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Abstract: A three-dimensional electrical conductivity model of the mantle beneath South China
is presented using the geomagnetic depth sounding method in this paper. The data misfit term
in the inversion function is measured by the L1-norm to suppress the instability caused by large
noises contained in the observed data. To properly correct the ocean effect in responses at coastal
observatories, a high-resolution (1◦ × 1◦) heterogeneous and fixed shell is included in inversion.
The most striking feature of the obtained model is a continuous high-conductivity anomaly that
is centered on ~(112◦ E, 27◦ N) in the mantle. The average conductivity of the anomaly appears
to be two to four times higher than that of the global average models at the most sensitive depths
(410–900 km) of geomagnetic depth sounding. Further analysis combining laboratory-measured
conductivity models with the observed conductivity model shows that the anomaly implies excess
temperature in the mantle. This suggests the existence of a mantle plume, corresponding to the
Hainan plume, that originates in the lower mantle, passes through the mantle transition zone, and
enters the upper mantle. Our electrical conductivity model provides convincing evidence for the
mantle plume beneath South China.

Keywords: earth observation; geomagnetic data; three-dimensional imaging; Hainan plume; geo-
magnetic depth sounding

1. Introduction

Mantle plumes can transport material and energy to the surface. They may be closely
related to the breakup of the paleo-continents, the formation of large igneous provinces, the
eruption of a series of intraplate volcanoes, and even mass extinctions [1,2]. Therefore, the
reconstruction of mantle plumes plays a key role in understanding mantle convection and
Earth’s evolution. The temperature and mineral compositions of a plume are obviously
different from those of the surrounding mantle, and a mantle plume interacts with the man-
tle transition zone (MTZ) and other interfaces in Earth during its rise, causing significant
changes in the structure of the mantle [3]. Therefore, the most convincing evidence for the
existence of a mantle plume comes from geophysical observations of the mantle.

Geophysical methods, particularly seismology and seismic tomography, are used to
detect plumes. Many achievements have been made in plume research through seismic
imaging [4–8]. Recently, a low-velocity structure was discovered in the mantle below
Hainan Island [9–14]; this structure originates in the lower mantle, crosses the MTZ, and
reaches the lithosphere. This characteristic suggests that the low-velocity structure is a
mantle plume. Therefore, the Hainan plume has been put forward to explain the formation
and evolution of the South China Sea, the mechanism of Hainan’s volcanoes, and other
scientific issues. However, there are still large disputes among different research groups
about the location, shape, temperature, and other properties of this mantle plume. For
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example, Huang [12] found that the tail of the Hainan mantle plume is located northeast
of the Hainan volcanoes through seismic P-wave and S-wave imaging, with a diameter
of approximately 200 km, whereas Xia et al. [10] found the tail of the Hainan mantle
plume to be more northerly, located at the junction of Guangdong, Guangxi, and Hunan
Provinces, with a diameter of 200~300 km, via imaging using the teleseismic method. Such
inconsistencies make discussion of the Hainan plume difficult. The application of other
geophysical methods will help to reach a consensus.

The electrical conductivity of the mantle is sensitive to variations induced by plumes.
Therefore, geomagnetic depth sounding (GDS), which can reveal the conductivity of the
mantle [15], has become an important method of plume detection. Although the resolution
of GDS is slightly lower than the diameter of a plume tail, when a plume impinges on the
MTZ, the exothermic reaction caused by the phase transformation at the 660 km interface
can result in the accumulation of a tremendous volume of hot plume materials beneath
the MTZ [16]. The extent of the head formed by these materials may exceed 1000 km in
diameter [3]. This accumulation significantly increases the conductivity near the MTZ and
makes it possible to detect the existence of mantle plumes via GDS. The distribution of
geomagnetic stations in South China and its surrounding areas is relatively dense, providing
unique data conditions for the application of GDS to detect the Hainan mantle plume.

2. Data and Methods
2.1. GDS Theory

The inducing source for GDS is the slowly changing ring currents in the magneto-
sphere [17]. These currents are concentric with the magnetic equator of Earth, and so the
numerical simulation is developed based on the geomagnetic spherical coordinate system.
The widely used C-response of GDS is estimated from the Hr (the vertical component
pointing downwards towards the center of Earth) and Hθ components (the colatitudinal
component pointing towards magnetic north) of the magnetic field (H) at the surface. With
the assumption that the ring currents can be described by the spherical harmonic function
P0

1 [17–19], the C-response can be calculated by

C(ω) = − a0 tan θ

2
Hr(ω)

Hθ(ω)
, (1)

where a0 is the average radius of Earth, ω is the angular frequency, and θ represents the
geomagnetic colatitude (0–180◦). The induced geomagnetic signal collected at the surface
for GDS has a period of several days to more than 100 days.

Equation (1) shows that C-responses should be calculated from the magnetic field H.
Under the assumption of positive time harmonic dependence of the form eiωt, H obeys

∇× (ρ∇×H) + iωµ0H = 0, (2)

where ρ is the reciprocal of electrical conductivity σ, µ0 is the vacuum magnetic permeability,
and i is the imaginary unit. Equation (2) can be solved by means of the staggered-grid
finite difference method in a spherical coordinate system [20]. The model parameterized
for calculation includes resistive air and conductive Earth. The outer boundary of air is 2a0
from the surface, and its resistivity is set to a moderately large finite value of 1010 Ω·m. The
inner boundary of Earth is the core–mantle boundary (CMB) due to the superconductive
core [17]. The tangential components of H at the boundaries are specified so that Equation
(2) holds throughout the space domain, while the resultant numerical system remains
acceptably well-conditioned. The location of the P0

1 source is placed at a radial distance
from Earth’s surface of 10a0 to ensure that the secondary magnetic field induced by the
conductive Earth can be considered negligible. A variant of the biconjugate gradient and an
iteration method are used to obtain the solution of discretized Equation (2) [21]. To ensure
that H is conservative during iteration, the divergence correction [22] is also applied.
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2.2. L-BFGS Inversion

GDS inversion can generally be expressed as an optimization problem

Φ(m, λ)→
m

min, (3)

where the penalty function Φ(m, λ) is defined by

Φ(m, λ) = Φd(m) + λΦm(m), (4)

where Φd(m) and Φm(m) are data misfit and model roughness, respectively, and λ is the
regularization parameter, which is used to trade off Φd(m) and Φm(m). m is the electrical
conductivity vector, and in the case of three-dimensional (3D) inversion, it represents the
conductivity in each prism [5].

Using the notation of Lp-norm measurement of the objective function, Equation (4) is
expressed by

Φ(m, λ) = ‖Wd(ψ(m)− d)‖p
p + λ‖Wm(m−m0)‖p

p, (5)

where d is the data vector, m0 is the prior model, ψ represents the forward mapping operator
used to calculate the responses of model m, Wd is a diagonal matrix with data covariance
as diagonal elements, and Wm is a smoothing matrix used to relate the conductivity of each
grid to that of the adjacent grids in three directions (X, Y, and Z directions). The correlation
among adjacent cells increases as the value of the smoothing coefficients increases from 0
to 1. Lp-norm inversion can be realized by assigning different values of p.

In the traditional inversion approach, differentiating both sides of Equation (5) with
respect to the space domain model parameters and neglecting the higher order terms of the
Taylor-series expansion allow the linear system of equations to be solved at each iteration,
as follows:[

JTWT
d RdWdJ + λWT

mRmWm

]
δm = JTWT

d RdWd[ψ(m)− d] + λWT
mRmWm(m−m0), (6)

where
Rj(x) = p

(
x2 + ε2

)p/2−1
, j = d or m, (7)

where ε is a small number to ensure a solution when x = 0 and p corresponds to the
Lp-norm inversion.

The optimization of Equation (3) in the case of GDS inversion is nonlinear, and we
select the limited-memory quasi-Newton method (L-BFGS), which has been widely used
in electromagnetic induction exploration [23] to seek the solution of the penalty function.
L-BFGS is a modified form of the quasi-Newton method. The basic iteration formula of
L-BFGS is

mk+1 = mk + αkpk, (8)

where
pk = −B−1

k ∇Φk, (9)

and

∇Φk =

(
∂Φ
∂m1

,
∂Φ
∂m2

, · · · ,
∂Φ

∂mN

)T
∣∣∣∣∣
m=mk

, (10)

where k is the number of iterations, αk is the searching step, pk is the searching direction,
and Bk is the approximation of the Hessian matrix [24]. The approximation of the Hessian
matrix avoids calculating the Hessian matrix directly, thus tremendously reducing the
requirements for computer storage and computation time.

The computation of Equation (6) requires the calculation of the Jacobian matrix and
forward responses. The latter can be easily accomplished. Nominally, the Jacobian matrix
can be directly computed, but a more feasible method, the adjoint forward technique, can
be considered [21,22,25]. Using this method, we compute the product of the matrix and the
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data vector, which is split into a few adjacent forward operations, thus greatly reducing
computational requirements.

2.3. Data Processing

C-responses can be estimated using the BIRRP software package [26], which is a
combination of the standard M estimation method and hat matrix diagonal statistical
analysis; thus, it can eliminate the interference in Hr and Hθ and correlated noise in both.
The application of the remote reference method is suggested in BIRRP, but the self-reference
method has been proven to show only a negligible difference from the remote reference
method [27] in the long periods used for the present work; therefore, in this paper, we
estimate C-responses by means of the self-reference method based on BIRRP.

Hourly mean value time series of the three components of the geomagnetic field
can be obtained from the World Data Center. In this paper, the selected time series are
from 6 years up to approximately 60 years. In addition, the Geomagnetic Network of
China provides data from deployed geomagnetic stations in China, which significantly
enhances the number of stations that can be used in GDS inversion. After careful selection
according to the duration and noise that we presented previously [21], we obtained 15
geomagnetic observatories in South China for further consideration (Figure 1). The details
of the observatories are listed in Table 1. The estimated C-responses and their errors within
16 periods from 3.5 to 113 days at the selected stations are presented in Figure 2. The
estimation of C-responses in the frequency domain strongly depends on the data length in
the time domain. However, the data length varies at different stations, besides the observed
data being strongly affected by environmental noise and the ocean effect, leading to a huge
variability both in the real and imaginary parts of C-responses, especially for responses in
a long period. The variation in responses at different stations indicates that the electrical
structure beneath South China is heterogeneous. The squared coherency of C-responses,
which is commonly treated as a quality indicator of C-responses, is depicted in Figure 2c,
showing that most of the C-responses are of good quality, while some stations produce
C-responses of poor quality. Considering the strong fluctuation for some stations, the
L1-norm measurement is used to measure the data misfit to suppress the influence of data
noise on the inversion results [21].
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Table 1. Station details of the observatories used in this article. GM corresponds to the geomagnetic
coordinates, and the data length is the duration of the recorded geomagnetic field data time series at
the station. WDC means the data were downloaded from the World Data Center, and GNC means
the data were obtained from the Geomagnetic Network of China.

Code Name Longitude Latitude Gm_Long Gm_Lat Data Length Data Source

CDP Chengdu 103.7 31 176.11 20.89 1995–2017 WDC
CHM Chongming 121.4 31.63 192.14 21.74 1995–2016 GNC
CHQ Chongqing 106.56 29.57 178.72 19.44 1995–2001 GNC
GUY Guiyang 106.64 26.65 178.78 16.52 1995–2013 GNC
GZH Guangzhou 113.34 23.09 184.91 12.99 1960–2017 WDC
HAZ Hangzhou 120.16 30.28 191.06 20.35 1995–2001 GNC
LNP Lunping 121.17 25 192.22 15.11 1980–2000 WDC
MEC Mengcheng 116.56 33.27 187.66 23.23 1995–2001 GNC
NAJ Nanjing 118.8 32.06 189.74 22.09 1995–2001 GNC
QIX Qianxian 108.2 34.6 180.05 24.46 1995–2015 WDC
SHY Shaoyang 111.47 27.24 183.1 17.13 1995–2016 GNC
SSH Sheshan 121.19 31.1 191.97 21.2 1932–2006 WDC
THJ Tonghai 102.7 24 175.07 13.91 1995–2017 WDC
TIS Tianshui 105.73 34.59 178 24.46 1995–2001 GNC

WHN Wuhan 114.56 30.53 185.9 20.45 1995–2017 WDC
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are the real and imaginary components of the C-responses, and vertical lines are the data errors. (c)
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2.4. Influence of the Ocean

The C-responses at coastal observatories are significantly influenced by ocean induc-
tion effects (OIEs) due to the large contrast in conductivity between oceans and continents,
especially for responses over short periods [27–30]. Some of our selected observatories are
located near the coastline, so we examine the OIEs on C-responses. Based on the global
average one-dimensional (1D) model (Figure 3) derived from vector magnetic field data
observed by satellite [31], we calculated the C-response at the Guangzhou (GZH) and
Sheshan (SSH) stations near the coastline. The C-responses of the 1D model covered by a
shell comprising oceans and continents at the two stations were also calculated. As shown
in Figure 4, both the real and imaginary components of the C-response are significantly
affected in the examined periods. The influence on the imaginary components is more
obvious, and the OIEs are stronger in GZH than in SSH. The influence of the OIEs at the two
stations can reach a period of 30 days if 5% variations are taken as a reference, which are
commonly used as an error floor in electromagnetic induction inversion [32–34]. According
to the relationship between electrical conductivity and the C-response, the conductivity is
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proportional to the imaginary component of the C-response, and the penetration depth is di-
rectly proportional to the real component. The strong variations in C-responses correspond
to the extremely enhanced conductivity in the shallow mantle, which do not coincide with
the actual situation. Therefore, the response of stations affected by OIEs must be corrected.
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The ratio method can be used for OIE correction [35], and the specific correction
formula is as follows:

Ccorr = Cobs·k, and k = C1D/C1D+shell (11)

where Ccorr is the corrected response, Cobs is the observed response at the station, and k
is the correction coefficient, which can be calculated from the response of the 1D model
and the response of the 1D model with a covering shell comprising oceans and continents.
Obviously, the correction coefficient changes with the 1D model. This makes it difficult
to identify a 1D model that can be suitable for all stations because the electrical structure
of Earth is unknown and three-dimensional. Therefore, in our 3D inversion of GDS, the
conductivity of the shell with ocean and land was treated as the surface layer of Earth. The
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shell was considered in the forward numerical modeling but was fixed throughout the
inversion [21,36].

3. Inversion Results and Stability
3.1. Electrical Conductivity Model

The C-responses (Figure 2) at the 15 stations in South China were inverted via 3D GDS
inversion, in which the data misfit and model roughness were measured using L1- and
L2-norm measurements, respectively. To reduce the influence of the electrical structures
of the surrounding mantle, stations near the research area were also considered in our
inversion. The data error used to normalize the data misfit in inversion was obtained
from the estimated responses. Data with large uncertainties should be excluded from
the traditional L2-norm inversion, but in L1-norm inversion, their contributions could
be suppressed by data error normalization and L1-norm measurement. Therefore, it is
expected that we could obtain a reliable 3D electrical structure of the mantle beneath
South China.

The initial model of our 3D L1-norm inversion adopted the 1D model in Figure 3. To
match the major mineral phase transitions in the mantle, the conductivity was allowed to
jump at 410 km, 520 km, and 670 km. A heterogeneous grid was densified with a fineness
of 3◦ × 3◦ horizontally to discretize the model in the research area, and the size of the cell
increased gradually outside the area (as shown in Figure 5). To eliminate the OIEs, a lateral
grid of 1◦ × 1◦ of the surface layer with a thickness of 12.65 km was considered to more
precisely describe the distribution of the sea and continent to generate the shell in 3◦ × 3◦

for calculation and ensure OIEs were accounted for with sufficient accuracy [28].
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The 3D inversion started with an initial regularization parameter of 1.0. During
iterations when the relative change in the data fitting error was less than the given threshold
value, the regularization parameter was halved. The inversion process continued iteratively
until the target data misfit was reached or the regularization parameter was rather small.
The inversion was repeated for a number of different regularization parameters to better
assess the stability of any detected mantle anomalies. The results of these inversions
show that the distribution of anomalies is similar for different inverse models, except that
the boundary sharpness is different. After 59 iterations, the inversion terminated with a
regularization parameter smaller than 10−4. The root mean square (RMS) of data misfit
is 1.81, which is larger than the expected value of 1.0. This large RMS is due to some
unreliable data included in the inversion. If we exclude the responses whose RMS is larger
than 5.0, the RMS decreases to 1.19. When using L1-norm inversion, the models from the
two inversions share almost the same electrical structures. The results of inversions with an
initial regularization parameter equaling 100 and stations excluding responses with a large
RMS are shown in Figure 6 to strengthen the reliability of our preferred model. The data
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fitting curves are plotted in Figure 7. The curves show a good fitting for most responses,
implying a convincing result for our inversion.
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Figure 8 displays our preferred 3D electrical conductivity distribution in the mantle
(250–1600 km) beneath South China, corresponding to the sensitive depth of GDS. The most
noteworthy feature (Anomaly A) is the enhanced conductivity area, which is centered on ~
(112◦ E, 27◦ N). The anomaly is nearly vertical and continuous. It can be found in the lower
mantle, MTZ, and upper mantle. The strongest variation in conductivity occurs in the
lower MTZ, with conductivity reaching approximately 7 S/m at the center. However, this
extremely high conductivity is not suitable for further analysis, because the electromagnetic
induction is primarily sensitive to the integrated conductance of a conductivity body which
prefers to generate a compensating higher conductivity in the core [37]. In the topmost
lower mantle (670–900 km), the anomaly is similar to that in the lower MTZ both in shape
and conductivity value. The average conductivity of Anomaly A appears to be two to four
times higher than that of the global average models at the most sensitive depths (410–900
km) of GDS. The variation in conductivity is much weaker in the upper MTZ (410–520 km),
but enhanced conductivity is observed in the shallow upper mantle. Although Anomaly
A seems to extend to the deeper lower mantle (900–1200 km), we could not confirm this
extent because these depths were outside of the sensitive zone of GDS, and the anomaly
may have been caused by leakage from the conductive zone at 670–900 km [22]. Therefore,
the anomaly at these depths will not be discussed here.
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3.2. Robustness of Anomaly A

To determine whether Anomaly A is strictly required by the data, we repeated the
L1-norm inversion with the same control parameters but set a hard prior bound in the
region where the cell conductivity is fixed to that of the starting model and not permitted
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to vary during the iterative inversion as a free parameter. The results of the re-inverted test
are shown in Figures 9 and 10.
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Figure 9 shows that if the area of Anomaly A is restricted, the inversion produces new
conductive areas around the periphery of the previously conductive zone (rectangle with
red dashed line), and the new areas are the most obvious at depths of 670–900 km. The
conductivity of the zone from 900 to 1200 km increases to a rather large value compared
to that of the preferred model. Figure 10 shows the fitting curves of C-responses for
three observatories (CDP, GZH, and WHN) located near the region of Anomaly A. It
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is evident that when suppressing the conductive feature by setting a hard prior bound
(i.e., the conductivity in this zone must be equal to the background conductivity), the
model response misfit deteriorates significantly at the three stations, particularly at GZH
and WHN. The response shifts considerably from the observed data at nearly all periods,
meaning that the conductivity at all depths is inconsistent with the real mantle situation.
We therefore conclude that Anomaly A is a required feature of the data.

4. Discussion

The conductivity of the mantle is affected by the mineral composition, temperature,
and volatiles such as water [38,39]. The conductivity values of minerals measured under
high-temperature and high-pressure conditions with varying water contents in the labora-
tory [40] allow us to explore the properties of Anomaly A. Heterogeneity in composition
and temperature is mainly created by subducting slabs and mantle plumes, while water
is carried and released by subducting slabs. The contribution of water can be excluded
because there is little evidence of a slab that penetrates or stagnates in the MTZ beneath
South China. This exclusion can be strengthened by the elevated 660 km discontinuity at
the location measured using the receiver function technique [41], which is contradictory
to the depression caused by water [42]. The influence of a plume on conductivity is more
dependent on the excess temperature rather than on compositional differences. Therefore,
the enhanced conductivity of Anomaly A may be a result of high temperatures.

In the lower mantle, the conductivity of the lower mantle can be estimated by

σ = σ0 exp(−∆E + P∆V
kT

), (12)

where σ is the electrical conductivity of the lower mantle, σ0 is the pre-exponential factor,
and k is the Boltzmann constant. P and T are the pressure and temperature, and their
values at different depths in the mantle can be extracted from Xu et al. [43]. ∆E and ∆V are
the activation energy and activation volume, respectively. Taken from the literature [43],
σ0 = 74 S/m, ∆E = 0.7 ev, and ∆V = −0.55± 0.01 cm3/mol. In the uppermost lower
mantle, the average temperature is approximately 1900 K, which can be calculated from the
global average conductivity according to Equation (12) and matches the result presented by
Xu et al. [43]. To fit the average conductivity of Anomaly A, a temperature at approximately
2300 K, which is 400 K higher than the global average, is required (Figure 11b). Additionally,
the temperature at the CMB is approximately 2550 K; assuming an adiabatic upwelling
mantle plume originating from the CMB, this estimate is reasonable.

In the MTZ, wadsleyite and ringwoodite have a relatively high water capacity [44,45].
We can estimate the average water contents in the MTZ according to the global average 1D
model and the electrical conductivity model of Yoshino et al. [38]

σ = σ0H exp
(
−HH

kT

)
+ σ0PCw exp

(
−

H0
P − αC1/3

w

kT

)
, (13)

where Cw is the water content, σ0 is the pre-exponential factor, α is a constant account-
ing for geometrical factors, and H is the activation enthalpy. Subscripts H and P denote
small polaron and proton conduction, respectively. The values of parameters contained in
Equation (13) measured by Yoshino et al. [38] are shown in Table 2. The estimated average
water content in the MTZ is used to evaluate the temperature of Anomaly A. Figure 11b
shows that in the lower MTZ, the conductivity of ringwoodite with a temperature approxi-
mately 300 K higher than the geotherm is close to the average conductivity of Anomaly
A. In the upper MTZ, a comparable temperature approximately 200 K higher than the
geotherm is obtained based on the average conductivity.



Sensors 2023, 23, 1249 12 of 16

Sensors 2023, 23, x FOR PEER REVIEW 12 of 16 
 

 

the location measured using the receiver function technique [41], which is contradictory 
to the depression caused by water [42]. The influence of a plume on conductivity is more 
dependent on the excess temperature rather than on compositional differences. Therefore, 
the enhanced conductivity of Anomaly A may be a result of high temperatures. 

In the lower mantle, the conductivity of the lower mantle can be estimated by 𝜎 = 𝜎 exp( − Δ Δ ), (12) 

where 𝜎 is the electrical conductivity of the lower mantle, 𝜎  is the pre-exponential fac-
tor, and k is the Boltzmann constant. P and T are the pressure and temperature, and their 
values at different depths in the mantle can be extracted from Xu et al. [43]. Δ𝐸 and Δ𝑉 
are the activation energy and activation volume, respectively. Taken from the literature 
[43], 𝜎 = 74 S/m , Δ𝐸 = 0.7 ev , and Δ𝑉 = −0.55 ± 0.01 cm /mol.  In the uppermost 
lower mantle, the average temperature is approximately 1900 K, which can be calculated 
from the global average conductivity according to Equation (12) and matches the result 
presented by Xu et al. [43]. To fit the average conductivity of Anomaly A, a temperature 
at approximately 2300 K, which is 400 K higher than the global average, is required (Figure 
11b). Additionally, the temperature at the CMB is approximately 2550 K; assuming an 
adiabatic upwelling mantle plume originating from the CMB, this estimate is reasonable. 

 
Figure 11. The conductivity cross-section along 27° N (a) and the rock physics model used to inter-
pret the conductivity of Anomaly A (b). The conductivity of Anomaly A is delimited in the light red 
zone, with the red line denoting its average conductivity. The black lines with labeled temperatures 
represent the conductivity of minerals with corresponding temperatures. 

In the MTZ, wadsleyite and ringwoodite have a relatively high water capacity [44,45]. 
We can estimate the average water contents in the MTZ according to the global average 
1D model and the electrical conductivity model of Yoshino et al. [38] 𝜎 = 𝜎0H 𝑒𝑥𝑝 − + 𝜎0P𝐶 𝑒𝑥𝑝 − /

, (13) 

where 𝐶  is the water content, 𝜎  is the pre-exponential factor, 𝛼 is a constant account-
ing for geometrical factors, and 𝐻 is the activation enthalpy. Subscripts H and P denote 
small polaron and proton conduction, respectively. The values of parameters contained 
in Equation (13) measured by Yoshino et al. [38] are shown in Table 2. The estimated av-
erage water content in the MTZ is used to evaluate the temperature of Anomaly A. Figure 
11b shows that in the lower MTZ, the conductivity of ringwoodite with a temperature 
approximately 300 K higher than the geotherm is close to the average conductivity of 
Anomaly A. In the upper MTZ, a comparable temperature approximately 200 K higher 
than the geotherm is obtained based on the average conductivity. 

Figure 11. The conductivity cross-section along 27◦ N (a) and the rock physics model used to interpret
the conductivity of Anomaly A (b). The conductivity of Anomaly A is delimited in the light red
zone, with the red line denoting its average conductivity. The black lines with labeled temperatures
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Table 2. Value of parameters contained in Equation (13). Numbers in parentheses are the errors by
nonlinear least squares fitting (1s standard deviation).

Mineral σ0H (S/m) HH (eV) σ0P (S/m) H0
P (eV) α

Wadsleyite 399 (311) 1.49 (10) 7.74 (4.08) 0.68 (3) 0.02 (2)
Ringwoodite 838 (442) 1.36 (5) 27.7 (9.6) 1.12 (3) 0.67 (3)

In the upper mantle, the conductivity is mainly determined by olivine. The conductiv-
ity of hydrous olivine has been measured [46] and can be calculated by

σ = σ
Vacancy
0 exp

(
−∆HVacancy

RT

)
+ σPolaron

0 exp

(
−∆HPolaron

RT

)
+ σ

Hydrous
0 Cω exp

(
−∆HHydrous − αC1/3

ω

RT

)
, (14)

where σ0 and ∆H are the pre-exponential factors and activation enthalpies, respectively.
The superscripts vacancy, polaron, and hydrous represent the conductive mechanisms
in olivine. Values of the parameters measured by Gardés et al. [46] are listed in Table 3.
Anomaly A in the deep upper mantle can be explained by a temperature enhanced by
approximately 200 K in the region.

Table 3. Values of parameters contained in Equation (14).

∆HVacancy(KJ/mol) logσ0
Vacancy(S/m) ∆HPolaron(KJ/mol) logσ0

Polaron(S/m) ∆HHydrous(KJ/mol) logσ0
Hydrous(S/m) α

239 ± 46 5.07 ± 1.32 144 ± 16 2.34 ± 0.67 89 ± 9 −1.37 ± 0.45 1.79 ± 0.55

Through the above analysis, Anomaly A is seen to be caused by high temperature.
The temperature is highest in the lower mantle and gradually decreases in the MTZ and
upper mantle. The correlation in the location of this structure in these different zones
indicates that the increased temperatures have a common origin. Therefore, we speculate
the existence of a mantle plume beneath South China, which is commonly defined as the
Hainan plume. As shown in our electrical structure, the Hainan plume originates from
the lower mantle. The low viscosity of the high-temperature mantle plume causes it to
rise rapidly in the lower mantle, forming a narrow tail that is beyond the resolution of
GDS. When the plume impinges on the MTZ, the exothermic reaction caused by the phase
transformation at the 670 km discontinuity interface can block upwelling and result in the
accumulation of a tremendous volume of hot plume materials beneath the MTZ, forming
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a large head [47]. Simultaneously, the bottom of the MTZ is heated by the impeded hot
plume, significantly enhancing conductivity in the lower MTZ. The broad head and heated
lower MTZ are revealed in GDS images, as shown in Figures 7 and 11a. In the MTZ, the
viscosity differences between the plume and wadsleyite and ringwoodite allow the plume
to pass through the MTZ rapidly through a narrow channel. Therefore, it is difficult to
detect the plume itself if the MTZ heated by the plume is ignored. This is the reason
why only slight conductivity increases are observed in the upper MTZ (Figure 11a). The
corresponding relationship between location and temperature between the upper mantle
and the lower mantle is a clear indicator that the Hainan plume passes through the MTZ
and enters the upper mantle. However, limited by the detection depth of GDS, we are
unable to trace the rising plume in the upper mantle.

Our deduction is also supported by previous seismological images. Xia et al. [10]
discovered a continuous low-velocity anomaly in and around the MTZ, which extends
down to the lower mantle deeper than 1100 km, as marked by the black circles in Figure 7.
Considering that the electrical structure not covered by geomagnetic stations cannot be
well constrained by GDS, we only show the seismic structure in the region covered by our
selected stations. The low-velocity anomaly is suggested to be the tail and head of the
Hainan plume, which originates in the lower mantle and feeds the Hainan hotspot. Other
wave velocity structures [48–50] and perturbations of 410 km and 660 km discontinuity [41]
also suggest the existence of the Hainan plume. The high temperature associated with the
Hainan plume can concurrently decrease the seismic velocity and increase the electrical
conductivity significantly [3].

5. Conclusions

In this paper, we have presented the first 3D electrical structure of the mantle beneath
South China from geomagnetic stations in the area. The L1-norm inversion method was
used to suppress the influence of data with considerable noise, and model roughness was
measured by an L2-norm as in the traditional inversions to obtain a smooth model. The
self-reference method based on BIRRP was used to obtain the C-response data used in our
inversion in periods from 3.5 to 113 days, making GDS sensitive to conductivity at depths
of 250–1600 km. The inverted model revealed the presence of a vertical and continuous
conductivity anomaly in the depth range of 250–900 km centered on (112◦ E, 27◦ N).

The results of the laboratory measurements of the electrical conductivity of mantle
minerals at high temperatures and high pressures were used to interpret the nature of
Anomaly A. This analysis strongly suggests that the anomaly is caused by the high temper-
ature of the Hainan plume. The electrical conductivity model shows that the Hainan plume
originates in the lower mantle and that it passes through the MTZ rapidly and ultimately
enters the upper mantle. We provide convincing evidence for the existence of the Hainan
plume based on the electrical structure of the mantle converted from the geomagnetic data
in South China via 3D GDS inversion.

The detection depth of GDS limits its ability to distinguish the Hainan plume in
the shallow upper mantle. Therefore, appropriate methods (e.g., the long-period mag-
netotelluric method) can be used to assess the electrical structure in the upper mantle.
Therefore, future studies with joint inversion of GDS and long-period magnetotelluric data
will strongly advance the exploration of the Hainan plume.
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