ peak pixels

No of flat Portions
(7)

GFF =
N× peakvalue

∑Nl
j=i ∑Nw

i=1 Ti,j
(8)

FFmaxv =
Nl ×max

{
maxjTi,j

}
∑NL

i=1
{

maxjTi,j
} (9)

FFmaxh =
Nw ×max

{
maxi

{
Ti,j
}}

∑Nw
j=1

{
maxiTi,j

} (10)

FFmnv =
Nl ×max

{
∑Nw

i=1 Ti,j

}
Nw ×∑Ni

j=1 ∑Nw
i=1 Ti,j

(11)

Fmnh =
Nw ×max

{
∑Nl

j=1 Ti,j

}
Nl ×∑Nw

i=1 ∑Nl
j=1 Ti,j

(12)

ωv =
No.of{dTV < ε}

N
, ωh =

No.of{dTH < ε}
N

(13)

ωh =
No.of{d2TH < ε}

N
,ωV =

No.of{d2TV < ε}
N

(14)

CPM = ((∑ coldpixels)/(totlal number of pixels)) (15)

4.3. Electrical Parameters of I-V Measurements

The electrical parameters are calculated using Equations (16)–(20). They include the
operating current ratio (Ir), operating voltage ratio (Vr), operating power ratio (Pr), fill
factor (FF), and PV efficiency (η). Pin is the incident solar radiation and A is the module area.
Subscripts o and h refer to the operating value and the value of the healthy PV module.

Ir= Io/Ih (16)

Vr= Vo/Vh (17)

Pr= Po/Ph (18)

FF = (Io × Vo)/(ISC × VOC) (19)

H = (ISC × VOC × FF)/(Pin × A) (20)

The use of mathematical parameters for IR image features extraction was studied
in [38]. These features are calculated using the pixel values of an IR image, as detailed in
Section 4.1. The physical significance of each of these features is explained in [38]. The
GFF, which analyses the temperature variation of pixels depending on the type of fault, is
found to be one of the most useful parameters of the diagnosis technique. The temperature
of modules varies depending on the fault type: low for dirty modules, moderate for PID
fault modules, and high for hot spot modules. For dirty modules, the average value of GFF
rises when multiple faults are observed. Assessing the maximum and mean temperature
variation in both the horizontal and vertical axes improves the accuracy of fault diagnosis.

The proposed features are demonstrated to be independent of temperature fluctuations
that may arise owing to the use of different infrared camera sensors because they do
not directly deal with pixel temperatures or values. They can also describe the shape
of fault patterns in cold and hot areas. A broad classification matrix summarizes the
relationships between fault type and associated variables. This matrix can be used to
schedule maintenance and automate fault classification.



Sensors 2023, 23, 1280 9 of 16

5. ANFIS Fault Classification Technique

After deploying feature extraction methods, ANFIS is used to categorize CIGS module
faults. Fuzzy logic and ANNs are combined in ANFIS. Fuzzy if-then rules with appro-
priate membership functions are derived using the ANN’s learning capabilities [40]. The
ANFIS structure and its implementation of automatic fault detection are described in the
following subsections.

5.1. ANFIS Structure

A typical ANFIS structure with two input variables and five levels is shown in Figure 3.
From a set of inputs, the ANFIS algorithm produces only one output. The output is
determined through consecutive stages including establishing fuzzy rules, fuzzifying the
inputs with membership functions, defining rule strength and assessing its implications
with a specific input dataset. The curve’s parameters of the membership functions are
determined using product values among the preset learning rules and the relevant weighted
values. The parameters of membership functions are used to calculate the ratio between
the individual and total weighted values. Finally, ANFIS foresees the target by calculating
an overall gain value, which serves as the output value.
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To attain the desired values, the input and output membership function parameters
are adjusted during the learning process. The ANFIS method is a hybrid algorithm that
employs both back-propagation and least-square estimation techniques. These techniques
are combined in an artificial neural network to offer a considerably faster and more accurate
output to the ANFIS target. The linguistic values of the relationship between the input data
rows (variable data) are determined by the rule “IF-THEN”.

The ANFIS design architecture comprises two inputs (x, y), two rules (R1, R2), and five
layered feed-forward networks, as shown in Figure 3. The design also indicates adaptive
(square) and non-adaptive (circle) nodes with one output. The learning algorithm is used
to update the adaptive node parameters by minimizing tracking errors between target
data and ANFIS output. The two fuzzy if-then rules are determined as function of the
inputs (x, y) [40]. A1, B1, A2, and B2 are the fuzzy sets and F is the number of membership
functions. A typical ANFIS structure includes five layers. Layer 1 is the fuzzification layer,
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and every node I is an adaptive node in this layer. This layer’s outputs are the inputs’ fuzzy
membership grades. Layer 2 is called the rule layer (the firing). It is a fixed node layer,
labelled ∏. To obtain the output of layer 2, which is the product of all the incoming signals,
the firing strength is computed. Layer 3 is the normalization layer. It has a fixed node,
labeled N. Normalized firing strengths wi are the outputs of this layer. It determines the
ratio of the ith rule’s firing strength to the total firing strength. Layer 4 is the defuzzification
layer; it is a part that takes the fuzzy set inputs generated by the inference engine and
transfers the fuzzy values into crisp values. Layer 5 is a summation neuron, a stationary
node that adds all input signals together to compute the final output.

5.2. Application of ANFIS for Classification of Faults

The Jang model [40] is adopted in the present study; it is one of the most common
fuzzy system architectures with less time-consumption and works well when large data are
available for training. The input data are built from the feature extraction methods described
in Section 4. The available input data are randomly divided into 50% as training data, 25%
as check data, and 25% as test data. At the beginning, input and output datasets are used
to plan the ANFIS architecture. Using feature extraction methods, the principal component
analysis (PCA) is estimated for each input dataset. PCA is a technique for reducing the
dimensionality of a dataset containing many interconnected elements. This was achieved
by using a covariance matrix of extracted features to extract the more effective features
that are uncorrelated with one another. Therefore, features reduction using principal
component analysis decreases the computation volume and enhances the classification
accuracy. According to the present results, the form factors (GFF, FFmaxh, FFmaxv, FFmnh,
FFmnv, flatness continuity measure (FCM), statistical features extraction, operating power
ratio (Pr) and efficiency (η) are found to be the most effective features.

The data extracted using principal components analysis are divided into three cat-
egories for each feature extraction method: training, checking, and testing. The goal of
utilizing a checking dataset is to avoid overfitting the training dataset. In theory, as training
advances, the model error tends to decrease, leading to overfitting, and an abrupt increase
in model error occurs. Overfitting is accounted for by testing the FIS trained on the training
data against the checking data. Furthermore, if these errors indicate model overfitting, the
membership function parameters associated with the smallest checking error are chosen.
The testing dataset is used to evaluate the FIS’s generalization capability. Eight membership
functions are selected for inputs and the same type of membership functions for the output
is applied during the generation of a fuzzy inference system. The objective of increasing
the number of fuzzy memberships per variable is to improve the matching accuracy of
the proposed ANFIS. As the number of fuzzy memberships per variable increases, the
number of robust rules increases, resulting in higher matching accuracy. The total number
of samples (PV modules) is slightly low, 84 samples, compared to other ANFIS applications;
thus, the number of fuzzy memberships is increased to overcome this problem. The system
was prepared with training data and checked with a test dataset. The ANFIS model is im-
plemented using MATLAB® software. The number of nodes and fuzzy rules is determined,
and a neural network training algorithm is utilized to refine the rules and decrease errors.
Finally, the output of the classifications is obtained.

5.3. Analysis of ANFIS Results

In this section, the results of the performance of ANFIS models, to classify the faults
of CIGS PV module, are illustrated. For each type of feature extraction, a series of trials
was applied to the dataset to select an adequate membership function type for the best
classification. The data were divided into three sets, each of which was mutually exclusive.
There were 512 rules, three inputs, one output, and eight membership functions per input in
the final network. The ANFIS system parameters are shown in Table 3. The results of each
feature extraction method are addressed in the following section. After many trials, the best
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membership function type that obtained a high classification percentage for each type of
feature extraction is shown in Table 4. Also, all features were trained and tested together.

Table 3. ANFIS system parameters.

Item Number of

Nodes 1078
Linear parameters 2048

Nonlinear parameters 48
Training data pairs 36
Checking data pairs 27

Fuzzy rules 512

Table 4. Type of membership and accuracy for type of feature extraction method.

Type of Feature Extraction
(FE) Methods

Type of Membership
Function Accuracy

Statistical (FE) Triangle 83.33%
I-V measurement (FE) Gaussian 100%

Mathematical parameter (FE) All type 100%

A general classification matrix (GCM) was proposed in [3,38] for classification of faults.
It has been shown that mathematical parameter-based feature extraction exhibited a higher
capability in classification than statistical feature extraction and electrical measurement-
based feature extraction. However, the GCM takes more time in classification, since it
compares each type of fault with other types using feature extraction methods. On the other
hand, the ANFIS approach proposed in the present study is very fast in the classification
process and detects the type of fault for the classified module. For each type of fault,
the proper required maintenance action can be scheduled/implemented once the data are
trained. This represents an advantage as compared to previous studies on fault classification
that define only the module to be either defective or non-defective and fails to determine
the fault type and corresponding proper maintenance action.

6. Estimation of Operating Power Ratio

The operating power ratio (Pr) of PV modules represents the ratio of PV module
power output and the healthy module power output (refer to Equation (18)). The previously
reported research efforts were concerned with the utilization of IRT images for the detection
and classification of PV faults. No research efforts have considered the possibility of
correlating the features of IRT images to the operating power ratio. Such a correlation is
very useful in predictive maintenance applications; it can be used as a measure for deciding
a maintenance action or even module replacement. Assessment of the operating power
ratio of a given PV module in the plant is normally performed using I-V measurements
in offline conditions. Correlation of IRT image features to the Pr of PV modules can be
performed online without any disturbance in plant operation. Studying the effect of faults
on power loss is very useful to correlate fault types with module reliability, degradation,
and remaining useful life, and obtaining a future picture of the performance of the PV power
plant. Figure 4 shows a box plot of power loss due to faults, with the Y-axis representing
the operating power ratio of CIGS PV modules and the X-axis representing the box plot of
each type of fault.



Sensors 2023, 23, 1280 12 of 16

Sensors 2023, 23, 1280 12 of 17 
 

 

possibility of correlating the features of IRT images to the operating power ratio. Such a 

correlation is very useful in predictive maintenance applications; it can be used as a meas-

ure for deciding a maintenance action or even module replacement. Assessment of the 

operating power ratio of a given PV module in the plant is normally performed using I-V 

measurements in offline conditions. Correlation of IRT image features to the Pr of PV mod-

ules can be performed online without any disturbance in plant operation. Studying the 

effect of faults on power loss is very useful to correlate fault types with module reliability, 

degradation, and remaining useful life, and obtaining a future picture of the performance 

of the PV power plant. Figure 4 shows a box plot of power loss due to faults, with the Y-

axis representing the operating power ratio of CIGS PV modules and the X-axis represent-

ing the box plot of each type of fault. 

 

Figure 4. Box plot of operating power ratio for different fault types. 

In the present article, the correlation between the Pr and the mathematical and statis-

tical features is obtained for each type of fault. The features with high correlation with the 

power ratio are determined. Then, regression analysis is used to obtain the correlation 

equation between the high correlation features and the operating power ratio using 

Minitab 19 software. Figure 5 shows the correlation matrix between features with the Pr 

for each type of fault. The high correlation values are marked with red circles. For each 

type of fault, there is a feature that gives a high correlation with the Pr. Since the mainte-

nance action of faulty modules with fault type H is to remove the module, this type of 

fault was not considered in the correlation with the Pr. It can be observed that the features 

that have a high correlation with the Pr include skewness (𝛾1), FDM, ω, and PP. 

Figure 4. Box plot of operating power ratio for different fault types.

In the present article, the correlation between the Pr and the mathematical and sta-
tistical features is obtained for each type of fault. The features with high correlation with
the power ratio are determined. Then, regression analysis is used to obtain the correlation
equation between the high correlation features and the operating power ratio using Minitab
19 software. Figure 5 shows the correlation matrix between features with the Pr for each
type of fault. The high correlation values are marked with red circles. For each type of fault,
there is a feature that gives a high correlation with the Pr. Since the maintenance action
of faulty modules with fault type H is to remove the module, this type of fault was not
considered in the correlation with the Pr. It can be observed that the features that have a
high correlation with the Pr include skewness (γ1), FDM,ω, and PP.
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The results of regression analysis using Minitab software are shown in Figure 6. The
regression model equation and the values of the R-squared and p-value for each fault type



Sensors 2023, 23, 1280 13 of 16

are shown in Table 5. The value of R-squared (0–100%) represents the scatter around the
regression line. A p-value between 0 and 1 is commonly used to represent the level of
statistical significance. The lower the p-value, the more evidence there is for rejecting the
null hypothesis. A statistically significant p-value is usually less than 0.05. the combination
of low p-value and high R-squared indicates that changes in the predictors are related
to changes in the response variable and that the regression model explains a lot of the
response variability. The combination of low p-value and low R-squared indicates that the
regression model has significant variables but explains little of the variability. The results in
Table 5 reveal that features with faults of type A, C, D, F, and G have high R-squared values.
Type B and F faults, on the other hand, have low R-squared values. All types of faults have
a low p-value, indicating strong evidence against the null hypothesis. The current study
advises that more research should be carried out on the analysis of the operational power
ratio for type B and F faults. Figure 6 shows that the values of Pr decrease with the increase
in γ1 for A and B type faults. The variation of Pr with PP is dependent upon the fault type.
The value of Pr decreases with the increase in PP for fault type D and decreases with the
decrease in PP for fault type C.
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Table 5. Regression model parameters for different types of faults.

Fault Type Regression Model R-sq % p-Value

A Pr = 0.7035− 0.1428 γ1 62.34 0.062
B Pr = 0.4227− 0.07026 γ1 34.83 0.056
C Pr = 0.5929− 19.28 FDM 99.99 0.06
D Pr = −0.4062 + 0.007860 pp 48.67 0.012
E Pr = −5.292 + 6.747ω 57.41 0.029
F Pr = 0.5444 + 0.6615 FDM 77.43 0.315
G Pr = 3.332− 0.0187 pp 69.24 0.005
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7. Conclusions

An ANFIS is developed for automation of the fault classification process of PV modules.
Statistical and mathematical features of outdoor IRT and I-V measurements of thin-film PV
modules of a typical CIGS PV plant are used to provide the dataset for the implementation
and analysis of the proposed scheme. The proposed features are proven to be unaffected by
temperature variations that may occur due to the usage of different infrared camera sensors.

Many tests have been carried out to determine the best type of membership function
for high classification accuracy. PCA is used to reduce dimensionality and speed up the
classification process. This was achieved by using a covariance matrix of extracted features
to obtain the more effective features that are uncorrelated with one another. According
to the results, the most effective classification features are found to be global form factor
(GFF), maximum form factor for horizontal and vertical (FFmaxh, FFmaxv), mean form factor
for horizontal and vertical (FFmnh, FFmnv), flatness continuity measure (FCM), statistical
features, operating power ratio (Pr) and efficiency (η). The evaluation of the proposed
approach shows that the accuracy of classification reaches 100% using feature extraction
methods that are based on mathematical parameters and I-V measurements, and 83.33%
using features based on statistical parameters.

A novel approach is proposed for developing a correlation matrix between the Pr
and the effective features extracted online from IRT images. Thus, the need for offline I-V
measurements to estimate the Pr of PV modules is eliminated. Effective features that are
highly correlated with the operating power ratio of PV modules are determined for each
type of fault. The features of IR images that have a high correlation with the Pr include
skewness (γ1), mean (µ), mean form factor in the vertical direction (FF_mnv), FCM, mean
form factor in the horizontal direction (FF_mnh), σ, and PP. The results of a regression
analysis of the Pr demonstrate that features with faults of type A, C, D, F, and G have high
R-squared values. Type B and F faults, on the other hand, have low R-squared values. All
types of faults have a low p-value, indicating strong evidence against the null hypothesis.
The present analysis suggests the need for further research work on the analysis of Pr for
faults of types B and F.
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