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Abstract: Wearable devices capable of measuring gait parameters may provide a means to more
economical gait analysis compared to conventional equipment comprising of a motion capture
system and a forced treadmill. Beflex Coach (Beflex, Republic of Korea) is one such device but
worn on the ear as Bluetooth earphones, unlike other wearables worn on the wrist, feet, or torso. In
this study, the validity of the device was examined against a motion capture system and a forced
treadmill for walking and running parameters. Five walking parameters (cadence, single support
time, double support time, vertical oscillation (VO), and instantaneous vertical loading rate (IVLR))
and six running parameters (cadence, stance time, flight time, peak force, VO, and IVLR) were
studied. Twenty young adults participated in walking or running on a forced treadmill at different
speeds (walking: 0.8, 1.25, and 1.7 m/s for walking; running: 2, 2.5, and 3 m/s) while the two systems
operated simultaneously. As a result, all parameters showed excellent associations (ICC > 0.75) and
good agreements in Bland–Altman plots. The results of the study support the potential use of the
ear-worn device as an inexpensive gait analysis equipment.

Keywords: gait analysis; running parameter; walking parameter; wearable sensor; impact force

1. Introduction

Gait analysis is a systematic study for the characterization of human locomotion by
measuring kinetic and temporal parameters [1]. Because gait involves complex coordination
between the central nervous and musculoskeletal systems [2], its analysis can help monitor
health status or estimate the severity of certain diseases. For example, analysis of walking
gait can detect changes in spatio-temporal walking parameters such as increased stance
duration, shortened step lengths [3], and reduced speeds [4], which have been related
with aging and can even classify levels of frailty in the elderly [5]. Neurological disorders
are also associated with gait abnormalities [6], and a previous study showed that the
severity of Parkinson’s disease can be characterized by an increased percentage of double
support duration relative to single support duration [7], a parameter that can be captured in
gait analysis.

Furthermore, gait analysis has been employed in sports medicine and rehabilitation.
Analysis of running gait mechanics may provide useful information for preventing running-
related injuries [8] or even improving performance [9]. Previous studies reported that
abnormal running mechanics may induce subsequent injuries [10,11] and suggested that
maintaining appropriate running mechanics is important. Specifically, a high instantaneous
vertical loading rate (IVLR) was associated with injuries involving stress fractures [12], and
increased cadence [13] and decreased vertical excursion of the center of mass [14] were
linked with improved performance and running economy. The IVLR, cadence, and center
of mass are some parameters that can be characterized by gait analysis, and thus, such an
analysis can aid in establishing running or running-involving sports with enhanced safety
and efficiency.
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However, setting up the environment to conduct gait analysis requires expensive
equipment, such as motion capture cameras and force plates, and trained personnel [15].
Portable systems based on pressure sensors, such as F-scan® (Tekscan, Boston, MA, USA),
Pedar® (Novel, St Paul, MN, USA), and inertial measurement unit sensors, such as e-
AR (Sensixa, London, UK), Xsens MVN (Xsens, Enschede, The Netherlands), are also
popular for gait analysis [16,17], but expensive and require highly skilled personnel to
operate experiments and interpret measures. Therefore, gait analysis has been limited
to clinicians [18], researchers [19], and professional athletes [20]. Moreover, gait analyses
conducted in a lab-based setting are frequently considered artificial and may not capture
natural gait [19].

Recently, wearable devices have shown the potential to provide inexpensive gait
analysis. The advantages of wearables include increasing the accessibility of gait analysis
and enabling it to be conducted in real-world settings [21]. Many wearable devices have
been commercialized in different form factors and fixation locations [22]. The devices
specialized for measuring gait parameters are mostly foot-mounted, waist-worn, and
chest-worn [16] (see Section 4.2 for details). Similar to these devices, Beflex Coach (Beflex,
Seoul, Republic of Korea) can measure gait parameters; however, it has the form factor
of Bluetooth earphones, which is a relatively rare and new form. Thus far, no study has
examined the validity of this device.

Therefore, this study aimed to evaluate the validity of the ear-worn wearable device,
Beflex Coach, compared to a reference system (comprising a motion capture system and a
forced treadmill) for estimating walking and running gait parameters.

2. Materials and Methods
2.1. Study Design

The present study aimed to evaluate the validity of Beflex Coach, an ear-worn wearable
device, and compare the results with those of a reference system (comprising a motion
capture system and a forced treadmill).

2.2. Participants

The eligibility of the participants for the study was based on self-reports on the
satisfaction of the following inclusion criteria: (a) age between 19 and 35 years old,
(b) no history of gait disorder due to musculoskeletal, neurological, or cognitive problems,
(c) absence of running and walking problems. Informed consent forms were obtained from
all individual participants included in the study.

2.3. Parameters

For parameter comparison, six running parameters and five walking parameters were
investigated. The running parameters were four spatio-temporal parameters (cadence,
stance time, flight time, and vertical oscillation (VO)) and two kinetic parameters (peak
force and IVLR). The walking parameters were four spatio-temporal parameters (cadence,
single support time, double support time, and VO) and one kinetic parameter (IVLR). The
definitions and units of the gait parameters are listed in Table 1.

2.4. Procedures

In this study, Beflex Coach (Beflex, Seoul, Republic of Korea) was used as the target
device for the validity investigation, and ten motion capture cameras (MotionAnalysis,
Santa Rosa, CA, USA) and a split-belt treadmill with force plates (Bertec, Worthington,
OH, USA) comprised the reference system. The wearable weighs 5.7 g, has a dimension
of 17.1 × 20.2 × 22 mm, and has a price of 175,000 Korean won (around $137 US dollars).
The ear-worn device was worn on the left ear of each participant (Figure 1), and the gait
parameter data were collected from the device at 0.5 Hz. Subsequently, the gait data were
transferred to the Beflex app (Beflex, Seoul, Republic of Korea)—the mobile app used to
connect the device via Bluetooth—and uploaded to the server of the app. Finally, the
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exporting function of the app was used to collect the gait parameter data. The motion
capture camera system tracked the three-dimensional (3D) location information of the
18 markers (second metatarsus, first and fourth metatarsals, heel, lateral ankle joint, lateral
knee joint, left and right pelvis, sacrum, C8 joint, between eyebrows, and above left ear)
that were attached to the participant (Figure 1). The force plates were set to collect the 3D
ground reaction forces (GRFs) exerted at the left and right foot contacts. The sampling rates
of the motion capture cameras and the forced treadmill were set at 400 Hz each. During the
experiment, the participants were asked to walk or run at different speeds (walking speeds:
0.8, 1.25, 1.7 m/s, running speeds: 2, 2.5, 3 m/s), and each trial lasted for 2 min.

Table 1. Definitions of gait parameters employed in the study. All parameters are averaged values of
parameters obtained in each trial.

Parameter Definition Unit

Running

Cadence Number of steps taken per minute steps/min

Stance time Time duration that one foot is in
contact with the ground s

Flight time Time duration that neither foot is
in contact with the ground s

Peak force Peak value of vertical ground
reaction force G

IVLR The steepest slope of vertical
ground reaction force G/s

Vertical oscillation Vertical displacement of center of
mass between steps m

Walking

Cadence Number of steps taken per minute steps/min

Single support time Time duration that either one foot
is in contact with the ground s

Double support time Time duration that both feet are in
contact with the ground s

IVLR The steepest slope of vertical
ground reaction force G/s

Vertical oscillation Vertical displacement of center of
mass between steps m
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Figure 1. Ear-worn wearable device (Beflex Coach, Beflex Inc.) and optical marker place-
ment locations.

2.5. Data Process

The GRFs and the 3D marker location data were low-pass filtered at 50 Hz and
5 Hz, respectively, using separate sixth-order Butterworth filters. To exclude the transition
states for acceleration and deceleration, the data acquired during the first and last 30 s
were excluded from the analysis. For gait phase detection, a GRF of 15 N was used to
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determine the left and right foot contact and off phases. All reference gait parameter data,
except the VO, were estimated from the GRF, and the VO was calculated as the mean
vertical excursion distance of the left and right pelvis and the sacrum markers. The gait
parameter data from the ear-worn device were simply obtained from the device output
data. All parameters from each system were gathered from one minute of steady gait data,
excluding the first and last 30 s, and were averaged for comparison. A flowchart of the data
processing is shown in Figure 2.
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2.6. Statistical Analysis

To examine the validity, intra-class correlation coefficients (ICCs) were calculated
between the systems (Beflex versus the reference system) for all parameters. Similar to [23],
a two-way random-effects model (ICC_2, K) was used for the validity determination. The
agreement level between the systems was evaluated based on Bland–Altman plots, and
the mean differences and limits of agreements were calculated. To examine the occurrence
of heteroscedasticity of errors for each gait parameter, the coefficient of determination r2

was derived using the mean differences and the averages of the measurements from the
two systems. Heteroscedasticity was considered to occur when r2 > 0.1 [24]. The statistical
analysis in this study was conducted using MATLAB (MathWorks, Natick, MA, USA).

3. Results
3.1. Participants

Twenty young adults (ten males and ten females) participated and completed the
study. The characteristics of the participants are listed in Table 2.

Table 2. Participant description. The mean values with standard deviations are shown. The median
values are shown in brackets.

n Age, Years Height, cm Weight, kg

Male 10 25.2 ± 2.6 (25.5) 172.4 ± 8.0 (173.2) 68.4 ± 12.3 (75.3)
Female 10 27.2 ± 3.0 (27.0) 162.4 ± 6.4 (160.0) 55.6 ± 6.7 (53.1)
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3.2. Validity

The ICC values, 95% confidence intervals, and p values for all gait parameters between
the ear-worn wearable and the reference system are summarized in Table 3. Based on the
interpretation of the ICCs in [25], all running and walking parameters obtained from the
wearable device showed excellent association with the reference system (>0.75).

Table 3. Intra-class correlation coefficients and 95% confidence intervals (CI) between Beflex Coach
and the reference system.

Parameter ICC Lower CI Upper CI p

Running

Cadence (steps/min) 1.000 1.000 1.000 <0.001
Stance time (s) 0.958 0.930 0.975 <0.001
Flight time (s) 0.960 0.933 0.976 <0.001
Peak force (G) 0.975 0.959 0.985 <0.001

IVLR (G/s) 0.928 0.879 0.957 <0.001
Vertical oscillation (m) 0.937 0.870 0.966 <0.001

Walking

Cadence (steps/min) 1.000 1.000 1.000 <0.001
Single support time (s) 0.979 0.962 0.988 <0.001

Double support time (s) 0.969 0.945 0.982 <0.001
IVLR (G/s) 0.953 0.920 0.972 <0.001

Vertical oscillation (m) 0.986 0.976 0.991 <0.001

3.3. Agreement and Heteroscedasticity Test

In Figure 3, the Bland–Altman plots for all gait parameters between the ear-worn
wearable and the reference system are shown. In Table 4, the mean difference, relative mean
difference, limits of agreement, and coefficient of determination for each plot are listed. In
Figures 3 and 4, most of the values lie within the limits, supporting the agreement between
the two systems. Weak heteroscedasticity of errors is observed for the double support time
(r2 = 0.267), whereas it does not occur for all other parameters (r2 < 0.1), suggesting there
are no systematic errors.

Table 4. Mean difference, relative mean difference, limits of agreements, and coefficient of determina-
tion r2 between Beflex Coach and the reference system.

Parameter Mean
Difference

Relative Mean
Difference (%) Lower LOA Upper LOA r2

Running

Cadence (steps/min) −0.029 −0.02 −0.468 0.411 0.004
Stance time (s) −0.001 −0.37 −0.024 0.022 0.050
Flight time (s) 0.001 1.11 −0.022 0.024 0.000
Peak force (G) 0.012 0.54 −0.133 0.157 0.022

IVLR (G/s) 0.183 0.22 −28.146 28.512 0.076
Vertical oscillation (m) −0.003 −3.68 −0.017 0.010 0.062

Walking

Cadence (steps/min) −0.002 0.00 −0.491 0.486 0.055
Single support time (s) 0.004 1.08 −0.021 0.030 0.068

Double support time (s) −0.004 −3.27 −0.030 0.021 0.267
IVLR (G/s) 0.752 4.31 −4.635 6.139 0.009

Vertical oscillation (m) 0.000 0.37 −0.006 0.006 0.012
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Figure 3. Bland−Altman plots comparing Beflex Coach and the reference system for running gait
parameters. The bias is shown in a solid line, and the limits of agreements are shown in dashed lines.
The average of the gait parameters from the two measurement systems are on the horizontal axes,
and the relative differences between the systems are shown on the vertical axes. Each data point
represents a trial from the twenty participants (blue and orange circles represent data points from
males and females, respectively).
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Figure 4. Bland−Altman plots comparing Beflex Coach and the reference system for walking gait
parameters. The bias is shown in a solid line, and the limits of agreements are shown in dashed lines.
The average of the gait parameters from the two measurement systems are on the horizontal axes,
and the relative differences between the systems are shown on the vertical axes. Each data point
represents a trial from the twenty participants (blue and orange circles represent data points from
males and females, respectively).
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4. Discussion

In the current study, the validity of Beflex Coach was tested against a reference system
comprising motion capture cameras and force plates. To evaluate the validity, the ICC
values of six running (cadence, stance time, flight time, peak force, VO, and IVLR) and five
walking (cadence, single support time, double support time, VO, and IVLR) parameters
obtained using the two systems were derived. The results showed that all values ranged
high (ICCs > 0.75), suggesting an excellent association between the two systems based on
the interpretation of the ICCs in [25]. The Bland–Altman analysis yielded high degrees of
agreement for all gait parameters, as reflected by their small mean differences and relative
mean differences, and most of the trial data were within the upper and lower limits of
agreement (LOA). To examine the occurrence of proportional errors between the systems,
the coefficient of determination was calculated. No heteroscedasticity errors were found
for all gait parameters except the double support time in walking. The results of our study
suggest the potential of the ear-worn wearable as an economical gait analysis system for
collecting the gait parameters considered in this study.

4.1. Potential Application of Ear-Worn Wearable Device

As the ear-worn device is equipped with speakers as in typical wireless earphones, if
a real-time voice biofeedback program based on gait analysis data is integrated, the device
may be utilized for gait retraining, a physical therapeutic method to facilitate healthy gait
patterns [26]. In running studies, gait retraining was effective in reducing injuries and
pain. The IVLR was correlated with lower limb stress fractures [27,28], and a significant
reduction in its value was achieved when runners were gait-retrained [29,30]. Furthermore,
a recent randomized controlled trial found that gait retraining was effective in lowering the
IVLR, which, in turn, helped prevent running-related injuries. Specifically, there was a 62%
reduction in the injury risk compared to the control group at the 12-month follow-up [30].

In neurological studies, intervention via biofeedback has been shown to alter walking
gait patterns and alleviate symptoms. In a study in which subacute stroke patients were
trained on treadmills, significant improvements were achieved in their spatiotemporal gait
parameters (stance time, swing time, gait speed, and cadence), endurance, and mobility [31].

Although the efficacy of gait retraining based on biofeedback has been confirmed in
numerous studies [32,33], 96% of studies were still limited to a laboratory environment [34].
The current device may expand gait retraining to in-field running exercises to prevent
injuries and improve performance. Furthermore, the device could reduce the number of
comprehensive lab-based analyses and provide an economical means for gait analysis
in the daily environments of patients and older adults to promote and maintain healthy
gait patterns.

4.2. Comparison with Other Wearable Devices

Many commercial wearables have been tested for the collection of gait parameters
from various parts of the body: wrist, waist, chest, and feet.

Wrist-worn wearables such as Fēnix 2 (Garmin, Olathe, KS, USA) showed excellent
correlation (0.931) for the cadence with motion capture cameras, and they are often used
simultaneously with devices mounted on other parts of the body to collect extra parameters
like vertical oscillation and stance time [35]. Foot pod devices such as Stryd (Stryd Inc.,
Boulder, CO, USA) and RunScribe (Scribe Lab. Inc., San Francisco, CA, USA) designed to
be attached to shoelaces can provide various running parameters, including foot kinematics
and kinetic and spatio-temporal parameters. The validity of the devices was also confirmed
in [24], which reported excellent accuracies (all ICCs > 0.75) of the stance time, flight time,
cadence, and step length compared to those derived using a high-speed camera. The
pairing of the running dynamics of HRM-Run (GFR), a chest-mounted device (Garmin,
Olathe, KS, USA), with a Garmin Forerunner 735XT (Garmin, Olathe, KS, USA) is also
a promising method for gait analysis. The above chest-worn device was compared with
Xsens MVN (Xsens Technologies B.V, Enschede, The Netherlands), a motion capture suit
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comprising a set of multiple inertial measurement units (IMUs). The concurrent validity
(ICC) was found to be good for the VO (0.769), excellent for the cadence (0.970), and
moderate for the stance time (0.568) [36]. There is also a waist-worn device, Myotest®

(Myotest, Sion, SA, Switzerland). In a study that compared the device to a high-speed
camera, the validity of the former was determined as fair to excellent. The study obtained
reasonable ICC values for the stance time (0.638 ± 0.106) and the flight time (0.692 ± 0.047)
and an excellent ICC for the step frequency (0.885 ± 0.05) [37]. Compared to the other types
of commercially available wearables, the ear-worn device examined in the current study
showed comparable or better accuracy for all parameters and activity types, supporting
its feasibility.

The ear has received relatively little attention as a potential location for wearable-based
gait analysis. To our best knowledge, only one other ear-worn device has been developed:
e-AR. However, this device is considered as an IMU sensor module instead of a consumer
wearable device because it only provides raw motion data and not processed gait parameter
data [38]. Thus, the studies utilizing this device first developed their own algorithms to
extract gait parameters and subsequently compared the results with those obtained from
other gait measurement systems. Atallah et al. derived kinetic and temporal parameters
using e-AR and compared the parameters with those derived using a forced treadmill [39].
The study showed weak correlations between the kinetic parameters of the device and
the reference system and the occurrence of proportional systematic errors in the temporal
parameters. In a recent study, Diao et al. derived temporal parameters using the above
ear-worn device and achieved good parameter estimations [40], supporting the potential of
the ear area as a good location for a wearable attachment. Owing to the differences in the
device outputs, the current study did not develop a gait parameter estimation algorithm;
instead, it compared running parameters in addition to walking parameters. Compared to
the previous studies, the current study yielded higher accuracy results as reflected by the
smaller mean differences and limits of agreements of the temporal parameters.

4.3. Limitations

The results of the present study should be interpreted with caution owing to the
following limitations. The study was conducted on young Korean participants, and the
highest running speed was limited to 3 m/s. Therefore, the results of this study may not
be generalized to other ethnic or age groups or running speeds beyond 3 m/s. Moreover,
the trials were not repeated, and the reliability of the wearable device was not tested in
the study.

5. Conclusions

The current study examined and confirmed the high validity and degree of agreement
between an ear-worn wearable device (Beflex Coach) and a reference system (comprising a
motion capture system and a forced treadmill) for estimating walking and running gait
parameters. These results indicate that the ear-worn wearable device may provide a means
to low-cost and portable gait analysis under conditions similar to those in the current study.
If applied to gait retraining, the ear-worn wearable may expand previous gait treatment
methods, which have been limited to indoor environments, to actual fields, benefitting
diverse populations ranging from runners to older adults.
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