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Abstract: The combination of multifunctional micromagnetic testing and neural network-based
prediction models is a promising way of nondestructive and quantitative measurement of steel
surface hardness. Current studies mainly focused on improving the prediction accuracy of intelligent
models, but the unavoidable and random uncertainties related to instruments were seldom explored.
The robustness of the prediction model considering the repeatability of instruments was seldom
discussed. In this work, a self-developed multifunctional micromagnetic instrument was employed to
perform the repeatability test with Cr12MoV steel. The repeatability of the instrument in measuring
multiple magnetic features under both static and dynamic conditions was evaluated. The magnetic
features for establishing the prediction model were selected based on the consideration of both the
repeatability of the instrument and the ability of magnetic features in surface hardness evaluation. To
improve the robustness of the model in surface hardness prediction, a modelling strategy considering
the repeatability of the instrument was proposed. Through removing partial magnetic features with
higher mean impact values from input nodes, robust evaluation of surface hardness in Cr12MoV
steel was realized with the multifunctional micromagnetic instrument.

Keywords: micromagnetic testing; repeatability; quantitative prediction; surface harness; robustness

1. Introduction

Quality control is important in the manufacturing process of advanced high-strength
steels and high-end ferromagnetic components. Mechanical properties (such as surface
hardness, yield strength, and elongation, etc.) are usually measured to evaluate the quality
of steel sheets and ferromagnetic components. Traditional measurement ways of me-
chanical properties, such as indentation-based and tensile test methods, are destructive
and not applicable to online tests. In ferromagnetic materials, the microstructures (grain
boundary, precipitates, dislocation, etc.) not only hinder the motion of magnetic domains
under the action of an external magnetic field but also determine the mechanical behav-
ior under an external load [1]. Intrinsic connections between the magnetic properties
and mechanical properties of ferromagnetic materials had been confirmed by numerous
experiments [2–5]. Such phenomenological conclusions suggest the feasibility of magnetic
evaluation of mechanical properties in nondestructive ways.

Among all the signatures representing the magnetic properties of ferromagnetic mate-
rials, micro-magnetic signals are the indicators of material magnetization on a microscopic
scale and mainly originate from the pinning effect of microstructures on magnetic domains.
Therefore, micro-magnetic signals (such as magnetic Barkhausen noise and incremental
permeability) are sensitive to the variation in micro-structures and consequently mechan-
ical properties [6]. Some features extracted from micro-magnetic signals demonstrated
high correlations with mechanical properties. However, the correlation models varied
with material type, heat treatment process, and even the used instrument, thus limiting
the universality of micro-magnetic evaluation methods [7,8]. Current researches tend to
discuss each case separately while modeling the relationship between the magnetic features
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and mechanical properties is required. For instance, Sorsa et al. [9] collected magnetic
Barkhausen noise from samples of case-hardened steel 18CrNiMo7-6 and proposed the
data-based approach of establishing multivariable linear regression models to predict resid-
ual stress and surface hardness. Dong et al. [10] established three-layer back-propagation
neural network (BP-NN) models for the quantitative evaluation of residual stress and
surface hardness in deep-drawn parts based on magnetic Barkhausen noise technology.

Recent studies proved that enriching the parametric space of magnetic features
could improve the prediction accuracy of models [11,12]. Therefore, in the proposed
multifunctional micromagnetic evaluation method, micromagnetic signals together with
other magnetic signatures (such as tangential magnetic field, eddy current, and mag-
netic hysteresis curve, etc.) were simultaneously measured as input nodes of the model.
Jedamski et al. [13] employed the 3MA-II system developed by Fraunhofe-IZFP to re-
alize the quantitative evaluation of hardness and case hardening depth in steel bars of
18CrNiMo7-6. The data from four types of micromagnetic signals were used to train the
prediction model. Though the performance of the established model based on an artificial
neural network was affected by the teaching steps, the advantages of the neural network
method over the methods of linear regression analysis were obvious. Akhlaghi et al. [14]
combined the magnetic features extracted from both the magnetic hysteresis loop and
eddy current as the input nodes of the generalized regression neural network (GRNN),
established the GRNN model to accurately estimate the hardness profile of steel specimens
subjected to Jominy test, and found that the calibration of the measurement system (yields
as a GRNN model) might be invalid once the hardware or dimensional parameters of the
setup changed.

The performance of the multifunctional micromagnetic method combined with an
artificial neural network highly relies on the quality of magnetic features measured by
instruments and the performances (including accuracy, robustness, etc.) of prediction
models. The repeatability of instruments is related to the quality of magnetic features,
which may be affected by the random error involved in a single measurement. The sources
of random errors include the stochastic process of domain motion, slight fluctuation in elec-
trical parameters of instruments, the minor difference in the contact state between sensors
and specimen surface, etc. Improving the prediction accuracy of intelligent models through
structural optimization of neural networks has been extensively explored [15,16], but the
robustness of the prediction model considering the repeatability of the multifunctional
micromagnetic instrument was seldom investigated. If the robustness of the established pre-
diction models is poor, large errors may occur in the quantitative prediction of mechanical
properties using micromagnetic testing instruments.

In this study, attempts were made to find a way for robust prediction model es-
tablishment considering the repeatability of the instrument in micromagnetic features
measurements. A self-developed multifunctional micromagnetic instrument was employed
to perform repeatability tests for the quantitative prediction of surface harness in Cr12MoV
steel. With the repeatability testing data collected under both static and dynamic condi-
tions, the repeatability of the instrument in measuring multiple magnetic features was
evaluated with the coefficient of variation. Based on the comprehensive consideration of
the repeatability of the instrument and the ability of magnetic features in surface hardness
evaluation, the magnetic features were filtered for establishing the prediction model based
on a feed-forward neural network (FNN). To improve the robustness of FNN models while
the instruments suffer random uncertainties, a selection strategy of input nodes is proposed
based on the consideration of the balance between influence weight and robustness. The
prediction results showed that the robustness of the prediction model could be improved
by properly and partially eliminating magnetic features with higher mean impact value
(MIV) from input nodes.

The rest of this paper is organized as follows. Detailed information about the experi-
mental set-up and typical experimental results of measured magnetic features are given
in Section 2. The repeatability of the instrument under static and dynamic conditions is
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discussed in Section 3. In Sections 4 and 5, the prediction model establishment and its
robustness evaluation are investigated. The research findings obtained in this work are
summarized in the Conclusions.

2. Experiments
2.1. Experimental Set-Up

Cold work die steel plates of Cr12MoV in Chinese standards were selected for
specimen preparation. A batch of rectangular specimens with identical dimensions of
250 × 60 × 3 mm were cut from the as-received steel plates. The specimens were quenched
by heating to 1030 ◦C step-by-step and cooling in nitrogen for 25 min. The quenched
specimens were tempered for 210 min at different temperatures. A total of eight specimens
were prepared by changing the tempering temperature from 575 ◦C to 720 ◦C so that the
microstructures and surface hardness of the specimens could be adjusted. The specimen
surface was slightly ground to remove the oxide layer for Vickers hardness tests. During
hardness tests, the load applied by the indenter remained to be 30 kg. Three randomly
selected locations at the central area of the surface were tested. The measured values of
Vickers hardness (HV30) are listed in Table 1.

Table 1. The measured surface hardness of the prepared samples.

Specimen Nos.
Hardness (HV30)

Position 1 Position 2 Position 3

1# 347 346 346
2# 350 349 349
3# 369 367 366
4# 392 386 389
5# 414 416 416
6# 420 420 420
7# 448 444 446
8# 457 453 455

Multifunctional micro-magnetic tests were performed on all eight specimens with a
self-developed instrument of MaginFrame. The configuration of the instrument was shown
in Figure 1a. The details of the sensor and the operation procedure for the MaginFrame
instrument could be found in the previous study [17]. A computer-controlled signal
generator was employed to generate two channels of sinusoidal waves. One of them had
a frequency range of 50 to 500 Hz and its amplitude was amplified by a voltage-current
conversion power amplifier. The amplitude of the amplified current could be adjusted
in the range of 1 to 4 A. Another sinusoidal wave with the frequency range of 10 kHz
to 1 MHz passed through a current amplifier before being fed into the transmitter coil.
The maximum amplitude of the high-frequency sinusoidal current was limited to 100
mA. The magnetization coil wound onto the yoke and the transmitter coil of the air core
were deployed to provide low-frequency and high-frequency magnetic fields, respectively.
Through controlling the parameters (duration, amplitude, and time delay) of the two-
channel sinusoidal waves, intermittently superimposed high- and low-frequency magnetic
fields were induced for material magnetization. With this novel magnetization technology,
several types of magnetic signals could be generated simultaneously. The compound
magnetic signals were measured with combined magnetic sensors (Hall sensor and receiver
coil) whose sensitive axes were orthogonal to each other. A total of four types of magnetic
signals including the tangential magnetic field (TMF), magnetic Barkhausen noise (MBN),
engineer incremental permeability (EIP), and multi-frequency eddy current (MFEC) were
measured in a period of single excitation.
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Figure 1. (a) Instrument and (b) experimental set-up for performing multifunctional micro-
magnetic testing.

Figure 1b demonstrates the whole experiment set-up for multifunctional micro-magnetic
tests. The instrument of MaginFrame was integrated with a six-DOF robot system. In the
experiment, all the specimens were clamped on a workbench. The moving trajectory of
the robotic arm was programmed in a teaching mode so that the sensor held by the robotic
arm could test all the specimens in sequence. The six-DOF robot system could suppress the
random errors caused by manual operations. During the testing process, the parameters of
the current for generating the low-frequency magnetic field were selected as 200 Hz and 2 A
in peak amplitude. The amplitude of the high-frequency excitation current was selected as
1 V for EIP and MFEC tests. Four frequencies of 10 kHz, 20 kHz, 50 kHz, and 100 kHz were
selected for eddy current analysis. In the EIP test, the high-frequency excitation current
had a frequency of 100 kHz. The sampling rate for all the signal acquisition channels was
fixed as 2 MSa/s. A total of 41 features (Appendix A Table A1) were extracted from the
measured four types of magnetic signals.

2.2. Experimental Results

The performances of the developed experimental set-up in measuring the magnetic
features and quantitatively predicting the surface hardness of Cr12MoV steel were ex-
plored below. The experiments were performed in two stages to collect the required
data for evaluating the repeatability of instruments and seeking prediction models of
high robustness.

In the first stage of experiments, all eight specimens of different surface hardness
were tested under static conditions. After the sensor was in vertical contact with the test
location of the specimen, the multifunctional micro-magnetic test was repeated ten times
while keeping the sensor steady. Under static conditions, the random errors related to
the instrument mainly originate from the stochastic process of domain motion and slight
fluctuations in the electrical parameters of the instrument.
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In each test, magnetic signals in five magnetization cycles of the low-frequency mag-
netic field were acquired and averaged. Figure 2 shows the patterns of the multifunctional
magnetic signals obtained from the specimens of different surface hardness. The features of
the magnetic patterns regularly varied with the surface hardness of specimens, indicating
the feasibility of surface hardness characterization with magnetic features.

Sensors 2023, 23, 1273 5 of 16 
 

 

location of the specimen, the multifunctional micro-magnetic test was repeated ten times 
while keeping the sensor steady. Under static conditions, the random errors related to the 
instrument mainly originate from the stochastic process of domain motion and slight 
fluctuations in the electrical parameters of the instrument. 

In each test, magnetic signals in five magnetization cycles of the low-frequency 
magnetic field were acquired and averaged. Figure 2 shows the patterns of the 
multifunctional magnetic signals obtained from the specimens of different surface 
hardness. The features of the magnetic patterns regularly varied with the surface hardness 
of specimens, indicating the feasibility of surface hardness characterization with magnetic 
features. 

  
(a) (b) 

  
(c) (d) 

Figure 2. (a–d) demonstrate the patterns of TMF, MBN, EIP, and MFEC, respectively. 

In the second stage, the repeatability of the instrument under dynamic condition was 
concerned. During the repeatability test, the robotic arm gradually approached the 
specimen from a distance along the pre-planned trajectory. Once the sensor held at the 
end of the robotic arm contacted the specimen surface, it kept steady when performing 
multifunctional micro-magnetic tests ten times. Compared with the static condition, in the 
dynamic condition, the minor difference in contact state between the sensor and the 
specimen surface was included in the random uncertainties. The experiment was repeated 
77 times and only performed on the specimen labeled as 4#. Therefore, a total of 770 
signals were recorded to evaluate the repeatability of the instrument under dynamic 
conditions. Moreover, the data collected under dynamic conditions were used to evaluate 
the robustness of the trained prediction models in Section 4, considering the measured 
data of magnetic features (referred to as input nodes of the model) experienced slight 
fluctuations. 

Multiple magnetic features were simultaneously measured with the instrument and 
thus the repeatability of the instrument should be discussed for individual magnetic 
features. Figure 3 demonstrates the measured data (770 data points sorted by the 
repeating times) of typical magnetic features. The error bars were plotted to demonstrate 
the extent of variation in the data under static conditions. The fluctuation in the mean 
value (red dot) as the repetitions indicated the repeatability of the instrument under 

Figure 2. (a–d) demonstrate the patterns of TMF, MBN, EIP, and MFEC, respectively.

In the second stage, the repeatability of the instrument under dynamic condition
was concerned. During the repeatability test, the robotic arm gradually approached the
specimen from a distance along the pre-planned trajectory. Once the sensor held at the
end of the robotic arm contacted the specimen surface, it kept steady when performing
multifunctional micro-magnetic tests ten times. Compared with the static condition, in
the dynamic condition, the minor difference in contact state between the sensor and the
specimen surface was included in the random uncertainties. The experiment was re-
peated 77 times and only performed on the specimen labeled as 4#. Therefore, a total of
770 signals were recorded to evaluate the repeatability of the instrument under dynamic
conditions. Moreover, the data collected under dynamic conditions were used to eval-
uate the robustness of the trained prediction models in Section 4, considering the mea-
sured data of magnetic features (referred to as input nodes of the model) experienced
slight fluctuations.

Multiple magnetic features were simultaneously measured with the instrument and
thus the repeatability of the instrument should be discussed for individual magnetic
features. Figure 3 demonstrates the measured data (770 data points sorted by the repeating
times) of typical magnetic features. The error bars were plotted to demonstrate the extent of
variation in the data under static conditions. The fluctuation in the mean value (red dot) as
the repetitions indicated the repeatability of the instrument under dynamic conditions. The
error bars were too short to recognize in Figure 3c,d, indicating the excellent repeatability
of the instrument in measuring the magnetic features of x20 and x36 under static conditions.
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Figure 4b, both the peak and its position of MBN envelop vary in a certain range to cause 
a noised ridge along the axis of date. The distortion in the MBN envelop observed under 
dynamic conditions was mainly ascribed to the randomness of the Barkhausen events, 
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Figure 4. The 3D images of (a) MBN and (b) EIP envelop recorded in repeatability tests. 

Figure 3. (a–d) demonstrate the recorded data of x5, x15, x20, and x36, respectively.

As shown in Figure 3b, the measured data of magnetic features of x15 (extracted from
the MBN signal) showed severe fluctuations during every test. Through recalling the
measured patterns of MBN, the MBN envelope of a half magnetization cycle is demon-
strated as the 3D image in Figure 4a. Compared with the smooth image of EIP in Figure 4b,
both the peak and its position of MBN envelop vary in a certain range to cause a noised
ridge along the axis of date. The distortion in the MBN envelop observed under dynamic
conditions was mainly ascribed to the randomness of the Barkhausen events, which had
been proven as a stochastic process during the material magnetization [18]. Therefore, the
repeatability of the instrument in measuring magnetic features extracted from MBN signals
was expected to be worse than that of the magnetic features of EIP.
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3. Repeatability of the Instrument

The physical meanings and dimensions of all the measured 41 magnetic features were
different from each other. A dimensionless index, coefficient of variation (β) estimated
from the repeatability test data, was used to evaluate the repeatability of the instrument
in measuring different magnetic features at the same scale. The coefficient of variation
is defined as the ratio of standard deviation to the mean value. The repeatability of the
instrument is discussed under static and dynamic conditions. The coefficient of variation
of all the 41 magnetic features obtained from specimen 4# under static conditions was
estimated and drawn as the curved surface in Figure 5a. The dispersion of β estimated
from the 77 times of repeatability tests was plotted as the error bars in Figure 5b.
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Figure 5. The coefficient of variation of the magnetic features estimated under static conditions.
(a) and (b) demonstrate the estimated results in 3D and 1D, respectively.

Several magnetic features of MFEC and the magnetic features of x3 and x6 (extracted
from the 5th harmonic of TMF) demonstrates the high values of β (greater than 8%) due
to the high-frequency magnetization of the tested specimen. During the high-frequency
magnetization process, the magnetic attraction force between the yoke and the specimen
might experience high-frequency variations and cause micro-vibrations of the sensor.
The micro-vibration that occurred at the interface between the sensor and the specimen
surface negatively affected MFEC which was very sensitive to the variation in the lift-off of
the sensor.

For the magnetic features of EIP, its corresponding coefficient of variation (β) expe-
rienced very slight variations. For instance, the values of β corresponding to magnetic
features of x20 and x25 vary in the ranges of 0.017~0.077% and 0.020~0.14%, respectively.
Though the MBN features demonstrated larger values of β than those of EIP, the values of
β remained basically stable and the coefficient of variation was less than 4%. Therefore, the
repeatability of the instrument under static conditions is good, especially for measuring the
magnetic features of EIP.
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The repeatability of the instrument under dynamic conditions was estimated with the
variations of the mean values of magnetic features measured under dynamic conditions.
The coefficient of variation estimated from the data of the mean value of the magnetic
feature, which can be observed from the data points marked as red dots in Figure 3a–d, is
shown as the histogram in Figure 6. As expected, the magnetic features with a large value
of β under static conditions also demonstrated significant fluctuations under dynamic
conditions. However, under dynamic conditions, the values of β corresponding to the
magnetic features of MBN and EIP are very close, which differs from the conclusions
observed under static conditions.
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4. Establishment of the Prediction Models
4.1. Feature Selection

In the experiment, the observed variation in magnetic features was mainly ascribed
to the change in surface hardness and the random error related to the repeatability of the
instrument. For each magnetic feature of xi (i = 1, 2, . . . , 41), ten repeated test data were
collected from the jth (j = 1, 2, . . . , 8) specimen. The averaged value of xi is denoted as mij.
The variation range of xi is recorded as Ci, which can be expressed as:

Ci = max
{

mij
}
− min

{
mij
}

(1)

The magnetic feature xi of the kth (k = 1, 2, . . . , 10) test performed with the jth specimen
is represented as nijk and the random error of xi in the repeatability test is given as Pij:

Pij = max
{

nijk

}
− min

{
nijk

}
(2)

Therefore, the averaged random error of the feature xi can be expressed as:

Pi =

[
N

∑
j=1

Pij

]
/N (3)

where N represents the quantity of specimens. To estimate the performance of magnetic
features in surface hardness evaluation, an indicator similar to the signal-to-noise ratio is
proposed as Fi = Pi/Ci. The estimated values of Fi are plotted as bars in Figure 7. When
Fi < 5, the corresponding magnetic feature of xi is considered to be not enough for surface
hardness characterization.
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Both the performance of magnetic features in surface hardness evaluation and the
repeatability of the instrument are key factors to be considered in the feature selection
for prediction model training. The curve of 1/Fi (Figure 7) and the curve of β (Figure 6)
estimated under dynamic conditions indicated that most of the magnetic features with
larger values of β (instability) also had a large value of 1/Fi (poor performance in surface
hardness characterization). However, several magnetic features (such as x3 and x6) had
a small value of 1/Fi (good ability) but a large value of β (instability) and were not good
options as the input nodes of the prediction model.

Considering that most of the magnetic features have a value of 1/Fi lower than 0.2,
1/Fi < 0.2 was selected as a threshold for the selection of magnetic features. Therefore, only
those measured magnetic features which met the conditions of 1/Fi < 0.2 and β < 5% were
selected as the input nodes of prediction models. The selected features are marked by the
red dot below their symbols in Figure 7. The data of the filtered magnetic features obtained
in the first stage together with the measured surface hardness listed in Table 1 were used to
train the quantitative prediction models.

The dependencies of the selected magnetic features on the surface hardness are shown
in Figure 8. The value of x7 is approximately linearly dependent on surface hardness,
whereas the other three features (x12, x19, and x37) demonstrate the nonlinear dependency
on surface hardness.

4.2. Modelling Strategy

Many researchers reported the complicated and nonlinear correlations between multi-
ple magnetic features (input nodes) and surface hardness (output node) of steels. Neuronal
network-based models are recommended for surface hardness predictions due to their
higher accuracy than the multiple linear regression models. However, the robustness
evaluation of the neuronal network-based models in micro-magnetic testing was rarely
reported. Therefore, the robustness of the prediction models will be clarified using the data
from repeating test.

The performance of a trained model is determined by the selected input nodes, the
structure of the neural network and the training algorithm, etc. This study focused on the
selection of input nodes of the model. The measured values of magnetic features changed
in a certain range during repeatability tests under dynamic conditions even though the
performance of the developed instrument was good (Figure 4). If the robustness of the
mode was poor, minor fluctuations in the values of selected magnetic features (input nodes)
might cause unacceptable errors in surface hardness prediction.

To examine the impact of fluctuation in the input nodes on the prediction accuracy of
the model, the mean impact value (MIV) algorithm is a promising option. Through actively
applying variations in the values of input nodes, the changes in the output nodes of the
model were estimated as the impact value. An input node with a large value of MIV had a
high weight of influence on the model or demonstrated a strong correlation with the output
node. From the perspective of sensitivity (or influence weight) evaluation, the magnetic
features with high MIV were more suitable input nodes of the model. However, the
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selection of input nodes with larger values of MIV might decrease the model’s robustness
because the definition of the MIV indicated the adaptability of the model to the fluctuation
in an individual magnetic feature. Thus, the input nodes should be selected based on the
consideration of the balance between sensitivity and robustness.
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Figure 8. (a–d) demonstrate the dependency of x7, x12, x19, and x37 on the surface hardness, respectively.

Removing partial magnetic features of higher MIV from the input nodes might enhance
the robustness of prediction models at the cost of model accuracy. Inspired by this idea, a
research strategy (Figure 9a) was proposed to obtain the model with a balanced prediction
accuracy and robustness based on the consideration of the repeatability of the instrument.

Feed-forward neural network (FNN) was employed to map the correlations between
multiple magnetic features (input nodes) and surface hardness (output node) of the tested
specimens. Two hidden layers were selected for the FNN structure during the training
process of all the models and the number of nodes at each hidden layer was selected as ten.
All the FNN models were established in the platform of MATLAB with the training function
of Levenberg-Marquardt. The finalized connection weight values among the nodes of a
trained FNN were affected by the initially assigned weight values. In this study, the initial
weight values among the nodes of FNN were assigned randomly to train numerous FNN
models. The feasibility of the proposed input node selection method was evaluated with
the generated numerous FNN models of different parameters.

The procedures for model training and robustness evaluation are described below.
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Figure 9. (a) Flow chart for the robustness evaluation of established models. (b,c) Magnetic features
sorted by their estimated MIV values and performances of typical FNN models, respectively.

Step 1: Estimation of MIV for all the candidate input nodes
A total of one hundred FNN models were trained before evaluating the MIV of

magnetic features (or candidate input nodes). During the training process of FNN models,
the data obtained from the 4# specimen were excluded and the magnetic features measured
from the other seven specimens in the first-stage experiment were used as the input dataset.
Through estimating the MIV of individual magnetic features with the one hundred trained
FNN models, all the investigated magnetic features could be sorted in descending order
of their averaged MIV. The sorting results of candidate input nodes according to their
estimated values of MIV are shown in Figure 9b.

Step 2: Models established with filtered input nodes
In the first step, all the candidate input nodes were used for model training to generate

a reference model. In the second step, according to the descending order of their averaged
MIV, some candidate input nodes were rejected one by one and not used for model training.
The number of the filtered input nodes is k and the case with k = 0 corresponds to the
reference model. For the cases of different k, the process of model training was repeated
by randomly assigning the initial connection weight values among the nodes. Among the
trained models, a total of 1000 fine models with an internal validation error of less than
±5% were stored for further statistical analysis. The performance of typical FNN models
employing different numbers of input nodes can be observed in Figure 9c in which the
results of internal validation with the highest accuracy are demonstrated.

Step 3: Robustness evaluation of established models
The magnetic features measured from the 4# specimen (repeated 77 times under

dynamic conditions) were used to evaluate the robustness of each established model.
External validation of the model accuracy was performed for each test and the mean
absolute error (MAE) of the model in surface hardness prediction during 77 times of testing
was recorded. The data of MAE estimated from all the 1000 models were used to plot
the histogram. The skewness and median estimated from the histogram were used as the
statistical indicators for model robustness evaluation. Large skewness and small median
indicated the high robustness of the models with specific input nodes. Through comparing
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the robustness of models with k input nodes are filtered, the best scheme for input nodes
selection will be determined.

5. Robustness Evaluation of Prediction Models

According to the procedure sketched in Figure 9a, the FNN models with k-filtered
magnetic features were generated. The prediction accuracy of the established models with
different values of k could be evaluated with the histograms (Figure 10). For the reference
model (k = 0), its corresponding median and sknewness were estimated as 15.3 HV and
1.04, respectively. When the value of k increased from 0 to 8, the median showed an overall
descending trend, whereas the sknewness demonstrated an upward trend (Figure 11a). For
instance, the median reached its minimum value of 11.0 HV among the investigated cases
when k was 6. The value of sknewness obtained in the case of k = 6 was around 30% larger
than that of the reference model, indicating an improvement in model robustness.
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Figure 11. (a) Curves of estimated skewness and median; (b) Average MAE and the number of cases
with MAE less than 10.

In the range of k ≤ 6, an increase of k causes a decrease in the average value of MAE
and an increase in the number of models with MAE less than 10. The results in Figure 11b
prove that the probability of high accuracy and robustness of the model can be improved
through rejecting the magnetic features of higher MIV considering the random uncertainties
faced by the instrument. When k is greater than 6, the four curves in Figure 11 tend to be
stable, indicating that the robustness of models could only be improved in a certain range
of k. In addition, the effective range of k depended on the investigated cases and should be
further discussed based on the proposed modeling strategy.

To clearly display the improvement in the robustness of the prediction model, the
model with the highest accuracy among the trained ones is recalled to predict the surface
hardness of specimen 4# with the data of repeatability tests. For the cases with different
values of k, the quantitative prediction results of the best models are shown in Figure 12.
The surface hardness of the specimen was a constant and the dispersion of the prediction
data near its true value was caused by the uncertainties during the measurement process
of magnetic features. With the increase in k value, the extent of dispersion of the predicted
data decreased.
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Figure 12. (a–c) show the quantitative prediction results of surface hardness with the models of k = 0,
k = 4 and k = 8, respectively.

In the traditional way (k = 0), all the magnetic parameters were used as the input
nodes of model, and the MAE value of the model was about 2.42 HV (0.621%). The mean
value of the predicted surface hardness had a negative offset of around 2.22 HV from its
true value (Figure 12a), causing an underestimation of the surface hardness in most cases.
When four magnetic features with a large MIV value were removed from input nodes,
the prediction accuracy of the corresponding model (k = 4) was improved and the mean
value was around 388.9 HV, which was closer to its true value of 389 HV. The MAE value
and standard deviation of the results predicted by the model of k = 4 (Figure 12b) were



Sensors 2023, 23, 1273 14 of 16

estimated as 1.13 HV (around 0.291% of its true value) and 1.41 HV, respectively. The
performance of the model could be further improved by increasing the value of k from
4 to 8. With the results in Figure 12c, the MAE value and standard deviation in surface
hardness prediction were calculated to be around 1.02 HV (around 0.291% of its true value)
and 1.04 HV, respectively. The reduction in both the MAE value and the data dispersion
extent clearly verified that the robustness of the model was improved with the proposed
modeling strategy. The multi-functional micromagnetic instrument equipped with the
robust prediction model is expected to improve the quantitative prediction performances
of surface hardness although unavoidable random uncertainties are involved in the test.

6. Conclusions

Multifunctional micromagnetic tests were performed with the specimens of Cr12MoV
steel in order to realize the robust and quantitative prediction of surface hardness. The
repeatability of the instrument in measuring magnetic features is imperfect and also may
suffer random fluctuation during repeatability tests, thus resulting in changes in the input
nodes of prediction models. The models of high robustness may be successfully applied in
multifunctional micromagnetic testing. In this study, a modeling strategy and the selection
method of input nodes were proposed for improving the robustness of FNN models in
predicting the surface hardness of Cr12MoV steel. The conclusions are drawn as follows:

1. The evaluation results obtained under both static and dynamic conditions verified that
the self-developed multifunctional micromagnetic instrument had good repeatability
in measuring the magnetic features of EIP and MBN and most of the magnetic features
of TMF.

2. Through the indicator combination of Fi and β, magnetic features of good repeatability
and good performance in surface hardness evaluation could be selected. However,
the selection of input nodes from the filtered magnetic features should be further
explored. The magnetic features with high MIV negatively affected the robustness of
prediction models.

3. Based on the consideration of the balance between the MIV of input nodes and the
robustness of prediction models, removing partial magnetic features of high MIV
from the input nodes could improve the robustness of prediction models.
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Appendix A

Table A1. Features extracted from the four types of magnetic signals.

Features Descriptions

TMF

x1 Amplitude of of TMF
x2, x3, x4 Amplitudes of the 1st, 3rd, 5th and 7th harmonics
x5, x6, x7 Phases of the 3rd, 5th and 7th harmonics

x8 Distortion factor, x8 =

√
x2

2+x2
3+x2

4
x2

1

x9 Sum of the amplitudes of the 3rd, 5th and 7th harmonics
x10 Harmonic amplitude at the tangential magnetic field crossing the zero point
x11 Amplitude of the harmonic component of tangential magnetic field at the first zero-crossing point

MBN

x12 Peak height of the MBN butterfly curve
x13 Mean value of MBN envelope for a single magnetization cycle
x14 Intercept of MBN envelope at the vertical axis
x15 Peak position of the MBN butterfly curve
x16 Full width at 25% of maxima of MBN butterfly curve
x17 Full width at half maxima of MBN butterfly curve
x18 Full width at 75% of maxima of MBN butterfly curve

EIP

x19 Peak height of the EIP butterfly curve
x20 Mean value of EIP envelope for a single magnetization cycle
x21 Intercept of EIP envelope at the vertical axis
x22 Peak position of the EIP butterfly curve
x23 Full width at 25% of maxima of EIP butterfly curve
x24 Full width at half maxima of EIP butterfly curve
x25 Full width at 75% of maxima of EIP butterfly curve

MFEC

x26, x27, x28, x29 Real parts of four frequencies of eddy current signals
x30, x31, x32, x33 Imaginary part of four frequencies of eddy current signals
x34, x35, x36, x37 Amplitudes of four frequencies of eddy current signals
x38, x39, x40, x41 Phases of four frequencies of eddy currents
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